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Abstract: To identify underlying mechanisms involved with metastasis formation in Wilms
tumors (WTs), we performed comprehensive DNA methylation and gene expression analyses
of matched normal kidney (NK), WT blastemal component, and metastatic tissues (MT) from patients
treated under SIOP 2001 protocol. A linear Bayesian framework model identified 497 differentially
methylated positions (DMPs) between groups that discriminated NK from WT, but MT samples were
divided in two groups. Accordingly, methylation variance grouped NK and three MT samples tightly
together and all WT with four MT samples that showed high variability. WT were hypomethylated
compared to NK, and MT had a hypermethylated pattern compared to both groups. The methylation
patterns were in agreement with methylases and demethylases expression. Methylation data pointed
to the existence of two groups of metastases. While hierarchical clustering analysis based on the
expression of all 2569 differentially expressed genes (DEGs) discriminated WT and MT from all
NK samples, the hierarchical clustering based on the expression of 44 genes with a differentially
methylated region (DMR) located in their promoter region revealed two groups: one containing
all NKs and three MTs and one containing all WT and four MTs. Methylation changes might be
controlling expression of genes associated with WT progression. The 44 genes are candidates to be
further explored as a signature for metastasis formation in WT.

Keywords: Wilms tumor; cancer progression; DNA methylation; gene expression; data integration;
DNMT; TET

1. Introduction

Wilms tumor (WT) is an embryonic renal tumor with a median age adjusted incidence rate of
8.33 per million in Brazil [1]. The most frequently mutated genes in WT are WT1 (12%), AMER1 (18%),
CTNNB1 (15%), and DROSHA (12%) [2–6]. Genome-wide analysis in a large collection of tumors
identified additional somatically mutated genes found less frequently, with most mutations often
occurring in the same tumors. Currently, there are 37 genes found recurrently mutated in WT [7], which
individually are not enough to cause tumor development in more than 5% of the patients. Although
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constitutional for 3% of the patients that do not present obvious clinical symptoms [8], around 70% of
WT present imprinting abnormalities at the imprinting control region (ICR) of IGF2/H19 [3] pointing to
alterations in the mechanisms of gene expression regulation as being involved in WT formation [9].
WTs have lower LINE-1 methylation levels than paired adjacent normal kidney tissues, with tumors
from patients that relapsed presenting even lower levels than those that did not relapse [10]. Methylation
levels from CpG sites located close to genes or in intergenic regions divided WT in two subgroups,
one with a methylation profile similar to nephrogenic rests and a second group presenting increased
high methylation variability, hypomethylation of renal developmental genes, and hypermethylation of
cell adhesion genes [11], this subgrouping still needs further confirmation.

Patients with WT are treated by either Children Oncology Group (COG) or International Society
of Pediatric Oncology (SIOP) protocols, and had an overall survival rate of 90%, which strongly
relies on the histological subtype and tumor stage [12]. The later include preoperative chemotherapy,
followed by surgery and adjusted chemotherapy (radiotherapy for selected cases), according to tumor
initial response [13,14]. The diverse WT histology stratifies patients in low (completely necrotic),
intermediate (stromal, epithelial, mixed, and regressive tumors), and high (blastemal and diffuse
anaplastic tumors) risks. While patients with low and intermediate risk tumors present 88% 5-year event
free survival, patients with blastemal predominant tumors show 58% 5-year event free survival [15].
Diffuse anaplastic tumors have TP53 abnormalities in 60% of the cases, present as an heterogeneous
marker [16–18], which was associated with increased risk of recurrence and death [16]. There are
several efforts in the search for biomarkers to improve the current risk stratification system [19–21].
Patients with WT might still be over- or under-treated and to predict those that will relapse remains
difficult [22]. Avoiding the adverse treatment effects remains a challenge, especially considering the
heterogeneous genetic susceptibility to other tumors, renal and heart diseases, among others [23–25].

Although DNA methylation and gene expression disruption were implicated in Wilms
tumorigenesis, these mechanisms have not been explored in metastasis formation. Here, we explore
DNA methylation together with gene expression in matched trios of normal kidney (NK), WT,
and metastatic tissue (MT) to gain insight into the biology underlying WT progression.

