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Abstract: Circulating and cell membrane phospholipids undergo oxidation caused by enzymatic
and non-enzymatic mechanisms. As a result, a diverse group of bioactive oxidized phospholipids
generated in these conditions have both beneficial and harmful effects on the human body. Increased
production of oxidized phospholipid products with deleterious effects is linked to the pathogenesis
of various cardiopulmonary disorders such as atherosclerosis, thrombosis, acute lung injury
(ALI), and inflammation. It has been determined that the contrasting biological effects of lipid
oxidation products are governed by their structural variations. For example, full-length products of
1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine oxidation (OxPAPC) have prominent
endothelial barrier protective and anti-inflammatory activities while most of the truncated oxidized
phospholipids induce vascular leak and exacerbate inflammation. The extensive studies from our
group and other groups have demonstrated a strong potential of OxPAPC in mitigating a wide range
of agonist-induced lung injuries and inflammation in pulmonary endothelial cell culture and rodent
models of ALI. Concurrently, elevated levels of truncated oxidized phospholipids are present in
aged mice lungs that potentiate the inflammatory agents-induced lung injury. On the other hand,
increased levels of full length OxPAPC products accelerate ALI recovery by facilitating production
of anti-inflammatory lipid mediator, lipoxin A4, and other molecules with anti-inflammatory
properties. These findings suggest that OxPAPC-assisted lipid program switch may be a promising
therapeutic strategy for treatment of acute inflammatory syndromes. In this review, we will
summarize the vascular-protective and deleterious aspects of oxidized phospholipids and discuss
their therapeutic potential including engineering of stable analogs of oxidized phospholipids with
improved anti-inflammatory and barrier-protective properties.

Keywords: oxidized phospholipids; lung injury; inflammation; endothelial barrier;
phospholipidomics; aging

1. Introduction

Lipid mediators are integral components of cell membranes providing the structural integrity
and acting as a source of energy production. However chemical modifications, in particular,
oxidation, generates a wide variety of bioactive oxidized phospholipids (OxPLs) that have profound
effects on intracellular signaling and modulation of cell functions [1]. The generation of OxPLs
may be a result of specific enzymatic reactions or non-enzymatic oxidation of blood-bound or
cell membrane phospholipids by reactive oxygen species (ROS) [2]. In this regard, OxPLs differ
from other lipid mediators such as prostaglandins, which are exclusively produced by enzymatic
oxidation. Polyunsaturated fatty acids (PUFA) at the sn-2 position of phospholipids represent the
principal site for enzymatic and non-enzymatic oxidation [3,4]. The major groups of enzymes
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involved in the oxidation of phospholipids are lipoxygenases (LOX) and cyclooxygenases [1,3].
Increased production and accumulation of OxPLs has been well recognized as a pathological feature
of numerous diseases including atherosclerosis, lung inflammation, apoptosis, multiple sclerosis,
traumatic brain injury, asthma, and acute respiratory distress syndrome (ARDS) [5–13]. However, the
emerging evidence suggests that certain full-length OxPLs exhibit pro-survival and anti-inflammatory
effects. Beneficial properties of OxPLs have been extensively studied using oxidation products of
1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC), a major constituent of the outer
leaflet of cell membrane phospholipid bilayer. Studies by our group and other groups established
oxidized PAPC products (OxPAPC) as key bioactive products that protect against vascular leak and
inflammation induced by diverse stimuli [3,14,15]. Herein, we will summarize the current knowledge
on the dual effects of OxPLs with a focus on lung endothelium and discuss signaling mechanisms
involved in these processes.

2. OxPLs in Health and Disease

The involvement of OxPLs in the pathogenesis of cardiopulmonary diseases was initially suggested
by the findings that the levels of lipid peroxidation products, isoprostanes, were elevated in patients
with atherosclerosis, acute lung injury (ALI), ARDS, asthma, pulmonary hypertension, and cystic
fibrosis [16–20]. These studies showed that isoprostanes may serve as in vivo markers of oxidative
stress. OxPLs were also shown to act on endothelial cells (EC, focus of this review). EC lining
the luminal surface of blood vessels form a highly selective semipermeable barrier between the
blood and underlying tissues to control the passage of fluid, macromolecules, and immune cells.
EC stimulated with increased OxPLs doses relevant to hyperlipidemic and atherosclerotic conditions
show enhanced adhesion of monocytes, upregulation of several pro-inflammatory genes, and increased
secretion of cytokines and chemokines including interleukin (IL)-8 and monocyte chemotactic protein-1
(MCP-1) [21–24]. Similarly, a role of OxPLs in EC-mediated coagulation has been demonstrated
by OxPL-induced increase in expression of pro-thrombotic tissue factor (TF) by EC and decrease
in anticoagulant activity of tissue factor pathway inhibitor (TFPI) [25,26]. Additionally, OxPLs
are involved in the generation of excessive ROS by EC that contributes to lung inflammation and
injury. EC exposure to high-dose OxPLs caused depletion of intracellular antioxidant glutathione
caused by increased superoxide production via OxPLs-induced upregulation of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase and endothelial nitric oxide synthase (eNOS), thus leading
to oxidative stress [27–30].

