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Abstract: Transposable elements (TEs) are long-term residents of eukaryotic genomes that make up
a large portion of these genomes. They can be considered as perfectly fine members of genomes
replicating with resident genes and being transmitted vertically to the next generation. However,
unlike regular genes, TEs have the ability to send new copies to new sites. As such, they have been
considered as parasitic members ensuring their own replication. In another view, TEs may also be
considered as symbiotic sequences providing shared benefits after mutualistic interactions with their
host genome. In this review, we recall the relationship between TEs and their host genome and
discuss why transient relaxation of TE silencing within specific developmental windows may be
useful for both.
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1. Introduction

Transposable elements (TEs) are genomic sequences having the ability to move from one location
to another on the genome. They make up a large portion of eukaryotic genomes, as in Human where
they account for almost 50% of the genome. The presence of TEs within genomes is dynamic. TEs tend
to accumulate mutations and deletions leading the progressive extinction of the whole family in
a species. Nonetheless, the reason TEs are widespread and persist in genomes is explained by the fact
that at least some TEs remain active and have the capacity to regularly invade new species through
horizontal transfers [1–4]. So, genomes display old, mostly inactive copies of TEs together with recent
and mostly active copies of some families. TEs have long been considered as mutagenic agents that can
generate insertional mutagenesis and chromosomal breaks upon mobilizations [5–7]. A long-lasting
question has arisen so as to understand why old TE copies still persist in genomes if they are inactive.
This is attributed to mutualistic interactions with their host resulting in shared benefit. On the one
hand, TEs have been reported as evolutionary forces that shaped mammalian genomes. As a single
and recent example, when exploring the evolutionary forces that shaped Muridae and Hominidae
genomes, Thybert et al. showed that the ongoing expansion of the long interspersed nuclear element
(LINE) retrotransposons appears to be associated with some gene cluster expansions in the different
Muridae genomes [1]. Their data also suggest a model in which these repeats could have increased the
susceptibility to rearrangements via nonallelic homologous recombination.

On the other hand, the host organism may take benefit of sudden remodeled regulatory programs
due to TE integrations providing new enhancers, alternative promoters, or creating new exons that
may add useful functions to the gene product [8–11]. Importantly, domestication of coding sequences
of retrotransposons may create new genes. An iconic example is the independent capture of Env genes
from Endogenous RetroViruses (ERV), called syncytins, useful for placentation [12]. During the last
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decade, studies able to estimate the global impact of TEs on gene regulatory networks have gained a
lot with genome sequencing projects, the development of new bioinformatic tools, and whole-genome
functional assays [13–15].

Beside the potential value of de novo integrations, the fact remains that TE amplification
significantly contributes to genetic disease [16,17]. Conflict between TEs and their host genomes is
then a critical factor limiting TE spreading. The genome has evolved sophisticated mechanisms to
control TE mobilization. On their side, TEs have evolved a counter defense to escape from this host
defense or limit its efficiency. This antagonistic host–TE coevolution is known as an arms race leading
to a reciprocal adaptation [18–20].

In this review, we report the main mechanisms used by the host to restrain TE amplification and
discuss developmental windows described in mice, drosophila, and plant reproductive tissues during
which TE silencing is weakened allowing a transient TE transcription.

2. Genome Defense Plays a Crucial Role in Limiting TE Proliferation

Host genomes have developed mechanisms that reduce the cost of TE transposition, specifically
in the germline where transposition has to occur to propagate within the population. These repressions
occur both at the transcriptional (TGS) and post-transcriptional level (PTGS). This review is not
intended to be a comprehensive review of these repressions, but rather a sampling of findings that have
shed light on TE silencing and occasional desilencing in reproductive tissues. Such repressions employ
DNA methylation, chromatin modifications including sequence specific transcriptional repression by
Krüppel-associated box (KRAB) complexes, and small RNAs.

