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Abstract: The recent arrival of ultra-high throughput, next generation sequencing (NGS) 

technologies has revolutionized the genetics and genomics fields by allowing rapid and 

inexpensive sequencing of billions of bases. The rapid deployment of NGS in a variety of 

sequencing-based experiments has resulted in fast accumulation of massive amounts of 

sequencing data. To process this new type of data, a torrent of increasingly sophisticated 

algorithms and software tools are emerging to help the analysis stage of the NGS applications. 

In this article, we strive to comprehensively identify the critical challenges that arise from all 

stages of NGS data analysis and provide an objective overview of what has been achieved in 

existing works. At the same time, we highlight selected areas that need much further research 

to improve our current capabilities to delineate the most information possible from NGS data. 

The article focuses on applications dealing with ChIP-Seq and RNA-Seq. 
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1. Introduction  

Much like the development of microarray technology for measuring gene expression in the late 1990s 

and early 2000s, the development of technologies for high-throughput sequencing, termed next-generation 

sequencing (NGS) technologies, is having an impact on the types of questions that biologists can ask these 

days. Already, these technologies have resulted in a multitude of high-impact studies with very diverse 

biological applications. These range from genome-wide survey of transcription factor binding sites: 

Chromatin Immunoprecipitation followed by high throughput sequencing (ChIP-Seq) [1-4], 

comprehensive surveying of the entire transcriptome: RNA-Seq [5,6] , global methylation patterns [7-10], 

sequencing the organisms present in a complex mixture [11], full genome sequencing of individuals and 

samples [12-15], and understanding the role between sequence variants and their effects on gene 

expression [16,17]. While the applications given so far have been applied to data from humans, NGS 

technologies have also been applied to data from model organisms, such as yeast [18], bacteria [19,20] the 

mouse [5] and ancient species [21,22]. This list of applications is brief and by no means exhaustive; it is 

also fair to say that the use of NGS technologies is on the steep part of the usage curve. Figure 1 shows the 

steady increase of number of publications related to the topic of “next generation sequencing”. One of the 

advantages of the technologies is that it allows single-investigator labs to generate data that was 

previously the domain of large-scale sequencing centers.  

Figure 1. Number of publications by year deposited in PubMed on “Next generation 

sequencing” (Year 2010 figure is projected). 

 

 

Just as with the development of microarray data platforms a decade ago, this new technology raises 

important statistical problems, issues and challenges. Our goal in this article is to give a description of the 

NGS technology, outline an analysis pipeline that is typically used for data generated from NGS platforms 

and to highlight open areas and issues that need further exploration. Given the sheer volume of new 
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articles that are coming out on NGS technologies, attempting to review the current state of the art is at best 

akin to aiming at a moving target. However, we hope that at the end of this article, statisticians, computer 

science researchers and data analysts have a better sense of the experiment that is performed to generate 

the data as well as issues involved in their analysis.  

2. Experimental Platform 

We now give a brief overview of the NGS data generation platform. For more in-depth coverage of the 

technologies, the readers are referred to excellent reviews such as Mardis [23] and Metzker [24]. Although 

knowledge on technological detail is not required for statisticians focusing on high-level analytical issues, 

past experience has suggested that insights into the source of the data sometimes offer crucial advantages.  

There are three major steps involved in a typical DNA sequencing experiment. The first is that the 

DNA of the starting material is fragmented, followed by the ligation of adaptor sequences. Through some 

type of a polymerase chain reaction (PCR), these sequences become clusters of sequencing features that 

are to be processed by the sequencing machine. These features are then run through the sequencing 

machine, where a combination of biochemical and imaging steps are performed to generate the sequence 

reads. 

The particular nature of the steps depends on the machine being used. The three major platforms that 

are currently in use are the Roche/454 platform which utilizes the pyrosequencing technology [25], the 

Illumina/Solexa Genome Analyzer which uses the sequencing by synthesis technology [26], and the Life 

Technology/Applied Biosystem sequencing by oligonucleotide ligation and detection (SOLiD) system.  