Interestingly, in addition to the aforementioned roles in chronic vascular inflammation, coagulation,
and oxidative stress, OxPLs have been shown to exhibit anti-inflammatory and other beneficial cellular
effects in the context of acute innate immune response. The seminal study by Bochkov et al. showed
that OxPLs inhibited lipopolysaccharide (LPS)-induced inflammation in cultured EC and protected
mice from LPS-induced lethality [31]. Consistent with these findings, another study showed that
OxPLs inhibited LPS and 2′-deoxyribo(cytidine-phosphate-guanosine) (CpG)-induced production of
proinflammatory cytokine tumor necrosis factor-α (TNF-α) in mice [32]. Concurrently, the study from
our group revealed that OxPLs enhance basal endothelial barrier function and restore thrombin-induced
EC hyperpermeability [33]. We also verified the barrier protective and anti-inflammatory modalities of
OxPLs in murine model of ALI, demonstrating that OxPLs offer protection against LPS-induced vascular
leak and inflammation in rats [34]. Follow-up studies by several groups substantiated anti-inflammatory
role of OxPLs in animal models of acute septic inflammation [31,33,35–37]. The potential of OxPLs to
inhibit endothelial barrier disruption and lung inflammation induced by a wide variety of agonists
ranging from bacterial pathogens, inflammatory, and edemagenic agents to mechanical forces will be
discussed below.
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3. Structural Heterogeneity Determines the Differential Effects of OxPLs

Non-enzymatic oxidation of phospholipids produces a heterogenous mixture of bioactive
OxPL species. This phenomenon is best exemplified during the oxidation of a major
membrane phospholipid PAPC resulting in generation of families of full-length as well as
fragmented oxidized products (Figure 1). The full-chain OxPAPC products contain the same
number of carbon atoms in the oxidized arachidonic fatty acid chain as in their precursor.
Examples include 1-palmitoyl-2-(5, 6-epoxyisoprstane E2)-sn-glycero-3-phosphatidyl choline (PEIPC),
and 1-palmitoyl-2-(5,6 epoxycyclopentenone) sn-glycero-3-phsphocholine (5,6-PECPC). Similarly,
truncated products of PAPC oxidation are represented by lysophosphatidylcholine (lyso-PC),
1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-phosphatidylchonine (POVPC), 1-palmitoyl-2glutaroyl
sn-glycero-phosphocholine (PGPC), 5-keto-6-octendioic acid ether of 2-lysophosphocholine
(KOdiA-PC), and other products [1]. With such a variety of OxPL compounds generated from
the oxidation of a single parental phospholipid, it is not surprising that the structural differences dictate
contrasting biological effects of OxPLs. Indeed, a full-length OxPAPC product, PEIPC, demonstrated
potent protective effects on cultured human lung EC monolayers, while truncated OxPAPC products
such as PGPC, POVPC, and lyso-PC caused EC barrier disruption [38]. Prevalence of barrier disruptive
activities by truncated oxidation products present in total OxPAPC pool explains EC barrier function
caused by higher OxPAPC doses, while only low doses of OxPAPC strongly enhanced EC barrier and
abolished EC permeability caused by barrier disruptive agonists [33,37,39]. These dose-dependent
differential effects were largely due to the activation of different signaling pathways which will be
discussed below. Nevertheless, these findings justify the clinical scenario where excessive accumulation
of OxPLs causes deleterious effects on vasculature. Overall, there is now a general consensus in the
field that the biological effects of OxPLs vary depending on their structure, intracellular concentration,
and cellular context.

Other groups of lipid oxidation products such as hydroxyoctadecadienoic acids (HODEs)
and Hydroxyeicosatetraenoic acids (HETEs) are also known to play important physiological
roles and may modulate endothelial function. Both HODEs and HETEs act as ligands for
peroxisome proliferator-activated receptor gamma (PPARγ) and thus regulate various cellular
functions [40]. ECs synthesize 9- and 13-HODEs that are formed from the oxidation of
linoleic acid and are the most abundant low-density lipoprotein in atherosclerotic lesions [41].
Furthermore, 13-hydroperoxyoctadecadienoic acid (13-HPODE), which is the predominant product
of 15-LOX-mediated oxidation and later gets reduced into 13-HODE, causes apoptosis and disrupts
barrier integrity in EC [42]. However, a recent study has shown that 20-HODE-caused disruption of
endothelial barrier is not mediated by oxidative stress or apoptosis [43]. 13(S)-HODE causes airway
epithelial injury via mitochondrial dysfunction, and in the transient receptor potential cation channel,
vanilloid-type 1 (TRPV1)-dependent manner and levels of 13(S)-HODE are increased in asthma [44].
Similarly, 12/15-LOX-mediated generation of 12-HETE is a key contributor in LPS or acid-induced ALI
in mice [45]. 12- and 15-HETE increase endothelial permeability in retinal EC via NADPH-dependent
ROS production [46]. Similarly, 12(S)-HETE combined with high glucose induces endothelial barrier
disruption by altering the phosphorylation levels of VE-cadherin and b-catenin and by reducing their
interactions in human umbilical vein EC [47]. 12(S)-HETE and high glucose-induced endothelial barrier
disruption was accompanied by increased endothelial inflammation with increased phosphorylation
of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and inhibitor of NF-κB
(IkBα) along with the increased expression of EC adhesion molecules intercellular adhesion molecule-1
(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) [47]. A number of studies have also
reported the role of 15-HETE in angiogenesis of lung EC [48,49] and in pulmonary vascular remodeling
leading to pulmonary hypertension [50,51].
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Figure 1. Generation of full-length and truncated oxidized phospholipids from the oxidation of
membrane phospholipid: A wide varieties of oxidized phospholipids (OxPLs) are generated from the
oxidation of phospholipid, and among these, full length OxPLs have endothelial barrier protective
properties while truncated ones induce barrier disruption.