2. Materials and Methods

2.1. Sample Collection and DNA and RNA Extraction

Patients were enrolled in the Brazilian National Institute of Cancer (INCa) into the International
Society of Pediatric Oncology (SIOP) clinical trial 2001. All 110 cases (2003–2014) registered to the
Department of Pathology were reviewed by a pathologist and a clinician that selected 11 cases
(33 paired samples) that presented viable tissues in formalin-fixed paraffin-embedded (FFPE) blocks of
matched normal kidney (cortex), WT (blastemal component), and metastatic tissues (all from lung).
A total of 27 samples from nine cases passed quality control parameters for DNA and/or RNA integrity,
five cases were evaluated by both methodologies, two cases were evaluated only for methylation
experiments, and two cases only for expression experiments (Table 1). Microdissection was carried out
by two punches of 1-mm core samples to maximize cellular homogeneity (>80% of blastemal cells).
DNA and RNA from FFPE were extracted using QIAamp DNA Mini kit (Qiagen®, Hilden, Germany)
and RecoverAll Total Nucleic Acid Isolation Kit for FFPE (Life Technologies, Carlsbad, CA, USA),
respectively, following manufacture procedures.

The Research Ethics Committee from INCA independently approved the study (ID 170/13),
and informed consent was obtained from the patients’ legal guardians. All experiments were performed
in compliance with the Helsinki guidelines.
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Table 1. Clinicopathological characteristics of the cases evaluated for DNA methylation and
gene expression.

Sample
(ID)

Age at
Diagnosis

(years)
Gender

Histology
(Primary
Tumor)

Patient
Stage Relapse Site Histology

(Metastasis) Technique

1 3 F Blastemal III Left lung Mixed RNA-Seq/450k
2 7 M Regressive II Left lung Epithelial RNA-Seq/450k
3 5 M Mixed I Left lung Blastemal RNA-Seq/450k
4 3 F Mixed II Right lung Blastemal RNA-Seq
5 3 F Mixed II Right and left lung Epithelial 450k
6 9 M Mixed I Left lung Mixed 450k
7 4 M Regressive I Right lung Blastemal RNA-Seq
9 3 M Mixed I Right lung Blastemal RNA-Seq/450k
10 6 M Mixed I Right lung Mixed RNA-Seq/450k

Gender: female (F) and male (M).

2.2. Infinium HumanMethylation450 BeadChip Arrays (Illumina) Procedures

FFPE extracted DNA was recovered using Infinium HD FFPE Restore Protocol kit (Illumina,
Inc, San Diego, CA, USA) and treated with EZ DNA Methylation Kit (Zymo Research Corp,
Corporation, Irvine, CA, USA), following manufacturer’s guidelines. Thirty samples were profiled in
the HumanMethylation450 BeadChip arrays (HM450K, Illumina), following the Illumina Infinium HD
methylation protocol by Deoxi Biotecnologia (www.deoxi.com). Scanned HM450K (iScan SQ Scanner,
Illumina) were processed into IDAT files by GenomeStudio software (v.2011.1, Illumina Inc, San Diego,
CA, USA, 2011), with methylation module v.1.9.0 (Illumina). Probes were annotated according to the
Illumina annotation file using the Human GRCh37/hg19.

Quality control assessment pointed to two samples with low coverage and poor density profiles
(Figure S1), resulting in the exclusion of two incomplete matched trios, leaving 21 matched samples
(seven trios) for methylation experiments. Further steps implemented in minfi package [26] removed
probes presenting unreliable fluorescence measurements, including multi-hit probes [27] (n = 6830),
located in XYS (n = 52,017) and failed probes (detP > 0.05, n = 73,045). To best fit Infinium II to I probes,
we applied Quantile [28] normalization on the remaining 353,620 probes (Figure S2). Methylation
levels for each probe were shown as beta-values (0: unmethylated, 1: methylated), used for graphical
representations; M-values (beta-values logit transformation) were used for statistical analysis due to
the homoscedastic behavior, unless otherwise stated.

2.3. Methylation Statistical Analysis

To compare groups avoiding cellular heterogeneity effects, the sva package [29] was applied
to estimate surrogate variables. Limma package [30] was used to generate an empirical Bayesian
framework linear model [31] on matched trios, considering intra-patient and interpatient comparison.
The estimated surrogate variables were considered covariables before identification of differentially
methylated positions (DMPs). In the matched trio comparison, we considered significant those CpG
sites with adjusted p-values < 0.001. In the pairwise comparisons, we considered significant those
positions with an absolute mean beta change higher than 10% and p-value < 0.01.

