Supplementary figures.

SFig. 1

	10 1 .	20 11	30		40 	50 	60	70		80 .	90 	1I.	<u></u>	Amino acid	SW/ENTH
AT-1471-PA	MEDEVROCENPMIVEI	LAEKAMKEY	PULKIET	NKEAAIC	THLEVCHM	XSDFHEIDI	R	LGDPNAL	LKHRFEI I	EGRDRTI	AWIVINS	ICNTTGA	מ	position	
H9N2-PA			.Р.				R. MI.			M	Δ	Δ		28	_
														20	n
	·····	1l		·	ll	.	J	11		l.				65	
AG-USW/INLH	EKEKELPDLYDYKKNE	RETRICUTR	RVHIXYL	EKANKIK	SEKTHIHI	ESTUCEEM	TKADYTLD	EESRARI	KTRLETIF	NORMASRG	LWDSFRO	SERGEET		66	U
H9N2-PA	4 64													100	A
														225	S
	210	220	230	. 2	40	250	260	270			290	300	•	268	٦
AG-NSW/INLH	TERRETIGTMRKLAD	STADDARSS	LENERAY	VDGEEDN	STECKIS	OMSKEVNAF	TEPFLKST	PRPLRLP	OGPPCSOF	SKELIMD	ALKLSIE	DPSHEGE		321	z
PHIN1/471-PA	K					4	CRT.							337	S
H9N2-PA							.TT.							356	×
				•					•					382	D
	310	320	330	m -	40	350	360	370	-		390	404		400	L
ALL AND A FALL							and the second second							404	A
PHINI/471-PA	GIPLYDALKOMKLER	WNEENVVKI	ANTONAN	MALLINA	CALABLAQU	ATVSSN91	KUKNMKKUS	CTRWATCO	SNMAPEKV	DEDUCKU	NGNTRON	DSDEFEL		409	z
H9N2-PA	K	I	.DI	A							. S R	\$		421	S
	410	420	430	4	10	450	460	470	4	80	490	500		552	S
AG-NSW/INIH	RSLASWI ONEFNKACE	ITIDSSWIEL	DEIGEDA	APIEHIA	SMERNYFT	II.	EVIMKGVY	II.	ASCAMDD	IMAI 104	SKCRTKE	. I I			
pH1N1/471-PA	V		Δ												
WA-7N61															
	510	520	530	2	40	550	560	570	-	80	590	600	0		
AT-174/INLH	Y GF I I KGRS HLRNDTE	NVNEVSME	SLTDPRI	EPHKWEK	VCVLEVGD	MLIRSAIG	VSRPMFLY	VRTNGTSI	KI KMKWCM	TEMRRCLL	QSLQQIE	SMIRAES			
H9N2-PA			-		····	2T	2								
	610	620	630	۰. 	40	650	660	670	-	80	690	11.	0		
H1N1/WSN-PA PH1N1/471-PA	SVKEKDMIKEFFENKS	SETWPVCESI	RGVEEGS R	ICKVCRT	LLAKSVEN	SLYASPOL	GFSAESRK	VOAITTI	CRUNIEPC	TEDLOCL	YEALEEC	MAGNIT			
H9N2-PA	710	I													
H1N1/WSN-PA	LINASWENSELTHALR	: *													
pH1N1/471-PA H9N2-PA	84, MA	22													

174/1N1H

۷

ZA

4

SFig. 6

Stable 1

H1N1/WS virus gene	N Primers	Sequence (5'-3')	
ND	NP-EcoRI-FW	CCG <u>GAATTC</u> CGGAGCAAAAGCAGGGTA	
	NP-KpnI-RV	CGG <u>GGTACC</u> CCGAGTAGAAACAAGGGTATTTTT	
DA	PA-KpnI-FW	CGG <u>GGTACC</u> CCGAGCGAAAGCAGGTAC	
rA .	PA-XhoI-RV	CCG <u>CTCGAG</u> CGGAGTAGAAACAAGGTACTT	
PB1	PB1-KpnI-FW	CGG <u>GGTACC</u> CCGAGCGAAAGCAGGCA	
FBI	PB1-XhoI-RV	CCG <u>CTCGAG</u> CGGAGTAGAAACAAGGCATTT	
DB2	PB2-KpnI-FW	CGG <u>GGTACC</u> CCG AGCGAAAGCAGGTC	
FD2	PB2-XhoI-RV	CCG <u>CTCGAG</u> CGGAGTAGAAACAAGGTCGTTT	
		-	
pH1N1/47 virus gene	1 Primers	Sequence (5'-3')	
NP	NP-EcoRI-FW	CCG <u>GAATTC</u> CGGAGCAAAAGCAGGGTA	
1.1	NP-KpnI-RV	CGG <u>GGTACC</u> CCGAGTAGAAACAAGGGTATTTTT	
DA	PA-KpnI-FW	CGG <u>GGTACC</u> CCGAGCGAAAGCAGGTAC	
17	PA-XhoI-RV	CCG <u>CTCGAG</u> CGGAGTAGAAACAAGGTACTT	
DD1	PB1-KpnI-FW	CGG <u>GGTACC</u> CCGAGCGAAAGCAGGCA	
r bi	PB1-XhoI-RV	CCG <u>CTCGAG</u> CGGAGTAGAAACAAGGCATTT	
DB2	PB2-XhoI-FW CCG <u>CTCGAG</u> CGGAGCGAAAGCAGGTC		
F D2	PB2-XhoI-RV	CCG <u>CTCGAG</u> CGGAGTAGAAACAAGGTCGTTT	
H9N2 virus gene	Primers	Sequence (5'-3')	
ND	NP-EcoRI-FW	CCG <u>GAATTC</u> CGGAGCAAAAGCAGGGTA	
INP	NP-KpnI-RV	CGG <u>GGTACC</u> CCGAGTAGAAACAAGGGTATTTTT	
DA	PA-BglII-FW	GGA <u>AGATCT</u> TCCAGCGAAAGCAGGTAC	
PA			