4. OxPLs in Inflammation: Role and Mechanisms

Accumulation of OxPLs occurs in inflamed tissues, as evidenced by increased levels of truncated
OxPAPC products in atherosclerotic lesions [8], inflamed lungs [52], and the brain [5]. OxPLs are
initially produced from lipid peroxidation during oxidative stress developing as a part of host–pathogen
response. Once accumulated in inflamed areas, truncated OxPLs propagate inflammation by various
mechanisms. Among these, OxPLs induce monocytes binding to EC initiating inflammation [22], thus
playing a role in the formation of atherosclerotic plaque. EC-monocyte interaction is facilitated by
OxPLs-induced secretion of monocyte-specific chemoattractant MCP-1. Furthermore, OxPLs also
increase the deposition of connecting segment 1 (CS1) fibronectin on EC surface that binds to integrin
α4β1 receptor on monocytes resulting in firm adherence of monocyte on EC [53,54]. Additionally,
a role of LOX in OxPLs-induced monocytes adhesion on EC has been suggested based on findings
that LOX inhibitor represses POVPC-induced monocyte binding to EC [55]. The mechanism of
OxPLs-induced monocyte–EC interaction is unique in a sense that OxPLs do not upregulate the
expression of EC surface adhesion molecules ICAM-1, VCAM-1, and E-selectin as in the case of
other common proinflammatory agonists such as LPS or TNF-α [56]. Rather, OxPLs upregulate the
expression of P-selectin, which facilitates the selective adhesion of monocyte on EC. In regard to the
role of OxPLs in modulating the function of monocytes in inflammation, recent studies have shown
that OxLDL increases mTOR-dependent ROS formation, inflammatory cytokine production and foam
cell formation by mTOR-dependent and epigenetic pathways [57,58].
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Another mechanism which OxPLs employ to initiate and propagate inflammation is increased
production of an array of proinflammatory cytokines including IL-6, IL-8, MCP-1, MIP-1α, MIP-1β,
CXCL3 GROα, and GROβ by EC and macrophages [22,59,60]. The mechanisms of OxPLs-induced
generation of inflammatory cytokines and chemokines may substantially differ from those involved
in typical inflammatory agents or bacterial and viral pathogens. For instance, the kinetics of IL-8
transcription by OxPLs in pulmonary EC varies from that of TNF-α. Both OxPLs and TNF-α induce IL-8
mRNA as early as 30 minutes, but the highest levels are seen between 4–8 hours in the case of OxPLs
compared to 2 hours with TNF-α [61]. Notably, TNF-α-induced IL-8 mRNA levels drop to baseline
after 6 hours, whereas they last up to 18 hours in OxPLs stimulated groups. Interestingly, in contrast
to the common NF-κB pathway activated by most inflammatory agonists, OxPLs utilize different
signaling cascades in the production of these inflammation mediatory cytokines. Other studies have
suggested a role for peroxisome-activated receptor alpha [22], c-Src/signal transducers and activators
of transcription 3 (STAT3) [62], eNOS-mediated activation of sterol regulatory element-binding protein
(SREBP) [27,63], and unfolded protein response following endoplasmic stress [64,65] in OxPLs-induced
inflammatory responses. Furthermore, recent studies have shown that OxPLs activate nod-like receptor
protein-3 (NLRP3) inflammasome, as demonstrated by POVPC-stimulated activation of procaspase-1,
leading to the generation of mature IL-1β and IL-8 in macrophages [66]. That study suggested a strong
involvement of the NLRP3 inflammasome pathway by showing a lack of IL-1β and IL-8 generation in
NLRP3-deficient mice, which is normally activated in air pouch model. OxPLs have been also shown
to activate inflammasome by direct binding to caspase-11 and releasing IL-1β in dendritic cells [67].
The important caveat of these studies is unclear precise composition of OxPLs preparation used in
inflammasome experiments.