DMRcate was applied to identify differentially methylated regions (DMRs), defined as a
300 nucleotides sequence with at least seven CpG sites presenting methylation changes in the same
direction [32]. Genomic regions with p-value < 0.05 and mean methylation differences greater than
10% (delta-beta > 0.1, hypermethylation) and smaller than 10% (delta-beta < −0.1, hypomethylation)
were considered the top ones. DMRs were annotated for overlapping promoter regions, considering
+/−2000 base pairs from transcription starting site of each gene. Functional annotation was performed
by enrichment analysis using GREAT on the DMRs’ genomic regions [33].

www.deoxi.com
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2.4. RNA Library Construction and Sequencing

RNA samples were quantified by spectrophotometry using Nanodrop ND-2000 (Thermo Fisher
Scientific, Waltham, MA, USA), followed by a quality control step by quantitative RT-PCR for
GAPDH (114 nt). Sequencing libraries were generated with the TruSeq®RNA Access Library Prep
(Illumina), appropriated for RNA extracted from FFPE tissues according to manufacturer’s procedures.
We checked for sample quality at every step of analysis, discarding samples that did not reach the
parameters. From 33 samples, 12 samples were excluded due to low quality, leaving 21 samples
(7 matched trios) for RNA sequencing. For clustering, 2 nM libraries were denatured with 0.1M NaOH
and diluted at 12 pM HT1 buffer (Illumina) and loaded in cBot. Libraries were sequenced in the
HiSeq2500 (Illumina) and the quality of the fastq files was evaluated by FastQC v.0.11.5 (Babraham
Institute, Babraham, Cambridge, UK) [34]. Low quality bases, (phred score < 33, minimum length =

36 pb), and adapter sequences were removed using Trimmomatic v0.36 (RWTH Aachen University,
Aachen, Germany) [35], while poly-A tails were removed using Prinseq-lite v0.20.4 (University of
Birmingham, Birmingham, UK) [36] followed by data quality re-evaluation by FastQC. Both paired and
unpaired reads were processed to recover maximum reads sequenced. Unpaired reads refer to those
that one of the sequenced reads were not used due to low quality according to the evaluated metrics,
but we considered them as technical replicates. Then, reads were mapped to the GRCh38 reference
genome (Homo_sapiens, Ensembl) using STAR v2.5.3a [37], after removing the pseudogenes from the
reference genome annotation file, generating the alignment statistics (Tables S1 and S2). SAM files
(Sequence Alignment/Mapping) were converted to BAM (Binary SAM) files using SAMtools [38] and
visualized in the Integrative Genome Browser (IGV) 2.4.4 [39].

2.5. Gene Expression Analysis

We used the HTSeq v0.6.1 (University of Heidelberg, Heidelberg, Germany) [40] to identify the
number of reads maping to each gene. Data were normalized with DESeq2 package (University of North
Carolina, Chapel Hill, ND, USA) [41], which accounts for sequencing depth and generates an expression
matrix containing all genes for the 21 matched samples. We considered as differentially expressed
genes (DEG), those genes that presented False Discovery Rate (FDR) < 0.001 and lfcThreshold = 0.1.