GGA<u>AGATCT</u>TCCAGTAGAAACAAGGTACTT

CCG<u>CTCGAG</u>CGGAGTAGAAACAAGGCATTT

CCG<u>CTCGAG</u>CGGAGTAGAAACAAGGTCGTTT

CGG<u>GGTACC</u>CCGAGCGAAAGCAGGCA

CCG<u>CTCGAG</u>CGGAGCGAAAGCAGGTC

PA-BglII-RV

PB1-KpnI-FW

PB1-XhoI-RV

PB2-XhoI-FW

PB2-XhoI-RV

PB1

PB2

b	Virus	Gene	Sequence (5'-3')	Probe Sequence (UPL Probe #)
		NP FW	TGGAATCAAGTACCCTTGAACTG	TCTGGTCC (#93)
		NP RV	GCCCTCTGTTGATTGGTGTT	
		PA FW	CGGAAAAGGCAATGAAAGAG	TECTETEE (#55)
	HINI	PA RV	CTGCAAATTTGTTTGTTTCGAT	
		PB1 FW	GCTCCAATAATGTTCTCAAACAAA	ACTGGGAA (48)
		PB1 RV	TCTTGCTCAAACATGTACCC	
		PB2 FW	TCCGCAGTTCTGAGAGGATT	CTGGGCAA (61)
		PB2 RV	TGCTGGTCCATACTCCTGTC	

Virus	Gene	Sequence (5'-3')	Probe Sequence (UPL Probe #)	
	NP FW	CCCGAAGAAAACTGGAGGTC	GAAGGAGG (134)	
	NP RV	TCAGCTCTCTCATCCATTTCC		
	PA FW	AAAGCGGACTACACCCTTGA	GAGAGCAG (108)	
H9N2	PA RV	AGTGAACAGCCTGGTTTTGATT		
	PB1 FW	CTTGAAGTGGGAATTGATGGA	CCAGGGCA (37)	
	PB1 RV	ATGGGTTCTGAGGATTGCAC	concerent (or)	
	PB2 FW	ACAAAAACCACTGTGGACCAT	CTGCTCTC (108)	
	PB2 RV	CATTGCCATCATCCATTTCA		

Host	Gene	Sequence (5'-3')	Probe Sequence (UPL Probe #)
Human	EF FW	TGGGAGGGTTGCTTTGATTA	ACACTGGA (#47)
	EF RV	TGACAGGCAATCAGCAACAT	nellereen(,,

SFigure legends.

SFig. 1. Distribution of the RNP and chromatin in the nucleus of H1N1 and H9N2 virus infected cells. A549 cells were infected with either H1N1/WSN(H1N1) or H9N2 viruses using a multiplicity of infection (MOI) of 5 and at 16 hrs post-infection (hpi) the cells were stained using anti-NP and anti-histone H4 (H4) and (A) imaged by fluorescence microscopy (objective x20 magnification). The nuclear staining is highlighted (white arrows). (**B and C**) Individual anti-NP and anti-histone H4 (H4) co-stained (**B**) H1N1/WSN and (**C**) H9N2 virus were examined using confocal microscopy. (i) Images at the same focal plane ae shown. (ii) Enlarged image taken from the nucleus of co-stained cells are shown. The cytoplasmic anti-NP staining in H1N1 virus-infected cells are highlighted (white arrow heads).

SFig. 2. Distribution of the NP in virus-infected A549 cells. A549 cells were mockinfected or infected with either H1N1/WSN(H1N1), H9N2, H4N1, H7N1 or pH1N1/471 (pH1N1) using a multiplicity of infection (MOI) of 5. At 16 hrs post-infection (hpi) the cells were stained using anti-NP and (A) imaged by fluorescence microscopy using identical camera settings (objective x20 magnification). Insert showing enlarge image of representative cells imaged in pH1N1 virus infected cells. (B) Cells imaged by fluorescence microscopy using identical camera settings (objective x100 magnification). The cytoplasmic NP staining (*) and nucleus-specific NP staining (white arrows) are indicated.