Accumulating evidence suggests that, in various pathological states, OxPLs can act as
danger-associated molecular patters (DAMPs) by activating pattern-recognition receptors (PRRs)
and by contributing to chronic inflammation. It is likely that OxPLs formed as “self-modified”
molecules following the oxidative modifications of phospholipids structurally resemble DAMPs [68].
A study by Imai et al. showed that OxPLs generated in lungs of mice infected with bacterial or
viral pathogens stimulate Toll-like receptor 4 (TLR4) to induce lung injury [69], although precise
composition of OxPLs was not determined. Another study reported that tlr4 knockout mice are
resistant to influenza-induced lung injuries and lethality, and this TLR4 inhibition-dependent protective
effects is mimicked by LPS competitive antagonist eritoran [70]. These findings were consistent with
an earlier study suggesting the role of TLR4 in OxPLs-induced IL-8 transcription [71]. However, the
role of TLR4 in influenza-induced lethality has been challenged by other study [72]. A more recent
study has shown that hydroxyl radical-produced OxPLs act as TLR4 ligands and exacerbate cellular
senescence, inflammation, apoptosis, and fibrosis [73]. Nitrogen mustard-induced accumulation of
pro-inflammatory OxPLs in lung macrophages and epithelial cells are suggested to contribute to the
development of pulmonary fibrosis [74]. As opposed to the aforementioned role of TLR4, other studies
have suggested that TLR2 mediates OxPLs-induced inflammation [75]. In addition to TLRs, OxPLs
are also recognized by other several receptors, including scavenger receptors such as CD36 [76,77],
and soluble PRRs such as C-reactive protein [7] which may play a role in mediating the inflammatory
effects by OxPLs. It is intriguing that most of the above-described receptors are equally important and
involved in anti-inflammatory effects by OxPLs.

Coagulation is a pathological phenomenon closely associated with inflammation, and like other
many inflammatory agents, OxPLs stimulate the healthy endothelium to a procoagulant or thrombotic
phenotype by modulating the expression of major proteins involved in these cascades. Studies have
shown that OxPLs stimulate the activity and induce the expression of procoagulant protein TF on EC
surface while reducing the activity of anticoagulant protein TFPI [25,26]. OxPL-induced stimulation of
TF is mediated by the activation of extracellular signal related kinase (ERK) 1/2, early growth response
factor 1 (EGR1), and increase in Ca2+ release with enhanced binding of nuclear factor of activated T
cells (NFAT) [25]. Similarly, direct association of OxPLs with carboxy-terminal basic region of TFPI
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inhibits its activity [26]. OxPLs also cause the transcriptional repression of another anticoagulant
glycoprotein thrombomodulin in vascular EC [78].

5. Anti-Inflammatory Effects of OxPLs and Involved Mechanisms

A large number of studies in the recent years have provided compelling evidences that OxPLs
exert inflammatory and cytoprotective effects, making these molecules attractive potential therapeutic
targets. The initial studies showed that OxPAPC is a potent inhibitor of LPS-induced inflammation
in various cell types including EC and macrophages as well as in mice with its ability to interfere
with TLRs signaling [31,32,53,79]. The anti-inflammatory effects of OxPLs were specific against LPS
since they failed to inhibit the upregulation of inflammatory genes induced by TNF-α or IL-1β [31].
More importantly, OxPLs were equally effective in inhibiting inflammation in mice and protected
LPS-injected animals from endotoxin shock-caused lethality. It is considered that blocking of TLR4
activation due to the direct binding of OxPLs to TLR4 activating proteins LPS-binding protein, CD14,
and MD-2 is responsible for complete inhibition of LPS-induced inflammation [31,80,81]. These studies
also identified that, besides TLR4, the target of anti-inflammatory actions of OxPLs is TLR2 since
both of these TLR subtypes require CD14 for their optimal activation [79,80,82,83]. Later, Walton et al.
proposed a different mechanism of OxPL-induced blunting of LPS signaling which involves the
alteration of caveolae distribution and activation of neutral sphingomyelinase [84]. Moreover, the
lecinoxoides family of OxPL synthetic analogs VB-201 and VB-703 are shown to inhibit central nervous
system inflammation and liver fibrosis as well as inflammation [85,86]. OxPL preparations have been
shown to modulate inflammatory responses of monocytes and myeloid dendritic cells by inhibiting
inflammatory cytokines TNF-α and IL-1β production by these peripheral blood cells in response to
LPS [87].