Sequencing platforms represent perhaps the fastest-evolving genomics technologies today. There are 

now multiple emerging “next-next-generation” sequencing technologies such as the true Single Molecule 

Sequencing (tSMS) technology from Helicos [27] and Single Molecule Real Time (SMRT) technology 

from PacBio [28]. They are often described as single molecule technologies. These new technologies offer 

even higher throughput with further reduced cost. Another key advantage is that these technologies no 

longer require PCR amplification in the sample preparation step. This eliminates a major source of bias. 

Although the underlying technologies are drastically different, their end result is very similar: a list of 

sequence reads. Although the read lengths from most NGS platforms tend to be shorter than those of the 

classical Sanger sequencing approach, this improved significantly in recent years. Despite this drawback, 

the sheer amount of high-quality sequences generated has proven to be invaluable in many applications, as 

alluded to in the Introduction. The raw data generated are imaging files corresponding to the intermediate 

sequencing steps, but they tend to be really large (on the order of terabytes per sequencing run) and 

therefore difficult to manipulate. Most labs discard them or ignore them in analysis.  

Another important advance in NGS is the development of the “paired-end” sequencing technologies. 

These are technologies that allow sequencing to occur on both ends of the same DNA molecule. The end 

result is a pair of two sequencing reads that are supposed to be only a short distance away from each other 

in the genome. This technology leads to a greater ability to resolve ambiguity of read mapping hence 



Genes 2010, 1              

 

 

320 

producing more and higher-quality data. The new technology is the most useful in detecting structure 

variants and performing de novo assembly.  

3. Mapping reads from NGS experiments 

Once the reads are generated, a key issue is to map them to their correct genomic locations. Because 

reads generated from NGS technologies are much shorter than those generated from the classical Sanger 

sequencing, previously developed alignment algorithms will not work for NGS data. There are two 

situations of interest: (1) when a reference genome is available; (2) when no reference genome is 

available. In the case of (1), the algorithm problem is one of alignment, while for (2) the computational 

algorithm is one of assembly. Both areas have been intensely researched recently with+in the 

bioinformatics community. We focus on the situation (1); a recent review of algorithms for (2) can be 

found in Flicek and Birney [29].  

While a computationally feasible and attractive algorithm for local sequence alignment is the Smith-

Waterman algorithm [30], it has not been computationally feasible to use when analyzing millions of 

sequence reads. Thus, there has been many algorithms developed for mapping these reads to a reference 

genome: ELAND (Illumina Inc, San Diego, CA). Other alignment tools are MAQ [31], SOAP [32], 

ZOOM [33], BOWTIE [34], SeqMap [35], GSNAP [36], BFAST [37], PASS [38] and BWA [39]. There 

are also methods developed specifically for mapping the short color space reads that is unique in the 

SOLiD platform, such as SHRiMP [40]. As discussed nicely in a recent review by Flicek and Birney [29], 

most methods can be categorized into two types of approaches: (a) hash-table based approaches;  

(b) Burrows-Wheeler Transform (BWT)-based methods. The idea behind hash-table based approaches is 

to generate a data structure (hash table) that can index the sequence information in a way such that 

searching can be done rapidly. The hash table can be constructed using either the sequence reads from the 

experiment or the reference genome. Note that there is a tradeoff between the size of the hash table versus 

the speed of scanning the sequences against the hash table.  

The more recent development has been in the use of BWT methods. These techniques are based upon 

the concept of a suffix array created from sequence data that has been transformed using BWT, which 

allows for more efficient searching than a suffix array created from the original data. There are two steps 

involved. First, the reference genome is modified using the BWT. Then, the index is created. As has been 

seen for packages such as BWA [39], use of the BWT-based methods for alignments leads to increased 

gains in efficiencies of storage relative to the hash-table based approaches [41].  