2.1. DNA Methylation

Cytosine DNA methylation is the main DNA methylation studied so far. It occurs mostly
on the fifth carbon of cytosines (5-methylcytosine (5mC)) of symmetrical CpG dinucleotides.
This DNA modification is widespread from bacteria to mammals but absent in some eukaryotes like
Drosophila melanogaster, Caenorhabditis elegans, or fission yeast. During mammalian gametogenesis,
DNA methyltransferases encoded by the Dnmt3A and Dnmt3B genes, and their catalytically inactive
cofactor DNMT3L, mediate cytosine methylation of TEs. Dnmt3L-/- germ cells present a low level
of methylation associated with a high TE expression [21]. Surprisingly, germ-cell-specific mutants
of Dnmt3B have no effect on fertility, while Dnmt3A mutants are infertile with mild changes in TE
methylation. DNMT3A and 3B are known as de novo DNMT, able to methylate hemi-methylated
and unmethylated CpG. By contrast, the DNA methyl transferase called DNMT1 functions during
DNA replication to copy the DNA methylation pattern from the parental DNA strand to the newly
synthesized strand. Contrasting with Dnmt3A-/-, 3B-/-, a massive demethylation and derepression of
the evolutionary young retrotransposons Intracisternal A particles (IAP) is observed in Dnmt1-null
mutant Embryonic Stem Cells (ESCs) [22].

Another DNMT, DNMT3C, has been recently identified in mouse as a DNA methyltransferase
specific to retrotransposons [23]. The Dnmt3C gene, which had been considered as a pseudogene,
was revealed to originate from the duplication of Dnmt3B in the Muroidea lineage [22,24]. Dnmt3C
expression is specific to male fetal germ cells and selectively methylates and represses the promoters of
evolutionarily young transposable elements. How the Human genome lacks Dnmt3C copies with TEs
is still an open question, but recent evolutionary analyses suggest that DNMT3A might be the enzyme
carrying this function [25].

These DNMT studies converge on the notion that methylation targeting TEs limits TE transposition.
In support of this, demethylating drugs activate TE transcription and unmethylated human L1
elements transpose at a higher rate in transfected cells than methylated L1 [23]. Moreover, cytosine
DNA methylation has been proposed to limit the threats posed by genomic rearrangements due to
recombination occurring between these dispersed homologous sequences. Methylation would restrain
transposons from adopting a chromatin signature permissive for meiotic recombination [26]. Indeed,
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an increase of chromosomal rearrangements in human cancers is correlated with hypomethylation.
Overall, Cytosine DNA methylation is reported as a key epigenetic modification required for gene
regulation and is considered a host-control counteracting the threat of TEs [27]. As mammalian TE
promoters are CpG rich, it has even been suggested that CG methylation has evolved for the specific
purpose of defending the host genome against TE activity [27–29].

2.2. Sequence-Specific Transcriptional Repressors

Many studies have shown a clear correlation between Cytosine DNA methylation and the
transcriptional inactive state of TEs. However, very little is known about how TEs are specifically
targeted. Studies on the Krüppel-associated box (KRAB) domain containing zinc-finger proteins
(KRAB-ZFPs) have brought some understanding.

KRAB-ZFPs are a rapidly evolving gene family, the root of which has been recently reported in
a common ancestor of coelacanths and tetrapods [30]. KRAB-ZFPs are DNA binding factors containing
an N-terminal KRAB domain followed by a variable array of C2H2-type zinc fingers [31,32]. Acting as
transcriptional repressors, KRAB-ZFPs bind to DNA through their zinc finger domain. Via the KRAB
domain, they recruit the corepressor KAP1 (also called TRIM28) which subsequently recruits epigenetic
modifiers such as histone modifiers and DNA methyltransferases [33,34].

Characterization of KRAB-ZFP genomic targets has pointed out that many of them target and
silence TEs. Most of our current knowledge comes from studies performed at very early stages of
mammal development and in ESCs in which it was found that a large majority of KRAB-ZFPs associate
with at least one subfamily of TEs. In mouse ESC, the Zinc Finger Protein ZFP809 targets TRIM28
to the primer binding site sequences (PBS) which are bound by specific tRNAs to prime MLVs and
ERVs reverse transcription [34,35]. ZFP809 is then recognized as a stem-cell specific factor, targeting to
silence a large subset of retroviruses and retrotransposons and participating in the intrinsic immune
system of stem cells. The recruitment of KRAB-ZFPs may also occur to specific TE promoters or 3′

ends or be influenced by the age of the TE. In human embryonic stem cells (hES), KAP1 (TRIM28)
represses a discrete subset of LINE1 (L1) elements corresponding to L1 having invaded the ancestral
genome several millions of year ago [36]. If KAP1 is knocked down in these cells, the expression of
KAP1-bound L1 elements is induced, whereas the younger copies of these Human L1 are unaffected.