Various intracellular signaling pathways are implicated in mediating the anti-inflammatory effects
of OxPLs. For example, the study by Ma et al. showed that OxPLs-induced inhibition of LPS or
CpG DNA-induced upregulation of TNF-α in cultured macrophages and mice serum occurs with the
repression of p38 mitogen-activated protein kinase (MAPK) and NF-kB signaling cascades [32]. NF-κB
pathway may be directly inhibited by some cyclopentenone-containing prostaglandins with electrophilic
properties such as 15-deoxy-D12,15-prostaglandin J2 (15d-PGJ2), which covalently modify cysteine
residue on IKKβ kinase, causing its inactivation [88]. Furthermore, OxPLs attenuate LPS-induced
JNK phosphorylation and NF-κB nuclear translocation, thereby mitigating inflammatory responses in
macrophages [89]. Another major mechanism involved in OxPL-induced inhibition of inflammation is
via increase in intracellular cyclic adenosine monophosphate (cAMP) levels. cAMP-mediated protein
kinase A (PKA) pathway is well known for mediating anti-inflammatory effects on EC as exemplified
by inhibition of E-selectin [90] and repression of NF-κB activation and ICAM-1 expression [91]. In this
regard, various studies have shown that OxPL-stimulated elevation in cAMP levels and associated
downstream signaling pathways neutralize inflammatory responses [92,93]. OxPLs induce expression
of heme oxygenase-1 (HO-1), an antioxidant enzyme with proven anti-inflammatory activities [21,93,94].
HO-1-mediated catabolism of heme produces carbon monoxide which then represses the production
of inflammatory cytokines including IL-1β and TNF-α [95,96]. OxPLs also enhance the expression of
other antioxidant enzyme cyclooxygenase-2 (COX-2) in PPARγ- and cAMP response element binding
protein (CREB)-dependent manner which exerts inflammatory effects [97]. OxPLs-induced increase
in eNOS expression and nitric oxide production can also antagonize inflammatory responses since
NO is known to inhibit the expression of EC adhesion molecules and inflammatory cytokine [27].
Pathobiological properties of truncated and full-length OxPL species are summarized in Figure 2.
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Figure 2. Diverse cellular functions of full-length and truncated oxidized phospholipids: Full-length
OxPLs exert anti-inflammatory effects by various mechanisms including the inhibition of Toll-like
receptor (TLR)-derived signaling pathways and activation of antioxidant molecules such as Nrf2.
These OxPLs also enhance endothelial barrier function by upregulation of Rac-mediated cytoskeletal
remodeling. In turn, truncated OxPLs cause inflammation by the activation of TLRs, induce coagulation,
and increase endothelial permeability.

The activation of redox-responsive transcription factor nuclear factor E2-related factor
2 (Nrf2) serves as an additional mechanism by which OxPLs can mitigate inflammation.
Epoxycyclopentenone-containing prostaglandins such as 15d-PGJ2 can bind to Keap1, disrupting
the interaction between Keap1-Nrf2, resulting in the release and nuclear translocation of Nrf2,
where it induces the expression of antioxidant response genes [98]. The studies have shown
that OxPL-induced Nrf2 activation results in resolution of inflammation [99,100]. It appears
that phospholipid oxidation products modulate the immune response to induce the expression
of anti-inflammatory and pro-resolving molecules to counterbalance the excessive inflammation.
Indeed, these pro-resolving molecules such as lipoxins and resolvins are produced as a part of
so-called “lipid program switch” at the later stages of inflammation to overcome the harmful effects of
pro-inflammatory molecules generated at the early phases [101]. This phenomenon was best illustrated
in one of our recent study where we found that OxPAPC stimulates the generation of lipoxin A4
(LXA4) in cultured EC as well as mice lungs that protects against TNF-α or LPS-induced vascular leak
and inflammation [35]. The activation of formyl peptide receptor 2 was involved in mediating the
anti-inflammatory effects of OxPAPC-generated LXA4.

A number of research groups including ours have been focusing on developing novel
classes of OxPLs that have improved cytoprotective, anti-inflammatory, and in vivo stability
properties. To this end, in addition to extensively studying the molecular/cellular mechanisms
involved in OxPAPC-derived beneficial effects on vascular endothelium, we generated and tested
a phospholipase-resistant synthetic phospholipid containing in the sn-2 position of a phospholipid



Cells 2020, 9, 981 8 of 21

a stable analog of prostaglandin I2, iloprost, with known barrier protective and anti-inflammatory
effects. Testing of this novel synthetic phospholipid showed more pronounced and prolonged barrier
protective and anti-inflammatory effects on lung endothelium and in animal model of LPS-induced
lung injury [102]. Lu et al. synthesized 15d-PGJ2-PC that showed potent antioxidant, antifibrotic
and anti-inflammatory effects on macrophages by regulating NF-κB, PPARγ, and Nrf2 signaling
pathways [103]. Importantly, both of these compounds were effective in attenuating LPS-induced ALI
in mice. Lately, IgM antibody raised against OxPL has been shown to protect against atherosclerosis in
mice [104].

6. OxPLs in the Positive Regulation of Endothelial Barrier Function

One of the best studied beneficial properties of OxPLs is their positive regulation of endothelial
barrier function. Endothelial barrier formed by EC monolayers controls the passage of fluids,
macromolecules, and immune cells between the blood and underlying tissue. The disruption of this
selective and semipermeable barrier results in uncontrolled passage of harmful substances, leading
to the development of edema and organ inflammation [105,106]. Studies from our group revealed
that OxPAPC induces sustained enhancement basal endothelial barrier function in lung EC [33].
More importantly, OxPAPC accelerates the recovery of thrombin-induced endothelial permeability.
Comprehensive studies from our laboratory have described OxPAPC protection in several models
of agonist-induced endothelial barrier dysfunction including LPS, TNF-α, Staphylococcus aureus, and
mechanical forces [34–36]. These studies also showed that endothelial barrier protective effects of
OxPLs are restricted to purified full-length oxygenated species or total OxPAPC pool containing
majority of full length OxPL species at low concentrations. In contrast, fragmented OxPLs products
such as POVPC, lyso-PC, and PGPC cause EC barrier disruption, while the oxidation-resistant DMPC
compound lacks biological activities toward EC barrier or inflammation control. These observations
demonstrate that only full-length but not truncated OxPLs have a positive impact on EC barrier
function. This separation of biological activities among OxPL species explains to some extent an
apparent controversy in biological effects of OxPLs reported by different groups in different models.