Typically, the alignments make use of the sequence reads. However, all sequencing technologies also 

provide mappability scores as part of the base calling outputs in its accompanying software. Ideally, the 

mappability score equals the phred-scaled probability of the read being wrongly mapped. More recent 

alignment algorithms have attempted to incorporate the quality scores into the alignment procedure [31]. 

We view this as an improvement in that incorporation of quality scores will allow for proper probabilistic 

assessment of read quality and mapping.  
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4. Statistical methods for ChIP-Seq experiments 

In this review, we focus on two types of experiments that can be done using the NGS technology. The 

first type of experiment is called ChIP-Seq (chromatin immunoprecipitation followed by direct 

sequencing). This experiment deals with understanding the global DNA binding pattern of regulatory 

proteins such as transcription factors (TFs). Understanding transcriptional regulation is one of the key 

challenges in molecular biology. One critical step during this process is to determine how proteins interact 

with target DNA to regulate gene expression. Biologists have been constantly searching for better 

techniques to detect in vivo protein-DNA interactions. 

Prior to the availability of high-throughput sequencing, the technology of choice for identifying binding 

sites of TFs genome-wide was ChIP-chip [42,43], which couples the Chromatin Immunoprecipitation 

assay with array-based hybridization. The protein-DNA binding is recognized by detecting hybridization 

signals using a fixed set of probes on DNA microarrays. Using the ChIP-chip technique, scientists are able 

to uncover many new transcription factor (TF)-DNA interaction sites [42-45]. However, due to their 

restriction to the probes present on the DNA microarray, such methods are naturally limited in scale and 

resolution. Whole-genome tiling arrays are also expensive and technically challenging.  

Theoretically, the comprehensiveness and the high resolution are two key advantages of ChIP-seq over 

the ChIP-chip technique [4]. The above is mostly true for ChIP experiments on TFs: most of the  

ChIP-enriched regions identified from ChIP-chip assays are 1 kb or wider, whereas peaks identified from 

ChIP-Seq are typically less than 500 bp. Therefore, compared to control sequences of the same length, 

enrichment tests using the Chi-Square test often result in more significant results from ChIP-Seq. Multiple 

studies have demonstrated the improved motif enrichment under the peaks detected by ChIP-Seq 

compared to those found by ChIP-chip [2,4,46-48].  

4.1. Detecting enriched regions.  

Given the mapped sequence reads, a common goal is to then identify regions/locations where there is 

signal present; we will term these as enriched regions or equivalently peaks. A completely ad hoc 

approach would be to take all locations where there is at least one sequence read found to be a peak. Such 

a heuristic does not account for the inherent variability that exists in the data. Towards that end, many 

statistical algorithms have been developed for the problem of peak finding in NGS data [2,4,46,49-58]. 

See also review and performance comparison studies papers on ChIP-Seq peak calling [59,60]. While 

there are many approaches available, we group them into three categories. The first class of methods 

involves taking a moving average of sequence reads within a fixed or variable-width window and scans 

the window through the entire genome. Then a randomization scheme or a nonparametric method is used 

to determine the null distribution of counts within the genome so that one can construct an estimate of the 

false discovery rate (FDR) [61]. The FDR is defined to be the number of expected false positives among a 

set of locations that are called as peaks. The FDR has been extensively used in microarray studies [62] and 

has become a standard metric for calibrating error rates in high-throughput genomic assays. A related 

concept to the FDR is the q-value [63], which estimates the minimum FDR at which a given peak would 
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be called significant. For example, the following are the steps in the algorithm for the F-seq peak-calling 

algorithm [49]: 

1. Compute a smooth estimate of the density of the tag counts using a nonparametric kernel density 

estimator based on a default window size that is guaranteed to be numerically stable; 

2. Compute
 
an average number of features for window w as nw = nw/L. Here, n is taken to be the number 

of sequence reads, w is the size of the window, and L is the length of the chromosome. 