KRAB-ZFPs and TEs are thought to be locked in an evolutionary arms race, with new KRAB-ZFPs
continuously emerging to cope with newly invading TEs [36]. This has been deduced from studies
performed in a wide range of vertebrate species and reporting that the copy number of KRAB-ZFPs
in these genomes correlates with the amount of LTR retroelements [37]. When investigating the
evolutionary emergence of KRAB-ZFP genes in vertebrates and identifying their targets in the human
genome, Imbeault and Trono found that many TEs whose activity has been lost for a long time since
they invaded the genomes are still bound by KRAB-ZFP, suggesting that the arms race has not been
the sole driver of selection and maintenance of KRAB-ZFP genes in mouse and human [30]. The data
rather point out a domestication model in which some KRAB-ZFP co-opt TEs for the benefit of the host
and may build a species-restricted layer of epigenetic regulation [28].

2.3. Transcriptional and Post-Transcriptional Silencing Mediated by Small RNAs

Small interfering RNAs accomplish silencing of genes targeted through RNA–RNA base pairing.
In gonads, the major small RNA pathway involved in TE silencing is the PIWI-interacting RNA
(piRNA) pathway. piRNAs are single strand RNAs of 23 to 32 nucleotides long that assemble in
piRNA-induced silencing complexes (piRISCs) with PIWI proteins [38]. Cytoplasmic PIWI proteins
are small RNA-guided nucleases that guide endonucleolytic cleavage of TE mRNAs. Nuclear PIWI
proteins assemble silencing complexes on target genomic loci to mediate transcriptional silencing [39].
The piRNA-mediated silencing is active in the gonads of many species, including human, and has
been discovered in Drosophila and mice in which the key steps of this mechanism have been elucidated.
Regardless of which species, mutations affecting the pathway result in genome instabilities and



Cells 2020, 9, 1172 4 of 16

sterility. In Drosophila, transcription of transposon rich loci called piRNA clusters, mostly located in
pericentromeric regions, gives rise to long, single strand RNA precursors which are processed into
piRNAs [40,41]. In the germline, piRNA clusters are mainly dual strand. Their transcription, including
initiation and suppression of termination, requires the RDC complex made of Rhino (Rhi), Deadlock
(Del), and Cutoff (Cuff) [42,43]. This complex recruits proteins required for transcription initiation
within heterochromatin [44]. Rhino, Deadlock, and a recently identified gene CG13741/Bootlegger will
then target the nuclear export factor 3 (Nxf3) to nascent piRNA precursors. After Cargo binding, Nxf3
achieves nuclear export of the unprocessed precursor transcripts. When in the cytoplasm, precursor
transcripts accumulate in perinuclear nuage where piRNA processing occurs [45].

In the germline, piRNAs are amplified through a feed-forward RNA cleavage known as the
ping-pong cycle [40]. This cleavage targets transcripts produced from both TEs and piRNA loci. It is
achieved in the cytoplasm by the two PIWI proteins, AGO3 and Aub. TE transcripts being piRNA
substrates of the ping-pong cycle, AGO3 and Aub are then actors of the post-transcriptional silencing
of TEs. piRNAs amplified through the ping-pong cycle display specific signatures. When they are
antisense to TE mRNAs, their 5′ end is rich in uridine (1U). When they are sense to TE mRNAs, they
show an adenine bias at the 10th position (10A). The third PIWI protein identified in Drosophila, Piwi,
is nuclear and accomplishes piRNA-mediated transcriptional silencing of TEs.

A similar piRNA amplification exists in mice. piRNAs act in complex with Argonaute proteins
and silence TE expression by recognizing complementary RNAs. Disruption of the piRNA pathway in
male mice leads to unsuppressed expression of certain TEs, which has been proposed to be at the origin
of the sterility [46–48]. Most TE piRNAs originate from individual TE insertions and are amplified
by the ping-pong cycle. Two groups of piRNAs can be distinguished according to the time of their
expression during spermatogenesis (see below). In embryonic gonads, piRNAs resemble Drosophila
piRNAs and silence TEs. Transposon silencing is then achieved thanks to MILI, a slicer-competent
cytoplasmic Argonaute protein [47–49], and the nuclear MIWI2 proposed to recruit transcriptional
silencing complexes over transcriptionally active TEs [50–52]. During the pachytene phase of meiotic
prophase I, adult murine testes are highly enriched in piRNAs, but these piRNAs do not target TEs.