3. Results

3.1. DNA Variability Suggests the Existence of Two Groups of Metastatic Tissues

DNA methylation for 353,620 CpG sites was evaluated in seven patients of matched NK, WT,
and MT tissues. Comparison between matched trios (NK, WT, and MT) allowed the identification of
497 differentially methylated positions (DMPs; adjusted p-value < 0.001), with 345 DMPs located in
301 genes. Regarding to CpG island, 342 DMPs (69%) were located in CpG island, shores, or shelves
whereas 155 DMPs (31%) were located in open sea (p-value < 0.0001; chi-squared test). Hierarchical
clustering based on these DMPs (Euclidean distance with average linkage) resulted in two clusters: one
containing all WT and four metastatic samples and a second containing all NK and three metastatic
samples (Figure 1A). Likewise, methylation CpG levels show that NK, WT, and MT are distinct tissues
and that there are two groups of metastases (MT-Group1: MT1, MT3, MT6, MT10, and MT-Group2:
MT2, MT5, MT9). The level of similarity between samples using multidimensional scaling (MDS)
applied to the 1% most variable sites (Figure 1B) showed that NK and three MT samples grouped
tightly together (MT-Group2) and all WT and four MT samples (MT-Group1) showed high variability
(p-value < 10−16; Levene’s test). Consistently, we observed less variance at single CpG sites among
NK (67.5%, n = 2386, s.d. < 0.1) than in WT (8.0%, n = 282, s.d. < 0.1) and within the metastatic
samples, MT-Group2 (47.8%, n = 1692, s.d. < 0.1) showed less variance than MT-Group1 (22.7%,
n = 804, s.d. < 0.1). To gain a comprehensive insight into the variation in DNA methylation between
the three groups, we applied Principal Component Analysis (PCA) to the full dataset. The principal
component (PC) 1 and 2 explained 88.1% and 3.1% of the variance (Figure 1C), respectively, which
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clearly separated NK and WT and both groups of metastases. This suggests that NK has a more stable
epigenome than WT, consistent with previous reports in normal and cancer tissues. MT-Group1 had
twice as many variant CpGs than MT-Group2, pointing to differences in the genomic stability between
both groups. The histology of the metastatic samples as well as the clinicopathological characteristics
of the tumors are presented in Table 1.Cells 2019, 8, x 5 of 15 
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(red). (B) Multidimensional scaling of the top 1% most variable positions. (C) Variance in DNA 
methylation related to each principal component identified. (D) Boxplot representing expression 
levels (from RNAseq) for DNMT1, DNMT3A, DNMT3B, TET1, TET2, and TET3. Kruskal–Wallis test 
followed by Dunn post-test was applied: * p < 0.05, ** p < 0.01, *** p < 0.001. NK: normal kidney (n = 
7), WT: Wilms tumor (n = 7), MT1: metastasis group 1 (n = 4), MT2: metastasis group 2 (n = 3). 

Table 1. Clinicopathological characteristics of the cases evaluated for DNA methylation and gene 
expression. 

Figure 1. Methylation analyses in matched trios of normal kidney (NK), Wilms tumor (WT),
and metastatic tissues (MT). (A) Hierarchical clustering (Euclidean distance with average linkage) of
the 21 samples, based on methylation levels of the 497 differentially methylated CpG sites. Heatmap
colors refer to methylation levels: unmethylated (blue), partially methylated (white), and methylated
(red). (B) Multidimensional scaling of the top 1% most variable positions. (C) Variance in DNA
methylation related to each principal component identified. (D) Boxplot representing expression levels
(from RNAseq) for DNMT1, DNMT3A, DNMT3B, TET1, TET2, and TET3. Kruskal–Wallis test followed
by Dunn post-test was applied: * p < 0.05, ** p < 0.01, *** p < 0.001. NK: normal kidney (n = 7), WT:
Wilms tumor (n = 7), MT1: metastasis group 1 (n = 4), MT2: metastasis group 2 (n = 3).
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3.2. Methylation Differences May Be Related to DNMTs and TETs Expression

By applying pairwise comparisons between NK, WT, and MT groups, we identified 8860 hypo-
and 8746 hypermethylated positions between WT and NK and 825 hypo- and 1314 hypermethylated
DMPs between MT and WT (p-value < 0.01 and Delta beta-value (DB) > 10%). Most of the DMPs from
WT and NK were located in CpGs island, shores, or shelves, independently of its methylation pattern
(61% hypomethylated and 65% in hypermethylated DMPs), similar to the DMPs from MT and WT
(59% hypomethylated and 66% in hypermethylated DMPs).

Further, we verified the expression of methylases and demethylases by looking for a correlation
between methylation pattern observed in NK, WT, and MT, considering both MT-groups. DNMT1,
DNMT3A, and TET1 reported lower expression in NK compared to WT. MT-Group1 and MT-Group2
showed different expression levels for DNMT3A and DNMT3B, again with MT-Group1 showing
expression levels similar to WT and MT-Group2 being more similar to NK (Figure 1D).