3. Calculate
 
the kernel density at a fixed point, xc, within the

 
window given

 
a random and uniform 

distribution of the nw features.
 
 

4. Repeat
 
step 2 k times to obtain a distribution of the kernel

 
density

 
estimates for xc. For large k the kdes 

become normally
 
distributed.

 
 

5. The threshold is s SDs above the mean of this normal distribution. 

A related algorithm to that proposed in F-seq is given in the QuEST algorithm [55].  

The second class of methods use the same approach for finding peaks but then make inferences based 

on a probabilistic model in order to assess the significance of the peaks that have been found. Typically, 

what has been presumed has been a Poisson probability model, as the data that are generated from an NGS 

experiments are counts. The support of the Poisson distribution is the set of nonnegative integers, so this 

supports it as a natural model for the analysis of read data. For the Poisson distribution with mean 

parameter , the probability of observing at least R reads at a given location is given by  

   
     

  

   

   
 

The assumption of the Poisson distribution has been questioned by many authors. Zhang et al. [56] 

found the assumption of one parameter  to not match their empirical data. They proposed a local mean 

parameter that would be estimated for each peak separately. By definition, their approach will lead to 

stricter control of the FDR than using one value for the mean parameter. Another approach is to assume 

that the mean parameter is itself random. By definition,  can be any nonnegative number. A natural 

distribution to use is the Gamma distribution. Combining the Gamma and Poisson distributions leads to a 

negative binomial distribution for the sequence counts, which is the null distribution that is used in the 

software packages CisGenome [64] and BayesPeak [51].  

More complicated algorithms use Hidden Markov models (HMMs) to account for the spatial 

dependence in the peak counts at adjacent locations in the genome. A HMM is a probabilistic model that 

assumes latent states that are of scientific interest. HMM was originally developed by Baum and his 

colleagues in the 1960s. It was first applied to solve engineering problems such as speech recognition 

[65]. Given the latent states, another probabilistic model is assumed for the observed data (here the tag 

counts). The latent variables are also presumed to have a spatial dependence structure along the genome. 

HMMs have a long history in bioinformatics and genetics research [66-75], and their application to this 

setting seems quite appropriate as well. As is suggested, fitting HMMs tends to be more complicated than 
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the previous approaches, although there is a computationally feasible optimization algorithm, the  

forward-backwards algorithm [76].  

While this area continues to be an area of active research, we point out several issues that merit further 

attention by statisticians. The first is that not all reads are necessarily mappable; while Solexa technology 

provides mappability scores for the reads, they have mostly been used as a data quality filter in the 

analysis. Approaches that model the mappability score in terms of finding peaks would be an 

improvement, analogous to using them in the alignment problem as well. The second area of research is 

the calculation of FDR. Model-based approaches allow for natural estimation of FDR, but they are reliant 

on the modeling assumptions (e.g., Poisson/negative binomial experiments). Typically, permutation 

methods have been used to estimate a null distribution, but it is not clear how to permute in this situation. 

We expect there to be spatial correlations in the data so that care must be used in the resampling scheme. 

Resampling techniques from fields such as time series [77] might be of important use, but this has not 

been explored. The ideal setup would be to have additional samples available representing a control 

distribution; permutation of the sample labels can then be used to estimate the null distribution used to 

estimate FDR. However, more research is needed in the model-based procedure; one issue that has not 

been considered is that the data are fundamentally discrete, while most FDR-controlling procedures 

implicitly work with continuously distributed data. Finally, new methods of evaluating the performance of 

the various peak-calling procedures are needed. Given that the ultimate goal is some type of downstream 

analysis, it may be useful to compare methods based on the ultimate downstream goal.  