All these silencing pathways—DNA methylation, KRAB-ZFP epigenetic silencing, or small RNA
targeting—act together to ensure TE silencing. Their multiple and complementary functions converge
to repress all the families and each TE, be they old or recent genomic copies. They often mediate the
deposition of similar chromatin modification, mostly histone tail modifications such as H3K9- and
H4K20-trimethylation [53–55]. These mechanisms have been proposed to function in conjunction.
Indeed, L1 elements are repressed even in the absence of both a functional piRNA pathway and
DNA methylation in mitotic stages of spermatogenesis because of euchromatic repressive histone
H3 dimethylated lysine 9 modifications cosuppressing L1 expression [56]. The network of silencing
pathways may also work sequentially according to data reported by Castro-Diaz et al. Their data
support a model in which new TEs would first be repressed by the DNA methylation-inducing small
RNA-based mechanisms before KRAB-ZNP repressors are recruited [57].

3. Windows of Vulnerability to Transposition in Germ Cells

TEs have the possibility to occasionally evade the host controls. Indeed, several studies have
reported that some TEs are highly expressed during short windows of germline development, a stage
during which, paradoxically, TE control should be highly efficient to preserve genome integrity of the
future organism and/or its progeny. These observations raise the possibility that replication cycles
occur in these cells and lead to new genomic TE insertions. They also raise the possibility that TE
transcripts produced at these specific stages play a cellular role during early development. Host genes
and TEs might have a shared interest in such transient activations.
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3.1. Resetting of Epigenetics Marks in Mammal Germ Cells

As proposed by Molaro and Malik [24], what we consider as germ cells are cells that are able to
transmit information to the progeny such as those that become gametes but also those of the early
zygote and the inner cell mass of the blastocyst. Most of our knowledge concerning germ cell formation
in mammals comes from mouse models. After fecundation of the mature oocyte by a spermatozoid,
the paternal and maternal pronuclei will then be submitted to numerous molecular events leading to
the acquisition of the zygote epigenome and to the Zygote Genome Activation (ZGA). The embryo
develops to the blastocyst stage at around 3.5 dpc (day post-coitum), and implants into the uterin
mucosa. The embryo pursues its development and cell lineages differentiate to give rise to a newborn
mouse at around 20 dpc.

Formation of germ cells happens quickly after implantation of the blastocyst (3.5 dpc) in the
uterine mucosa. Some cells emanate from the proximal epiblast and are specified into primordial
germ cells (PGCs). They proliferate—then migrate and colonize the genital ridge—the future gonads
of either male or female (Figure 1). From PGCs, spermatozoids and oocytes will differentiate with
obvious differences.

Figure 1. Schematic representation of transient transposable element (TE) relaxation during mouse
germ cell development. From fertilization (A), maternal (mat) and paternal (pat) genomes undergo
epigenetic reprogramming (DNA methylation (meth) resetting (orange) and chromatin remodeling
(yellow)) that affects all genomic regions except imprinted regions and some TEs (red) until zygote
implantation at 3.5 days post coïtum (dpc). After implantation, a new epigenetic landscape is established
in the zygote. From 6.5 dpc, some cells of the zygote are specified as primordial germ cells (PGCs) and
migrate through the genital ridge, the precursor of the gonad. A massive epigenetic reprogramming
affects these PGCs until they differentiate into either the female (B, pink rectangle) or male germ line
(C, blue rectangle). During germ cell differentiation, expression of numerous TEs (red rectangles) is
observed and associated with the epigenetic reprogramming (DNA methylation in orange and histone
modification in yellow rectangles). Actors of the piRNA pathway are differently expressed during
these stages (green rectangle).
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In males, germ cells are blocked in mitosis at around 13.5 dpc until 3 dpp (day post-partum)
where they resume their mitotic proliferation to give rise to a large pool of spermatogonia. At 8 dpp,
male germ cells initiate meiosis and differentiate to ultimately give rise to spermatozoa [58].

In females, germ cells initiate meiosis at 13.5 dpc which is stopped at prophase I before birth.
At 10 dpp, female germ cells pursue meiosis until a novel blockage at the metaphase II which gives rise
to primary oocytes. The completion of meiosis of the mature oocyte will be achieved after fertilization
by mature spermatozoids [58].

Two distinct global epigenetic reprogramming events take place within the germline that may
affect the control of TEs. They occur after fertilization in all the zygotic cells during early embryo
development at preimplantation stages, and in primordial germ cells of the developing embryo.