The studies from our group have identified several interrelated receptor-mediated and intracellular
signaling pathways, leading to OxPAPC-induced enhancement, protection, and restoration of
endothelial barrier. Among these, activation of Rac/Cdc42, a Rho family of small GTPases,
followed by actin cytoskeleton remodeling appears to be the unified mechanism involved in
conveying barrier protective OxPLs signals. Endothelial barrier undergoes continuous remodeling
in response to various agonists/antagonists, which is regulated by small GTPases that constantly
shuttle between GTP-bound active and GDP-bound inactive states [107,108]. OxPAPC-stimulated EC
show Rac/Cdc42 activation-dependent peripheral actin rim formation that strengthens endothelial
barrier [33]. OxPAPC-induced Rac activation is facilitated by Rac/Cdc42-specific guanine nucleotide
exchange factors Tiam1 and betaPIX [109]. The enhanced interactions between adherens junction
(AJ), tight junction (TJ), and focal adhesion (FA) proteins following Rac activation are essential for
OxPAPC-induced enhancement of endothelial barrier integrity, which has been summarized in our
recent review [15]. Briefly, a positive feedback loop developed by the interaction between Rac and
p21-activated kinase-mediated phosphorylation of Paxillin [109] and by the interaction between AJ
protein β-catenin, VE-cadherin with TJ protein ZO-1, FA protein paxillin, and Rac effector proteins
Afadin and IQGAP1 all play crucial roles in mediating OxPAPC-induced positive regulation of
endothelial barrier function [110–114]. In consistence with the established notion that activation of Rho
mediates endothelial barrier disruption, OxPAPC-induced protection of EC barrier integrity involves
activation of p190RhoGAP, a negative regulator of Rho [115]. Notably, our multiple studies have
demonstrated that OxPAPC protects against lung vascular leak and inflammation in vivo induced
by high tidal volume mechanical ventilation, Staphylococcus aureus, and LPS [34–37]. The decrease in
expression of ICAM-1, VCAM-1, and inflammatory cytokines and inhibition of NF-κB activation are
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some of the mechanisms involved in OxPAPC-mediated protection of vascular leak and inflammation
in these murine models of lung injury.

OxPAPC-stimulated EC exhibits the activation of various kinases including PKC; PKA; Raf-MEK1
and 2; and Erk 1/2 MAPK cascade [116].Furthermore, some receptor-mediated pathways are also
critical for OxPAPC-induced EC barrier function. For instance, recruitment of sphingosine 1-phosphate
receptor (S1P1) along with Akt, Rac, and Tiam1 to OxPAPC-activated caveolin-enriched microdomains
is essential for endothelial barrier enhancement by OxPAPC [117]. S1P1 activation by OxPAPC
requires its binding to endoplasmic reticulum- and cell membrane-localized chaperone protein
GRP78 [118]. Moreover, a synthetic agonist of S1P1 has been shown to exert potent endothelial barrier
protective effects both in vitro and in vivo [119,120]. Interestingly, prostaglandin receptors also seem
to mediate barrier-enhancing effects of OxPAPC in EC, as illustrated by one of our recent study where
prostaglandin E2 receptor-4 (EP4) was essential for Rac-mediated sustained barrier protective effects
of OxPAPC [121]. More importantly, anti-inflammatory effects of OxPAPC were abolished in EP4
knockout mice, highlighting an important role of this prostaglandin receptor in mediating the barrier
protective actions of OxPAPC. Signaling pathways mediating permeability and anti-inflammatory
effects of OxPAPC are summarized in Figure 3.
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Figure 3. Protective roles of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine oxidation
(OxPAPC) in endothelial barrier function: OxPAPC augments endothelial cell junctions by increasing
the Rac/Rap-mediated interactions of various adherens junctions (AJ), tight junctions (TJ), and focal
adhesion (FA) proteins. OxPAPC stimulates the production of cAMP and activates sphingosine
1- phosphate 1 (S1P1) that enhances endothelial barrier integrity. Furthermore, OxPAPC inhibits
Rho-mediated increase in endothelial permeability. Simultaneously, OxPAPC represses inflammation
by inducing the production of anti-inflammatory molecules such as lipoxin A4 (LXA4).

7. OxPLs in Endothelial Dysfunction

As mentioned above, truncated products of OxPLs induce endothelial barrier disruption and
higher doses (50–100 µg/mL) of OxPAPC show similar disruptive effects. Further mechanistic
studies deciphered signaling mechanisms underlying these differential physiologic effects. Higher,
but not lower, doses of OxPAPC induced excessive ROS production, activation of Src kinase, and
phosphorylation of AJ protein VE-cadherin at tyrosine residues 658 and 738. Such VE-cadherin
phosphorylation limits its interaction with other AJ proteins, p120-catenin and β-catenin [39]. A similar
mechanism is triggered by fragmented OxPLs species, which also induce endothelial permeability
via increased ROS production-mediated activation of Src kinase and phosphorylation of VE-cadherin,
leading to breakdown of AJ assembly [38]. VE-cadherin is linked to actin cytoskeleton by its interactions
with the catenin family of proteins and disassembly of the VE–cadherin–Catenin complex following
tyrosine phosphorylation, internalization, or cleavage of VE-cadherin causes the destabilization of AJ
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with an increase in endothelial permeability [122,123]. In this context, disassembly of AJ complex due
to the phosphorylation of VE-cadherin appears to be the unified mechanism of endothelial barrier
dysfunction caused by some OxPLs. Further studies suggested a role for vascular endothelial growth
factor receptor-2 (VEGFR-2) in the more sustained OxPAPC-induced endothelial barrier disruption
caused by higher doses of OxPAPC [124].