3.3. Genes Controlled by DNA Methylation Confirm the Existence of Two Groups of Metastases

To examine the relationship between methylation and RNA expression, we correlated the
methylation levels of DMRs and the expression of the closest genes. By comparing WT and NK,
we identified 92 hypo- and 207 hypermethylated regions in WT (p-value < 0.05 and DB > 10%),
and 1.100 up and 1.469 downregulated genes (FDR < 0.001) in WT compared to NK, with 44 showing
agreement between hypomethylation/over-expression (n = 8) and hypermethylation/down-expression
(n = 36) (Table 2). Similar to previous studies [3,7], methylation of 11p15 ICR1 correlated with IGF2
and H19 expression (Figure 2A). Four genes from HOX family reported hypomethylation associated
with over-expression: HOXA5, HOXA6, HOXA-AS3, and HOXB-AS3. Five genes are recognized tumor
suppressor genes, the hypermethylation was associated to down-regulation for LTF, SUSD2, HNF4A,
TNFRSF10A, and H19. The exception was BRCA1 that presented promoter hypomethylation but was
over-expressed in WT. These findings suggest that DNA methylation could be a mechanism for loss of
function in a subset of tumors. While hierarchical clustering analysis based on the expression of all
2569 differentially expressed genes (DEGs) discriminated WT and MT from all NK samples (Figure 2B),
the hierarchical clustering based on the expression of 44 genes revealed two groups: one containing all
NKs and three MTs and a second containing all WT and two MTs (Figure 2C).
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Table 2. List of 44 genes showing negative correlation between promoter methylation and gene expression levels.

Gene DMR Location Number of
CpGs DMR Width (Bp) Minimum p-value

Methylation
Status

(MaxBetaFC)

Methylation
Status

(MeanBetaFC)

Expression
(Log2FC)

ACCS chr11:44087396-44088257 12 862 5 × 10−19 0.5 0.3 −1.4
AQP1 chr7:30951064-30951801 11 738 6 × 10−18 0.4 0.1 −3.9
BHMT chr5:78407153-78407683 8 531 4 × 10−40 0.5 0.4 −7.5
BRCA1 chr17:41277974-41279022 21 1049 2 × 10−25 −0.5 −0.2 2.2
CD81 chr11:2397255-2398336 21 1082 2 × 10−46 0.4 0.2 −1.2
CIDEB chr14:24779793-24780926 13 1134 4 × 10−43 0.6 0.2 −2.2
CLDN10 chr13:96204518-96204978 8 461 1 × 10−4 0.2 0.1 −5.6
CLIC6 chr21:36041334-36041699 8 366 1 × 10−52 0.6 0.5 −3.0
CRB3 chr19:6463949-6464275 9 327 1 × 10−23 0.4 0.3 −5.3
ELF3 chr1:201979478-201979938 7 461 1 × 10−6 0.3 0.1 −4.8
GRHL2 chr8:102504447-102504859 8 413 7 × 10−16 0.3 0.2 −4.0
H19 chr11:2019452-2020560 29 1109 4 × 10−12 0.3 0.1 −2.1
HLA-A chr6:29910411-29911095 8 685 4 × 10−18 0.4 0.2 −2.2
HNF1A chr12:121416315-121416796 7 482 7 × 10−10 0.4 0.2 −4.9
HNF4A chr20:42983920-42984878 12 959 1 × 10−17 0.4 0.2 −5.4
HOXA-AS3 chr7:27183816-27185512 26 1697 5 × 10−16 −0.3 −0.2 2.6
HOXA5 chr7:27183816-27185512 26 1697 5 × 10−16 −0.3 −0.2 1.8
HOXA6 chr7:27183816-27185512 26 1697 5 × 10−16 −0.3 −0.2 2.3
HOXB-AS3 chr17:46669455-46670029 9 575 4 × 10−16 −0.3 −0.1 2.7
HSPA2 chr14:65006688-65007437 16 750 1 × 10−15 0.4 0.2 −3.9
IRF6 chr1:209979111-209979779 9 669 3 × 10−22 0.5 0.3 −2.8
KRT7 chr12:52626814-52627576 8 763 1 × 10−8 0.4 0.2 −5.8
LTF chr3:46506104-46506554 9 451 3 × 10−5 0.3 0.2 −7.0
MEST chr7:130130753-130131730 13 978 3 × 10−9 −0.2 −0.1 3.7
MYO15B chr17:73583839-73584360 9 522 1 × 10−7 0.3 0.2 −1.6
PAH chr12:103310839-103311761 9 923 8 × 10−20 0.3 0.2 −8.1
PDZK1IP1 chr1:47655599-47656423 7 825 7 × 10−7 0.3 0.2 −7.3
POU5F1 chr6:31148404-31148748 7 345 1 × 10−6 0.2 0.1 −4.7
PRRG4 chr11:32851087-32851531 9 445 1 × 10−4 0.2 0.1 −4.2
RGMA chr15:93616894-93617168 11 275 2 × 10−9 −0.3 −0.2 2.7
SLC22A18 chr11:2925594-2925969 8 376 2 × 10−4 0.2 0.1 −2.5
SLC22A2 chr6:160679391-160680162 10 772 3 × 10−13 0.3 0.2 −8.0
SLC25A23 chr19:6463949-6464275 9 327 1 × 10−23 0.4 0.3 −1.6
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Table 2. Cont.