3.1.1. Epigenetic Reprogramming during Early Embryo Development

The first epigenetic reprogramming event begins just after fertilization, when the methylated
paternal pronucleus is decondensed through the exchange of the protamine by maternal histones.
This is accompanied by a rapid paternal DNA methylation erasure, through a putative active process,
which is still debated. At this stage, the maternal pronucleus maintains its DNA methylation levels,
but a widespread redistribution of histones marks seems to be initiated [59,60]. From the 2-Cells-stages
(2C-stages), maternal and paternal DNA undergo a passive demethylation process which erases all
gametic DNA methylation until the blastocyst stage (3.5 dpc). Some genomic regions escape this
loss of DNA methylation, including some TEs [61]. This specific DNA methylation maintenance and
the hypothetic chromatin state may partly explain the absence of some TE desilencing during this
developmental stage (Figure 1A).

Interestingly, specific de novo DNA methylation phases have been recently observed during this
widespread DNA methylation erasure in human. Some genomic regions are specifically methylated
including young and putatively active TEs (LINEs and SINEs). Actually, the molecular mechanism
underlying this observation is not yet understood since this methylation is lost at later stages [62].

Nevertheless, this reprogramming step is a window of TE desilencing since almost 10% of the
transcriptome from 2C-stage to blastocyst comes from TE transcription [63,64]. These TE reactivations
are required for a proper embryonic development. This is the case of MuERV TE, giving one of the
first transcripts expressed at a high level after fertilization (8 h), whose inhibition leads to an arrest of
development at 2C-stages and alters ZGA [65].

Relaxation of TE silencing has also been reported in embryonic stem cells (ESCs). ESCs are
pluripotent stem cells derived from the inner cell mass of blastocyst, a preimplantation stage embryo.
Studies performed in ESCs in culture have nicely highlighted the potential impact of TEs on the
developing embryo. In ESCs, the retrotransposon LINE1 which is the most abundant TE, and is
still active in humans, is highly transcribed. Percharde et al. showed that these abundant LINE1
RNAs are nuclear in mouse ESCs where they recruit Nucleolin and KAP1/TRIM28 to repress Dux, the
master activator of a transcriptional program specific to 2C-embryo [66]. In addition, LINE1 RNAs
mediate binding of Nucleolin and KAP1 to rDNA and promote rRNA synthesis and ESC self-renewal.
Accordingly, their depletion inhibits ESC self-renewal and induces the transition to a 2C-state. In
embryos, it causes persistence of 2C-state and impairs ZGA. Thus, the specific transcription of
LINE1 during this spatiotemporal window of mouse development is one of the actors orchestrating
self-renewal of embryonic stem cells. Percharde et al. also stressed the fact that the role of LINE1
RNAs as chromatin-associated RNA avoids potential LINE1 retrotransposition and its associated
detrimental effect. It has been proposed that the repeated and fast evolving nature of LINE1 might add
robustness and adaptability to the regulation of early development. The same observation is made in
cultured embryo whose RNA interference against its transcript leads to an arrest of early embryonic
development [67,68].
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3.1.2. Epigenetic Reprogramming in Primordial Germ Cells of the Developing Embryo

Before sex specification, PGCs are subject to a global epigenetic remodeling characterized by a loss
of CpG DNA methylation and remodeling of chromatin (Figure 1B,C). This epigenetic reprogramming
leads to a complete “resetting” of the epigenetic memory arising from the parent and the establishment
of sex-specific gametic identity. In mice, this reprogramming begins at the specification of the germ
cells in male and female. As much as 70% of total CpG is methylated in “specified germ cells” of
the epiblast at 6.5 dpc, compared to only 7% at 13.5 dpc [69,70]. This kinetics of demethylation is
dependent of the specific characteristics of genomic regions, the demethylation process being slower
for imprinted regions and retrotransposons [70,71]. These drastic losses of methylation are associated
with a global remodeling of the chromatin characterized by a global increase/redistribution of some
histone marks (H3K9me3 and H3K27me3) and a loss of others (H3K9me2). When germ cells are clearly
differentiated into male and female, epigenetic reprogramming is then sex specific.

When female specificities are examined, it appears that female germ cells present a very low
level of DNA methylation when blocked at prophase I of meiosis at 13.5 dpc. This low methylation is
conserved until 10 dpp, where de novo DNA methylation will occur progressively with oocyte growth
during folliculogenesis (Figure 1B). All this phenomenon is accompanied by a global histone mark
modification. It is important to note that despite this important global loss of methylation during
embryonic germ cell formation, no transcriptional burst is observed for all TEs except for a burst of
LINE1 transcription at 16.5 dpc [70,72]. The same observation has been highlighted in fetal human
germ cells where LINE1 and Alu clade transcripts have been found. These data suggest that, except
for some of them, a control of numerous TEs is still effective during these spatiotemporal windows of
epigenetic reprogramming that might be due to a chromatin-based repression [73].