8. OxPLs in Atherosclerosis

The earliest evidence of pathological roles of OxPLs came from their proven role in the pathogenesis
of atherosclerosis, a primary cause of many cardiovascular diseases. There are excellent reviews
describing OxPLs contribution to the pathogenesis of cardiovascular disease [8,125], and these works
will not be further discussed here. However, it is noteworthy to mention that EC plays a crucial
role in OxPL-induced atherosclerotic phenotype. The increased deposition of OxPLs in the arterial
wall beneath the endothelium and accompanying excessive EC inflammatory responses have been
attributed as two major pathological cascades in the development of atherosclerosis. Accordingly,
lowering the levels of OxPLs and inhibiting EC-derived inflammation are being clinically tested for
developing therapeutics against OxPL-induced cardiovascular disorders including atherosclerosis.

9. OxPLs in Aging

The significant compromise in the antioxidant defense system with aging makes the aged
population more vulnerable to inflammation and oxidative stress-induced pathologies. Since OxPLs
are generated via oxidation, the link between redox status of the lung and the levels of truncated,
more advance products of phospholipid oxidation, was investigated. Oxidized phopspholipidomics
analysis using advance mass-spectrometry approaches revealed that the basal levels of truncated
OxPLs—POVPC, PONPC, PGPC, lyso-PC, and PazPC—are higher in the lungs of aged mice
(18–24 months) compared to their younger (2–4 months) counterparts [52]. Intratracheal injection
of LPS causes higher levels of an accumulation of these truncated OxPLs in aged animals as well as
delayed clearance of OxPLs in aged vs young groups. To mimic the compromised defense system of
the aged or diseased population, we employed two-hit injury model where sub-pathologic doses of
OxPLs were combined with cytokine mixture and where endothelial barrier function and parameters
of lung injury were monitored. The low doses of OxPLs which do not cause EC barrier disruption on
their own augmented cytokine-induced endothelial dysfunction in a two-hit model. By applying same
principle in vivo, we found that truncated OxPLs at minimal doses not affecting endothelial function
when added alone lead to exacerbated vascular leak and inflammation when combined with TNF-α.
These findings demonstrate that elevated levels of truncated OxPLs are capable of exacerbating ALI
in aging population. The generation of truncated OxPLs may be a common mechanism shared by
many EC barrier disruptive agonists. For example, exposure of EC to particulate matter (PM) from
polluted air triggers production of several fragmented OxPLs [126]. Similar to the augmenting effect
on endothelial dysfunction caused by LPS and inflammatory cytokines, low doses of truncated OxPLs
combined with low dose of PM that normally does not affect EC barrier properties resulted in profound
endothelial barrier dysfunction. Altogether, these observations indicate that even low concentrations
of OxPLs may have deleterious effects on the population with compromised antioxidant or immune
defense system. Notably, overexpression of platelet-activating factor acetyl hydrolase 2 (PAFAH2), an
enzyme specifically hydrolyzing truncated OxPLs, rescued cytokine-induced endothelial dysfunction
while pharmacological inhibition of PAFAH2 exacerbated cytokine-mediated inflammation in EC
cultures and in mice lungs [52,126]. These observations strongly suggest that removal of truncated
OxPLs could be a promising approach to mitigate OxPLs-induced pathologies.

In agreement with our findings, a study by Liu et al. reported the presence of higher levels
of bioactive truncated OxPLs in the plasma of aged mice [127]. An elevated level of fragmented
phosphatidylcholine has also been reported in human blood plasma [128]. Another study had shown the
increasing concentration of OxPL precursor, phosphatidylcholine, with age in mice [129]. Interestingly,
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an increase in phosphatidylcholines containing longer chain fatty acids with unsaturated bonds and a
reduction in sphingomyelin concentrations was also verified by a recent study showing higher serum
levels of ester-linked phosphatidylcholine and phosphatidylethanolamine in older human population
compared to younger counterparts [130]. Collectively, these observations suggest that altered lipid
metabolism with subsequent changes in bioactive lipid profiles is directly associated with aging. had
been found in patients with Alzheimer’s disease [131,132]. An altered lipid profile during aging

As a major site of ROS generation, mitochondrial lipids may be vulnerable to increased oxidative
damage with aging. Cardiolipin, a glycerophospholipid present in the inner membrane of mitochondrial
lipid bilayer, is a particular target of oxidation that leads to altered mitochondrial morphology and
promotes cell death [133,134]. The oxidation of cardiolipin has been shown to contribute to hyperoxic
lung injury [135], and total cardiolipin content has been shown to decrease in mitochondria with an
increase in its oxidized forms in hearts and brains from aged rats [136,137]. More recently, a significant
reduction in cardiolipins levels in various organs with the most severe effects in aged mice kidney has
been reported [138]. These findings suggest towards an important role of aging-associated cardiolipin
oxidation in mitochondrial dysfunction associated with various diseases.