SFig. 3. Expression of the recombinant polymerase genes of the H1N1/WSN(H1N1), pH1N1/471 (pH1N1) or H9N2(H9N2) viruses. HEK293T cells were either transfected with pCAGGS or with the pCAGGS containing the (A) NP, (B) PA, (C) PB1 and (D) PB2 genes of the H1N1/WSN(H1N1), pH1N1/471 (pH1N1) or H9N2(H9N2) viruses. After 24 hrs post-transfection the cells were stained using (A) anti-NP (B) anti-PA, (C) anti-PB1 and (D) anti-

PB2 and imaged by fluorescence microscopy (objective x20 magnification) using identical camera settings for each antibody combination.

SFig. 4. PA protein sequences. (**A**) Sequence comparison of the PA protein of the viruses used in this study. The amino acid residues unique to the H9N2 sequence are highlighted in yellow. (**B**) The amino acids associated with human (green) and avian (red) host adaptation as proposed by Miotto et al 2010.

SFig. 5. Lamin A/C and B1 distribution in influenza virus-infected cells. A549 cells were (A) mock-infected or infected with the H1N1 and H9N2 viruses and (B) H4N1 and H7N1 viruses and at 20 hrs post-infection (hpi) the cells were co-stained using anti-NP and anti-lamin A/C. The stained cells were imaged by fluorescence microscopy (A and B(i)) (objective x20 magnification) or (B(ii)) (objective x100 magnification). Inset in (A) is enlarged image of area highlighted (white box). (C) A549 cells were mock-infected or infected the H1N1 and H9N2 viruses and (D) pH1N1 viruses and at 20 hpi the cells were co-stained using anti-NP and anti-lamin B1. The stained cells were imaged by fluorescence microscopy using identical camera settings at (C and D(i)) (objective x20 magnification) and (D(ii)) (objective x100 magnification). The anti-lamin B1 stained nuclei (white arrow) are highlighted.

SFig. 6. Increased apoptosis is not observed in H9N2 virus-infected A549 cells. (**A**) A549 cells were mock-infected or infected with the H1N1 and H9N2 viruses and at 20 hrs post-infection (hpi) the cells were co-stained using TUNNEL staining (TN) and anti-NP. The stained cells were imaged by fluorescence microscopy (objective x20 magnification) using identical camera settings. The sporadic TN-stained cells (white arrows) are highlighted. (**B**) TN and anti-NP co-stained cells were imaged by fluorescence microscopy (objective x100)

magnification) using identical camera settings. TN-stained cells (white arrows) are highlighted. (**C**) A549 cells were mock-infected or infected with the H1N1 and H9N2 viruses and at 20 hpi the cells were permeabilised and stained using propidium iodide (PI) and the cell viewed by fluorescence microscopy using (i) (objective x20 magnification) and (ii) (objective x100 magnification). The intensely PI-stained nuclei are highlighted (*). (**D**) A549 cells were mock-infected or infected with the H1N1 and H9N2 viruses and at 18 hpi the live cells were stained using PI and imaged using IF microscopy in fluorescence-mode (PI) and bright-field-mode (BF) (objective x20 magnification) using identical camera settings.

SFig. 7 Anti-NPC staining in influenza virus-infected cells. (A) A549 cells were mockinfected or infected with the H1N1 and H9N2 viruses and at 20 hrs post-infection (hpi) the cells were co-stained using anti-lamin A/C and anti-NPC. The stained cells were imaged by fluorescence microscopy (objective x20 magnification) using identical camera settings. The cytoplasmic anti-lamin A/C staining (*) is highlighted. (B) anti-lamin A/C and anti-NPC costained H1N1 and H9N2 virus-infected cells were imaged by fluorescence microscopy (objective x100 magnification) using identical camera settings. The cytoplasmic anti-lamin A/C staining (white arrow) is highlighted. (C) Nuclei were prepared from mock-infected cells (M) and cells infected with H1N1/WSN (H1), and H9N2 (H9) viruses at 24 hpi. (i) Commassie Brilliant Blue-stained polyacrylamide gel of the nuclei preparations is shown. The molecular mass marker lane (mr) and the position of the NP (black arrow) are highlighted. (ii) The nuclei preparations were analysed by immunoblotting using anti-NPC (p62) and anti-lamin A/C and protein species of the expected sizes are indicated.

Stable 1. List of virus-specific primers used in this study. (a) List of primer sequences: forward (FW) and reverse (RV) primers for cloning of NP, PA, PB1 and PB2 genes of

H1N1/WSN, pH1N1/471 and H9N2 strains into the pCAGGS cloning vector. The underlined nucleotides represent the restriction enzyme. (b). List of primers used for qPCR analysis. List of primer sequences and UPL probes (Roche) designed for real-time qPCR of influenza H1N1/WSN and H9N2 gene segments. Primer sequences and UPL probes (Roche) used for real-time qPCR of human host gene is also shown.