In fetal female germ cells, inactivation of the piRNA pathway has no remarkable phenotype
(females are fertile) but, according to current studies, some derepression of TEs is observed [74].
This suggests that the piRNA pathway has an impact on TE control during these developmental steps,
uncoupled to sterility.

Later, in mature mouse oocyte, transcripts of LTR class III retrotransposons (such as the mouse
transcript (MT) subfamily of MaLRs transposons (MT-LTR)) are extremely abundant [75]. It has been
proposed that this transcription might be associated with specific functions of these cells at a later stage
of germline development, such as oocyte attrition [49,50,76].

In male germ cells, de novo DNA methylation occurs quickly after 13.5 dpc to reach more than
40% of methylation at 16.5 dpc [70]. The level of methylation continues to rise during differentiation
into mature sperm cells to reach around 90% [71]. Two waves of de novo methylation are observed
during which some regions resist methylation. These regions mostly concern young TEs such as LINE1
and IAP elements. Histones are then replaced by protamines to induce a major chromatin compaction
(Figure 1C). Transcriptomic studies have shown that numerous TE transcripts are upregulated during
the formation of embryonic male germ cells. This expression decreases with the wave of DNA de
novo methylation: 30% of all reads at 13.5 dpc, 20% at 16.5 dpc, and less than 15% in mature sperm
cells. Some studies report that LINE1 ORF1 is expressed during fetal germ cells formation between
12.5 dpc and 16.5 dpc but not before. It is then downregulated after birth in spermatogonia [70,71].
These observations highlight the link existing between the epigenetic reprogramming occurring in
male germline and relaxation of TEs.

The piRNA pathway plays an important function in the regulation of TE expression during
embryonic male germ cell formation. The first expressed PIWI protein is MILI from 12.5 dpc to round
spermatids, with some variation of its expression profile. Then, MIWI2 is expressed from 14.5 dpc
to 3 dpp, a short window of male germ line development during which de novo DNA methylation
occurs. MIWI2 is also involved in the establishment of a repressive chromatin state around these
regions [77–79]. MILI and MIWI2 act both together and independently [80]. Since MILI or MIWI2
deficiency leads to a major TE derepression, it is proposed that demethylation during fetal germ cell
formation leads to a relaxation of TEs, the transcripts of which will fuel the piRNA pathway using MILI
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and MIWI2 as main actors and increase the production of piRNAs [50,51,77,78]. The same mechanism
seems to act in human fetal male germ cells, where elevated TE expression is detected and associated
with a high expression of genes involved in the piRNA pathway [81].

After 3 dpp, MIWI2 ceases to be expressed and MILI is the only protein of the piRNA pathway
still present. At preleptotene, its expression decreases to reach an undetectable level at pachytene
(7 dpp to 12 dpp) [56]. Then, its expression increases again and remains stable until round spermatid.
The third mouse PIWI protein, MIWI, is then expressed from pachytene stage to elongated spermatid
(10 dpp to 30 dpp) [78]. A novel class of piRNAs, named pachytene piRNAs, is detected. The latter
maps to unique sites in the genome with few exceptions for some repeated TEs suggesting that the
main role of pachytene piRNAs is not to silence TEs [48,82].

Overall, studies performed in mammals point out that TE transcripts resulting from a loss of
DNA methylation, specific epigenetic reprogramming, or weakness in the piRNA pathway during a
short window of time may be used by the germline to i) increase piRNA production, which in turn
re-establishes a tight silencing of TEs later on in the development; and ii) participate in gene regulation,
orchestrating early development.

3.2. Weakness in the piRNA Pathway within the Dividing Cysts of Drosophila melanogaster Ovaries

In drosophila, primordial germ cells (PGCs) are the first cells that are cellularized in the syncytial
embryo at its posterior pole. At the blastoderm stage (3.5 h post-fertilization), these cells stop mitosis
in G2 of the cell cycle. Around embryonic stage 10, PGCs migrate, split into two groups, and coalesce
with somatic gonadal precursor cells to form two gonads. In females, PGCs proliferate all along the
larval stage to reach around 100 cells at the 3rd larval stage. In pupal ovaries, PGCs are in contact
with somatic niche cells (called cap cells). In adult females, ovaries are formed by 15 to 16 structures
called ovarioles that have two to three germline stem cells (GSCs) at their anterior pole which divide
asymmetrically to produce a GSC and a cystoblast. The cystoblast will undergo four rounds of mitosis
with incomplete cytokinesis to form a 16-cell germline cyst. This happens in the anterior part of the
ovarioles, in a structure called germarium. GSCs divide continuously, pushing cysts posteriorly [83].
When the cysts of 16 interconnected cells move to the posterior of the germarium, one of them begins
its differentiation into an oocyte. It initiates meiosis and arrests at prophase I until stage 13. The 16-cell
cysts are then surrounded by somatic cells to give rise to the first egg chamber of the ovariole [84].
At stage 13, the oocyte progresses to metaphase I and arrests again at stage 14. Meiosis completion
occurs during egg activation following fertilization.

