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[image: ]Figure S1
Figure S1. The NB4-MR4 are resistant to ATRA. Flow cytometric analysis of CD11b expression in NB4-MR4 cells treated with 1 μM ATRA for 120 h (ATRA) or with the only vehicle as control (Ctrl). Gray plots represent autofluorescence; orange plots represent CD11b fluorescence in ATRA treated and Ctrl cells.
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Figure S2. Validation of some differentially expressed Upstream Regulators in the ATRA-resistant NB4-MR4 cell treated with 1 μM ATRA for 120 h in comparison with control (Ctrl). (A) Representative immunoblot analysis of C/EBPε, c-Myc, GFI-1, HP1α, IRF1, LSD1, PU.1, and STAT1. The GAPDH protein was used as loading control. Experiments were repeated at least three times. (B) Quantification of immunoblot experiments. Data are reported as mean ± SD of experiments repeated at least three times (Student’s t-test: ** p<0.01; *** p<0.001, ns, not significant,  with respect to relative controls; a.d.u., arbitrary densitometric unit).
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Figure S3. WikiPathways analysis of NB4 metabolic pathways enriched in ATRA regulated genes (FC|1.5|; FDR<5%). (A) The ‘metabolic reprogramming pathway in colon cancer’ was found significantly enriched (p<0.001; Fisher's exact test) in ATRA regulated genes (12 upregulated genes, and 10 downregulated genes) performed using Transcriptome Analysis Console (TAC) 4.0.2 (Affymetrix, Inc.). (B) WikiPathways analysis of TCA cycle enriched in ATRA regulated genes (FC|1.5|; FDR<5%).  The ‘metabolic reprogramming pathway’ was found significantly enriched (p<0.001; Fisher's exact test) in ATRA regulated genes (1 upregulated gene, and 3 downregulated genes) performed using Transcriptome Analysis Console (TAC) 4.0.2 (Affymetrix, Inc.). Red and green boxes represent up and downregulated genes, respectively. 
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Figure S4. Validation of some metabolic enzymes in the ATRA-resistant NB4-MR4 cell treated with 1 μM ATRA for 120 h in comparison with control (Ctrl). (A) Representative immunoblot analysis of Aldolase C, LDHB, NDUFB6, PGMA1/4, and SDHA proteins. GAPDH and β-Actin were used as loading control. Experiments were repeated at least three times. (B) Quantification of immunoblot experiments. Data are reported as mean ± SD of experiments repeated at least three times (Student’s t-test: ns, not significant, with respect to relative controls; a.d.u., arbitrary densitometric unit).
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Figure S5. May-Grünwald/Giemsa staining of NB4 cells treated for 72, 120, and 168 h with 1 M ATRA.
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Figure S6. Measurement of metabolic variations in the course of NB4-MR4 treatment with ATRA for 0, 72, 120, and 168 h. (A) Agilent Seahorse XF real-time ATP production rate index (i.e., mitochondrial ATP/glycolytic ATP production rate). (B) Time course of the percentage of glycolytic ATP production calculated from data reported in panel H, considering 100% the pmol/min of ATP production by both glycolysis and OXPHOS. (C) Time course of the percentage of mitochondrial ATP production calculated from data reported in panel H, 100% the pmol/min of ATP production by both glycolysis and OXPHOS. Data reported in the histograms derived from two repeated experiments and are reported as means ± SD. The means were compared by One-way analysis of variance test (ANOVA) and posterior Tukey’s multiple comparison test. For details, see the text.
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