4.2. Follow–up analysis 

Much research has been devoted to the aforementioned peak identification. However, plenty of work 

remains after this step. An important goal for the follow–up analysis is to offer clues and biological 

insights from the identified protein-DNA interactions. A summary of the binding pattern can be very 

informative for biologists. Such summaries may include distribution of distances from peaks to the 

transcription start site of the nearest gene; break down of genomic location annotation such as intron or 

untranscripted regions; enrichment of functional categories or pathways in all target genes that show 

evidence of binding. Several tools have already been developed for such purposes [78-80]. 

Another important question is whether there is any significantly over-represented sequence motif in the 

ChIP-enriched regions. It is well-known that many transcription factors (TFs) bind to the DNA in a 

sequence-specific manner [81,82], hence the recognition of enriched sequence motifs will offer significant 

implications on the transcription regulation of the TF. There are two ways to perform the motif analysis: 

de novo motif identification and known motif scan. Both are important problems in computational biology 

and have been intensively studied. A variety of different software programs have been developed over the 

past two decades [83-89]. See Tompa et al. [90] for a review on this topic. 

One type of follow–up analysis from ChIP-Seq experiments involves performing a motif search for the 

regions that are declared to be peak regions. The motif corresponds to the DNA pattern that the TF binds 

to. Such an analysis is important in situations where the TF binding motif pattern is unknown. However, it 
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is also useful when the canonical binding motif for the TF is known, as it will serve as a validation of the 

data and peak calling procedure. In general, we currently lack a comprehensive census of binding motif 

patterns for all transcription factors. There are various stored TF binding motif databases, a subset of 

which have been experimentally verified. Due to this lack of coverage, de novo motif searches on a large 

number of ChIP-Seq binding sites have the potential to refine the motif patterns of the TFBS.  

It seems natural to expect that exploiting the quantitative information provided by high-throughput 

genomic assays will lead to the development of motif-finding algorithms with better sensitivity and 

specificity. This has been seen in studies using microarray [91,92] and ChIP-chip [86,93] data. ChIP-Seq 

technology has demonstrated remarkable sensitivity and specificity in identifying protein-DNA binding 

loci across the entire genome with higher resolution and few constraints. Typically, thousands of DNA 

sequences are routinely being identified as putative candidates for harboring TF-binding motifs.  

In a recent study, Hu et al. devised a novel computational algorithm named Hybrid Motif Sampler 

(HMS) [47], specifically designed for TFBS motif discovery in ChIP-Seq data. The HMS algorithm 

combines stochastic sampling and deterministic “greedy” search steps into a novel hybrid iterative scheme 

to accelerate the computation. The authors also introduced a novel Bayesian model to account for unique 

features contained in ChIP-Seq data, using four different real datasets.  

Due to the ever-increasing popularity of the ChIP-Seq technologies, we anticipate that more advanced 

computer algorithms will be developed for better de novo motif finding using ChIP-Seq data.  

Another viable strategy is to assess the relative enrichment of all known TF binding motifs. A 

reasonable hypothesis is that compared to a set of random control sequences, functional motifs that are 

involved in the regulatory process of the TF tend to be over-represented above non-functional motifs in 

ChIP-enriched regions. To evaluate the enrichment one may scan the entire set of ChIP-enriched regions 

identified from ChIP-Seq experiments for occurrences of known TF binding motifs. The result is then 

compared to the motif scan results obtained from a set of size-matched random control sequences of the 

same length as comparison. Commonly used statistical tests such as Fisher’s exact test or Chi-square test 

can be applied to quantify the level of enrichment. Subsequently, either the test statistics or the associated 

p-values can be used to rank all tested motif patterns to see which motifs are ranked on top. Such a 

strategy has been used in real ChIP-Seq experiments and provides useful knowledge to uncover fresh 

biological insights [48].  