Gene DMR Location Number of
CpGs DMR Width (Bp) Minimum p-value

Methylation
Status

(MaxBetaFC)

Methylation
Status

(MeanBetaFC)

Expression
(Log2FC)

SLC44A4 chr6:31846769-31847028 8 260 1 × 10−7 0.2 0.2 −4.1
SLFN12 chr17:33759512-33760527 11 1016 1 × 10−14 0.5 0.3 −1.7
SOD3 chr4:24796689-24797176 7 488 1 × 10−3 0.2 0.1 −2.3
STRA6 chr15:74494781-74495354 7 574 4 × 10−15 −0.3 −0.2 3.6
SUSD2 chr22:24577223-24577448 7 226 4 × 10−3 0.3 0.1 −2.7
TCIRG1 chr11:67806118-67806668 7 551 3 × 10−30 0.6 0.4 −2.2
TMEM140 chr7:134832544-134833299 7 756 9 × 10−10 0.4 0.2 −3.1
TNFRSF10A chr8:23082634-23082961 7 328 2 × 10−4 0.3 0.2 −3.1
TTC22 chr1:55266296-55267152 8 857 1 × 10−7 0.3 0.2 −5.7
UPB1 chr22:24891141-24891666 8 526 2 × 10−10 0.3 0.2 −3.1
VWA7 chr6:31740805-31741184 8 380 1 × 10−9 0.2 0.2 −1.7
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Figure 2. Genes controlled by DNA methylation. (A) Boxplot of expression levels across the groups
(NK, WT, and MT) for IGF2 and H19 (ANOVA and Tukey’s Multiple Comparison Test; * p < 0.05,
*** p < 0.001) (B) Hierarchical clustering (distance was measured as 1-Pearson correlation coefficient
with complete linkage) of the paired seven cases (21 samples), based on expression levels of the (B)
2569 differentially expressed genes (DEGs) and (C) 44 genes controlled by methylation. Heatmap
colors refer to expression levels Z-score transformed: lower expression (green), median levels partially
methylated (black), and highly expressed (red). (D) Boxplot of expression levels across the groups (NK,
WT, MT-Group1, and MT-Group2) for 44 genes controlled by methylation. NK: normal kidney (n = 7),
WT: Wilms tumor (n = 7), MT: metastasis (n = 7), MT-Group1: metastasis group 1 (n = 4), MT-Group2:
metastasis group 2 (n = 3).

Thus, we verified the expression of these 44 genes in the MT samples (Figure 2D; Figure S3).
Overall, the 44 genes expression showed a higher variance in MT-Group1, similar to WT, and a
smaller variance in MT-Group2, closer to NK, suggesting their involvement into different paths of
tumor progression.
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3.4. Characterization of the DMRs within the Metastatic Groups

To investigate how the two MT groups differentiate, we then established which methylated regions
primarily discriminated between both MT groups and their matched WT. We identified 13 hypo- and
21 hypermethylated regions between MT-Group1 and WT, located in 11 (13 genes) and 19 (26 genes)
promoters. These DMRs were enriched for five molecular functions: antigen binding, TAP1 and TAP2
binding, peptide antigen binding and peptide-transporting ATPase activity (FDR < 0.01; Table S3)
and no biological processes. DMRs with the higher methylation differences (>20%) were located at
the promoter regions of RUSC1 (and RUSC1-AS1), KCNQ1DN, both more methylated in MT-Group1,
DNHD1 and EXOC3L2, both more methylated in WT.