Numerous studies performed on Drosophila TEs in the germline have reported that many of
them have the capacity to be transcribed in this lineage, but their activity is blocked both at the
transcriptional and post-transcriptional level by the piRNA pathway. Could this silencing be relaxed
sometimes to allow some replication cycle to occur? Little is known about relaxation of TE silencing
during embryonic, larval, and pupal development of Drosophila. Marie and Ronsseray reported that
the P-element silencing may be occasionally relaxed due to an incomplete silencing established in the
embryonic germ cells and stably maintained throughout development [85]. Besides such occasional
and early TE derepression, it has been reported that a spatiotemporal window exists in the dividing
cysts of adult ovaries during which TEs can escape from host silencing (Figure 2). A detailed analysis
of the repression exerted on Idefix- and P-element-sensor transgenes along oogenesis indeed revealed
that their repression is partially released within the germarium when the cystoblast undergoes mitotic
divisions to form the interconnected 16-cell germline cyst [86]. Among the major factors required for
the piRNA pathway, aubergine (aub) and ago3 are both constantly expressed in the germline, including
in the dividing cysts. Only piwi is poorly expressed in these germ cells, whereas its expression is clearly
detected before and after mitotic cysts, in the GSC, in the cystoblast, and then from germarium 16-cell
cysts to later stages. This spatiotemporal window during germline formation has been named the
“PiwiLess Pocket” (Pilp). The specific lack of Piwi during this spatiotemporal window of drosophila
germ cells is sufficient to allow TE transcription [87–89].
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Figure 2. Model of the functional role of the “PiwiLess Pocket” (Pilp). (A) Schematic structure of
a germarium and early egg chambers. Germline stem cells are in pink, the cystoblast in black, germ
cells of the dividing cysts and nurse cells of the egg chambers in green with the Pilp indicated in
light green, and the oocyte is in orange. The germinal cells are surrounded by somatic follicular cells
(grey). (B) In the Pilp, TE transcripts resulting from a decrease of Piwi are processed into piRNAs
that boost the ping-pong cycle through their complementarity to transcripts produced from piRNAs
clusters (red). (C) In the Pilp, TE transcripts engage TEs in a new replication cycle leading to de novo
genomic insertions.

PIWI proteins have been reported to play a crucial role in germ cell specification and differentiation
during early development. In Drosophila, removal of maternal PIWI affects germ cell specification
by affecting the maintenance of pole plasm [87]. The existence of the Pilp is then puzzling and raises
the question as to the consequences of such a piRNA pathway weakness on germline development.
On both the host and TE point of view, dividing cysts are a very suitable stage for mobilizations
(Figure 2). Their germline origin ensures that the new genomic insertions will be transmitted to the
next generation. Whenever the mobilization is high and/or lethal for the future embryo, the mutational
events will be narrowed to a cyst and the germinal stem cell will keep its potential to produce new
nonmutated cysts [88]. Moreover, the production of TE transcripts may be useful to fuel the ping-pong
cycle and promote piRNA amplification thanks to Aub and Ago3 that are correctly expressed in the
Pilp [89]. Interestingly, this can be considered as a strategy of the host allowing TE transcription
to better repress these mutagenic agents for the rest of the developing germline and future embryo
(Figure 2).