4.3. Combining ChIP-Seq with ChIP-chip data 

Although ChIP-Seq is a new and more powerful assay, ChIP-chip technologies have been widely used 

and is capable of exposing ChIP-enriched regions in parts of the genomes that most NGS technologies 

have difficulty to access (due to repeats or chromatin states). For a well-studied TF, it is often the case that 

ChIP-chip experiments on the same TF have been conducted and the data are publicly available. When 

this is the case, it is desirable to take advantage of the existing ChIP-chip data sets to supplement the 

ChIP-Seq data on hand to improve the comprehensive detection of protein-DNA interaction events. For 

example, Robertson et al. reported that the overlap between ChIP-enriched regions identified by ChIP-
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chip and ChIP-Seq is about 60% [2]. While such a joint analysis has promise, it is a challenging task to 

account for the heterogeneity of data from the ChIP-chip and ChIP-seq platforms. This is because the two 

technologies show vastly different behavior in terms of sensitivity and specificity. The peaks identified by 

ChIP-seq are much sharper and narrower than those in ChIP-chip due to its superior resolution.  

For inference using both sources of data, Choi et al. proposed a hierarchical hidden Markov model 

(HHMM) for an integrated analysis using both ChIP-chip and ChIP-Seq data [94]. To be specific, 

inference results from individual HMMs in ChIP-chip and ChIP-Seq experiments are summarized in a 

higher-level HMM. Analysis results from two well-studied TFs, NRSF and CTCF, suggested that HHMM 

produced improved TFBS identification comparing to analyses using individual data sources. In addition 

to statistical inference, it is also of interest to study the discrepancies in detecting ChIP-enriched regions 

using these two technologies, which may shed light on the limitation of these technologies and on their 

false positives and false negative rates.  

5. RNA-Seq experiments: measuring gene expression  

While microarrays have been widely used for the analysis of gene expression so far, it is possible now 

to apply NGS technologies to accomplish this task [95]. NGS promises the potential of giving actual 

counts for genetic elements as opposed to fluorescence intensities (either single- or dual-channel) that 

were generated using previous microarray platforms. This technology is called RNA-seq and has been 

utilized in several recent studies [5,6,16,17]. As with other NGS data, we expect that utilization of this 

technology will continue to expand in the future.  

While the NGS platforms are very different technically from gene expression microarrays, it is also 

true that we can learn much from the microarray literature. First, it was discovered that there existed 

various systematic biases in the intensity measurements that required various preprocessing and 

normalization methods. Similarly, we can expect that there will be biases that will exist with this type of 

data as well. Past studies have shown considerable bias in terms of sequenceability along the genome. 

There are many factors contributing to this bias such as GC content and repeat regions [96]. This again 

underscores the necessity of replication; while most experiments tend to have no replications, we expect 

that replication will begin once technology costs decrease.  

Another new consideration is that this type of data will lead to more consideration of statistical 

methods for discrete data. This again is in strong contrast with gene expression data from microarray 

platforms, where the measurements were typically modeled as having continuous distributions. This will 

have impact on the types of analyses that are being done. For example, one analysis that is done 

frequently using high-dimensional gene expression microarray data is to find genes that are differentially 

expressed between two or more experimental conditions or treatment groups (e.g., differentially 

expressed in cancerous tissue relative to healthy tissue). This leads into issues of multiple comparisons 

and simultaneous inference because the number of genes being tested is on the order of thousands so that 

performing this many tests of hypotheses leads to the usual multiple testing problem. As discussed 

earlier, the standard adjustment in microarray analysis has been based on the false discovery rate, either 
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via the q-value [63] or the Benjamini-Hochberg procedure [61]. This theory assumes that the test 

statistics have a continuous distribution; this will no longer be the case when the data consists of read 

counts, especially for tags that have small counts. There has been some literature studying multiple 

testing procedures for discrete data [97-99] and Ghosh 2010 [100], but these methods are very much in 

their infancy.  