10. Phospholipidomics: A New Era of Structural-Functional Analysis of OxPLs

With the development of high mass accuracy liquid chromatography-mass spectrometry (LC-MS)
equipment and tremendous advancements in bioinformatics, it is now possible to detect and analyze
very low-abundance OxPLs species. These developments have enabled to quantify a small fraction
of change in oxidation status of various phospholipids and to study signaling pathways associated
with their biological function. This next generation technology-assisted analysis will eventually help
explain the variability among different studies in the past, reporting the contrasting roles of OxPLs.
A recent multi-laboratory LC-MS analysis demonstrated that, although overall oxidation pattern
and most abundant OxPLs remained consistent among air-oxidized PAPC prepared and utilized by
four laboratories, there was a notable difference in the degree of oxidation [139]. This important
comparison clearly suggests that OxPLs from different preparations may not always have identical
biological activities. By employing hydrophilic liquid chromatography coupled to MS, Colombo et al.
showed that phospholipidomic profile significantly varies among hydrogen peroxide, glucose, or
hydroxynonenal-induced stress conditions in bovine aortic EC [140]. Lipidomic analysis can be utilized
to determine the pathologic states and thus can be used as a biomarker platform, as exemplified in a study
showing the disease-specific differential lipid profiles [141]. Similarly, oxidative phospholipidomics
analysis of lipids have identified oxygenated cardiolipins and phosphatidylethanolamines as predictive
biomarkers of apoptotic and ferroptic cell death, respectively [142].

11. Future Perspectives

We are only at the beginning of understanding the complex biological nature of heterogenous
mixtures of OxPLs generated in the human body. At least, it is now accepted that these OxPLs are
not simple lipid peroxidation products; rather, they exhibit both beneficial and deleterious biological
effects. The better knowledge on how varieties of OxPLs are produced from the oxidation of a single
phospholipid molecule and biological characterization of such species will help define their precise
roles in health and disease. Future studies employing advanced LC-MS techniques combined with
“omics” (lipidomic, metabolomic, transcriptomic, proteomic, etc.) analysis will provide insights into
the role of OxPL-derived cellular signaling in the pathogenesis as well as treatment of lipid-associated
diseases such as atherosclerosis, thrombosis, ALI, diabetes, cancers, and others. The latest findings
have revealed previously unrecognized roles of OxPLs such as a possible contributing factor in
the development of aging-related lung injuries. These findings leave an open question on whether
elevation of levels of “bad” OxPLs acts as a critical exacerbating factor in the vulnerable population
with existing diseases. The pharmacological/molecular tools such as use of PAFAH2 to selective remove
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the pathogenic species of OxPLs seem to be an exciting perspective to deal with lipid-induced diseases
(Figure 4).
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Figure 4. Future directions in OxPLs research: With the development of more advanced LC-MS
technologies, precise pathophysiological roles of OxPLs will be determined by various “omics” analyses.
In addition, selective removal of harmful OxPLs species by specific enzymes and novel chemical
modifications to create new phospholipids molecules with improved functions should also be considered
for future researches.

The most significant advancements achieved in OxPL research to date is identification of the
anti-inflammatory and endothelial barrier protective properties of OxPAPC. The engagement of
multiple receptors and signaling cascades in mediating the beneficial effects of OxPAPC suggest a
necessity of combined pharmacological modulation of several molecular targets that may lead to the
most efficient therapeutic treatment of a spectrum of conditions associated with pathological effects
of truncated OxPLs. On the other hand, the design and preclinical testing of more stable synthetic
phospholipid single molecules with controlled composition presents a novel way of engineering more
potent and effective therapeutics. This direction has been supported by our study demonstrating
superior protective effects of synthetic iloprost-PC compound over free iloprost against inflammatory
agonist-induced pulmonary dysfunction [102] (Figure 4). Furthermore, OxPAPC-dependent generation
of lipoxin or its analogs [35,99] encourages a future analysis of OxPAPC-derived molecules that might
be produced by OxPAPC-exposed vascular endothelium in vivo and might play an important role in
the resolution of inflammation.

12. Summary

The overlapping signaling pathways and structural heterogeneity rule the dual biological effects
of OxPLs. The potent anti-inflammatory and vascular barrier protective effects of specific groups
of OxPLs have placed them at the center stage for the development of effective therapeutics against
disorders associated with endothelial dysfunction. Utilization of novel molecular approaches to
neutralize harmful OxPL species might be an alternative yet complementary strategy to prevent
and treat OxPLs-induced pathologies. Future studies are warranted to test the efficacy of already
identified molecular targets, to search for additional targets, and to map them to exact body locations
by utilizing currently available advanced tools such as phospholipidomics MS quantitation and
phospholipidomics imaging.
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