The comparison between MT-Group2 and WT reported 130 hypo- and 36 hypermethylated
regions, located in 118 (155 genes) and 30 (38 genes) promoters. These DMRs were enriched for two
molecular functions: peptide antigen binding and MHC class II receptor activity (Table S4); and for
several biological processes including antigen processing and presentation of exogenous antigen,
genetic imprinting, interferon-gamma-mediated signaling pathway, meiosis, and regulation of T cell
mediated cytotoxicity (FDR < 0.01, Table S5). All the DMRs with the higher methylation differences
(>40%) were more methylated in WT than in MT-Group2, with one not located in gene promoter and
10 located the promoter of HIST1H4I, HCG9, SALL4, CACNA1C-AS1, GRIK2, SIM2, ELTD1, ZNF300P1,
NKAPL, ZKSCAN4, and RP11-573G6.

To verify again the similarities between MT-Group2 and NK, we compared the expression levels
between both MT groups identifying 2880 and 598 DEGs between MT-Group1 and MT-Group2,
respectively, versus NK. This analysis showed that MT-Group1 has 5.8 more DEGs with 425 (71%)
common genes between both comparisons.

4. Discussion

We investigated global gene expression and DNA methylation in case-matched triplets (normal
tissue, primary cancer, and lung metastasis) to apply a comprehensive analysis of WT disease
progression. Both variance and differential methylation analyses pointed to the existence of two groups
of metastases. The methyltransferases DNMT3A and DNMT3B also reported differential expression
between both groups. Similar to findings in other cancers [42], tumor samples presented high variance
whereas normal samples clustered together, with the metastatic tissues showing low or high variance,
similar to normal or tumor tissues. These groups were not identified in the expression data when
all DEGs were considered. Nevertheless, using only DEGs that had a DMR located in the respective
promoter, the clustering analysis identified the two groups of metastatic samples. We selected areas
containing blastema (>80% of the cells); however, we cannot exclude the possibility of contamination
by other cell types, resulting in, at least partially, differences in DNA methylation and gene expression.

MT-Group1 and MT-Group2 exhibited distinct methylation and expression patterns with
MT-Group2 being more similar to NK suggesting that alterations in DNA methylation rather than
acquisition of mutations are involved with metastasis. This difference was also observed at expression
levels that showed that MT-Group1 had almost six more differentially expressed genes than MT-Group2,
compared to NK. Epigenetic patterns were described within tumor types and associated to distinct
clinical and pathological characteristics, such as age to diagnosis, sex, and relapse [42,43], what could
related to the existence of both metastatic groups, however, a larger cohort is necessary to characterize
the subgroups. Another hypothesis is that MT-Group1, that preserves WT alterations is not yet
completely adapted to the new microenvironment while samples from MT-Group2 are already
established in the lung presenting methylation and expression levels related to the survival in a fully
differentiated and functional organ.

Changes during tumor progression were analyzed using DMRs from matched primary and normal
tissues, which were then individually evaluated in metastatic samples. We found that a minority
(14.7%, 44 out of 299) of the DMRs showed negative correlation between methylation and expression
levels. This relatively low correspondence may be explained by the fact that we only used DMRs
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located in gene promoters. A downstream (up to 8 kilobases (kb)) or upstream (−2 kb to 0.3 kb) region
away from the promoter seems to have a stronger correlation [44]. Nevertheless, we found two out
three DMRs previously found hypermethylated in WT compared to NK: chr6:28956259-28956804 and
chr6:32115979-32117565 located in HCG16 and PRRT1, respectively [45]. Control of H19 and IGF2
expression by methylation and their association with WT is well described [3,46–48], thus validating
our other findings. Most of the 44 genes were not previously described in WT but they have been
associated to tumor progression and resistance to chemotherapy treatment in other cancers. Therefore,
they might be of clinical interest for stratification of patients into high and low metastatic risk as well
as to disclose potential targets for development of new therapies.