Another procedure that has become quite common is to use gene set enrichment analysis methods 

[101,102] for the analysis of lists of selected/interesting genes that are obtained from microarray 

experiments. This typically involves comparing the intersection of the list of genes with an a priori 

defined group of genes (e.g., genes involved in cell-cycle metabolism) with the expected amount of 

overlap based on chance. There are many software packages available to do this calculation, a recent 

summary of which can be found in Ackermann and Strimmer [103]. However, doing this same analysis 

with NGS data poses certain issues. This is investigated nicely by Oshlack and Wakefield [104] and 

Young et al. [105] in which they find a length bias, i.e. longer tags are preferred in differential expression 

analyses of RNA-seq data. They propose standardizing by tag length to adjust for this bias.  

Another important application of RNA-Seq is to detect alternative splicing and splice junctions. 

Splicing is a post-transcriptional modification in which regions of RNA called exons are joined. At the 

same time, other regions of RNA called introns are removed. This leads to the mature messenger RNA 

that is subsequently translated into a protein. Understanding the nature of splicing events is difficult to 

achieve using microarrays. Deep coverage and the ability to interrogate the entire transcriptome with 

little restriction using sequencing has enabled the discovery of many splicing events and associated 

products, termed isoforms. A suite of software tools have been developed such as TopHat, Cufflinks and 

Scripture [106-108]. We expect this to continue to be an active research area. However, at the current 

time, microarrays will still be used as a less expensive and more rapid technology for gene expression 

measurements. 

6. Experimental design considerations 

While much attention has been given to the analysis of data arising from next-generation sequencing 

experiments, much less attention has been focused on the design of such experiments. In fact, there are 

two issues when it comes to samples. The first is the number of samples to use. Most experiments tend to 

be single-sample experiments (e.g., one transcription factor) [2,4], although some studies have available 

multiple samples [48,109]. Statistically, replication is always a desirable thing, as it allows for increased 

power for finding peaks. 

A more intriguing issue is determining how many sequencing tags to obtain. This is related to how 

much sequencing depth to obtain for a sample. If the size of the genome is known, then one typical 

recourse is to the theory of Lander and Waterman [110] to determine the amount of sequencing coverage 

needed. For instance, at 1X coverage (total length of fragments = genome size), about 63% of the genome 

is covered. Besides covering more of the genome, increased sequence depth permits correction of 

sequencing errors. However in a metagenomic setting, or in situations where the reference genome is not 
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known, then it is much more difficult to determine how much sequencing to do. In addition, one has to 

deal with the issue of only a fraction of reads being mappable. Finally, as noted earlier, we expect there to 

be biases due to factors such as the mappability of the reads, GC content and other factors. Because such 

biases are shifting constantly in next-generation sequencing, it is important to determine biases regularly. 

The major work in this area has been that of Wendl and Wilson [111]. However, this is clearly an area 

where statisticians have much to contribute.  

7.  Conclusion and Future Directions 

Similar to the microarray technologies 10 years ago, the ultra-high-throughput DNA sequencing 

technologies [25,26,112] are making the transition from development to widespread application rapidly. 

These new technologies make possible unbiased genome-wide analyses at single-base resolution. 

Therefore, genes and regulatory pathways involved in key biological process can now be more effectively 

examined. NGS technologies have enormous potential and will likely play a central role in furthering our 

understanding of fundamental biology and human diseases. Analogous to DNA microarrays, research 

efforts are likely to shift from technologies to extracting biologically and clinically insights using them. A 

wide variety of applications of NGS has or is going to emerge. With ever-improving technology and 

steady decline of sequencing cost, the amount of data generated using this technique is likely to rise 

sharply. The massive amount if data produced poses analysis challenges. There is wide-spread speculation 

that the cost of sequencing will be lower than the cost of storing and analyzing the sequenced data. To 

match the advances provided by the NGS technologies, significant attention and efforts have to be 

directed to the statistics and bioinformatics front. Sophisticated and tailor-made data analysis approaches 

will likely play a key role in fully realizing the power of the next generation sequencing technologies. 
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