3.3. Genes Responsible for Defense Against TEs Are Downregulated in the Vegetative Nucleus of
Flowering Plants

Cell-specific bursts of TE transcriptional activity in a wildtype background of epigenetically
silenced TEs are reported in Arabidopsis, maize, and rice pollen. It is named DRTS for Developmental
Relaxation of TE Silencing. In Arabidopsis, the DRTS occurs in the vegetative nuclei (VN). Unlike
animals, where the germline is established during early embryogenesis, plant sexual reproduction
initiates with the formation of meiotic competent cells in adults. The pollen mother cell undergoes
meiosis to give rise to four products of meiosis that each undergo two mitotic divisions. The first
division is highly asymmetric and forms a binucleate pollen grain with a larger vegetative cell and
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a smaller germ cell (GC). The second division is performed by the small germ cell and leads to a pair of
sperm cells (SCs). At the point of release from the anthers, mature pollen grains of Arabidopsis thaliana
contain three germ cells of distinct cell type: two identical germ cells providing the paternal DNA
inheritance to the zygote and the endosperm. The vegetative nucleus does not contribute to the zygotic
DNA, but it controls the delivery of sperm. Its DNA is in a decondensed state compared to the compact
sperm nuclei [90].

Although an epigenetic silencing represses TEs throughout most plant development, a transient
reactivation of TEs has been found in mature pollen of flowering plants. In Arabidopsis thaliana, both
expression and transposition only occur in the VN and is correlated with a lack of chromatin remodeling
ATPase Decrease in DNA Methylation 1 (DDM1), one of the main actors involved in TE silencing
throughout plant development and found accumulated in the SCs [91]. It was further found that
euchromatic TEs in the pollen VN undergo DEMETER-dependent DNA demethylation [92].

Differing from animal piRNAs, two types of plant gametophytic small RNAs assure repression of
TEs and transgenerational inheritance of heterochromatin identity. Together with the RNA-directed
DNA methylation (RdDM) pathway, 24-nt long RNAs assure TE transcriptional silencing (TGS).
If reactivated, TEs can produce 21/22-nt long RNAs that assure a post-transcriptional silencing (PTGS)
or, if loaded onto AGO6, also direct TGS [93]. A careful analysis of the mature sperm indicated that
24-nt small RNAs are lacking whereas 21-nt RNAs dramatically increase for several TEs.

Substantial knowledge gaps remain to be filled to fully appreciate the functional role of these
small RNAs during the epigenetic reprogramming that has been observed in Arabidopsis meiocytes,
endosperm, and nurse cells of gametophytes. Despite its potential danger, this cell-type specific
epigenetic reprogramming could serve as a mechanism revealing TE presence to the germline, ensuring
their control after fertilization. The 21-nt small RNAs accumulate in the VN and can migrate to the
associated SC to reinforce silencing (Figure 3) [94]. Supporting that the DRTS function in companion
cells is to reinforce TE silencing in gametes, depletion of the demethylase DEMETER in the VN not only
leads to an increase of DNA methylation in the VN, but also to a reduced methylation of TEs in the
sperm cells. Overall, these data indicate that the very strict reactivation of TEs in the VN contributes to
transgenerational TE silencing [92].

Figure 3. The potential role of siRNAs in the Arabidopsis male gametophyte. In the VN, the chromatin
is in a decondensed state due to a lack of the chromatin remodeling protein DDM1. The transcription
of TEs is allowed and gives rise to mRNAs that are cleaved in 21- and 24-nt siRNAs. These siRNAs
may get out of the VN and enter the neighboring sperm cell where they direct DNA methylation of
complementary TEs or genes. DNA is in blue, TEs and their mRNAs are in red. Cell-to-cell movement
is indicated by an arrow.
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In addition to this, the potential role of DRTS could be to help TEs to evade long-term
heterochromatic silencing. Releasing their silencing offers TEs the opportunity to start the replication
cycle. Finally, although specific to TE-silencing and heterochromatin maintenance, a role of DRTS in
regulating specific genes important in plant development has also been envisioned. In support of this,
the endosperm-imprinted genes required for seed development are sensitive to TE activity [95].

4. Conclusions

A tight silencing of TEs is exerted through multiple and complementary mechanisms involving
DNA methylation, transcriptional repressors, or small RNA production. However, TE-epigenetic
transcriptional derepression occurs at specific stages during the normal development of wildtype
organisms. In a selfish point of view, TEs could take this opportunity of chromatin reorganization
required for cellular functions to transpose. However, this relaxation has been reported under
strict developmental control in the germline of wildtype animals and plants, which rather suggests
a programmed TE reactivation playing a functional role. The mechanisms allowing developmental
precision of TE desilencing are just being elucidated. It is hard to estimate yet the significance and
importance of this reactivation. However, host genes and TEs could share a mutual interest of such
releases of control. Several examples are reported in this review, but one can anticipate that the list is far
to be exhaustive. These TE reactivations during germline development add a new level of complexity
in the relationship between TEs and their host genome and its potential trans-generational impact.
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