It is likely that epigenetic regulation of gene expression plays an important role in regulating the
expression of transcription factors that determine progenitor self-renewal and/or nephron differentiation.
PRC2 is recruited to unmethylated CpG sites to place the H3K27me3 mark at promoter and enhancer
regions, resulting in transcriptional repression and nucleosome compaction. Repression of PRC2 (and
PRC1) is believed to be a major mechanism whereby gene expression is negatively regulated during
development, including HOX and SOX genes [49]. The HOX family are well-known genes with roles
in development, differentiation, and motility, with their aberrant expression related to epigenetic
alterations in tumorigenesis. In normal differentiated tissues, HOX genes are usually methylated, which
is lost in tumors, together with the increase in expression, as demonstrated in myeloid/lymphoid or
mixed lineage leukemia [50]. In our study, HOXA5, HOXA6, HOXA-AS3—all in the same cluster—and
HOXB-AS3 showed negative correlation between expression and methylation.

Some tumor suppressor genes may have lost their function in WT by disruption of DNA
methylation in their promoter regions. HNF4A was involved with regulation of embryonic development
of multiple tissues, including renal development [51]. Little is known about the epigenetic mechanism
of this gene regulation, but in young-adult mouse liver HNF4A deficiency alters histone methylation
and acetylation [52]. In humans, changes in HNF4A expression were associated with liver, colon,
and hepatocellular carcinoma tumorigenesis [53]. TNFRSF10A is a receptor activated by tumor
necrosis factor-related apoptosis inducing ligand TNFSF10, signaling for cell apoptosis. Its suppression
is associated with inactivation of apoptotic pathways and consequently to tumor development in
osteosarcomas [54], gastric carcinomas [55], and glioblastoma multiforme [56,57]. SUSD2 is type I
membrane protein containing domains inherent to adhesion molecules, in which downregulation was
associated with proliferative capacity renal cell and lung carcinomas [58] and other cancers [59,60].
SUSD2 interacts with GAL1 to promote tumor immune evasion, angiogenesis, and metastasis [59].
LTF also has an immune regulatory function. The association of genes regulated by DNA methylation
with tumor progression may reveal new possibilities to investigate new mechanisms and treatment
possibilities for WT.

Here, we explored modification of DNA methylation with respect to normal tissues and associated
with cis-changes of gene expression. While functional investigations of specific targets will be required
to validate cancer specificity and causal relationships of epigenetic and transcriptional changes,
DNA methylation signatures could be used as a tool to evaluate as tumor progression, similar to
prostate cancer [61]. In addition to the IGF2/H19 cluster, possible candidates include those genes from the
HOX family and the tumor suppressors. Overall, because DNA methylation constitutes a mechanism
of gene expression control, systematic investigations on how cancer cells exploit this mechanism
to deregulate specific targets and processes can help us to understand the disease manifestation,
by capturing and functionally implicating cancer-associated methylation events and exploiting the
therapeutic opportunities [62]. In WT, the response of the lung nodules to chemotherapy is used to
modify treatment intensity, with the use of an additional agent, Irinotecan, being explored as a new
strategy for metastatic and relapsed WT [63].
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5. Conclusions

The differences in DNA methylation reported for NK, WT, and MT may be a result of the
differential expression of methylases and demethylases. Methylation data pointed to the existence
of two groups of metastases. These methylation changes may be controlling the expression of genes
related to the metastasis formation in WT. In particular, the 44 genes are candidates to be further
explored as a signature for metastasis formation in WT.
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24. Bal, A.S.K.; Yalcin, B.; Susam-Şen, H.; Aydin, B.; Varan, A.; Kutluk, T.; Akyüz, C. Renal late effects after the
treatment of unilateral nonsyndromic wilms tumor. J. Pediatr. Hematol. Oncol. 2016, 38, e147–e150.

25. Wong, K.F.; Reulen, R.C.; Winter, D.L.; Guha, J.; Fidler, M.M.; Kelly, J.; Lancashire, E.R.; Pritchard-Jones, K.;
Jenkinson, H.C.; Sugden, E.; et al. Risk of adverse health and social outcomes up to 50 years after wilms
tumor: The British childhood cancer survivor study. J. Clin. Oncol. 2016, 34, 1772–1779. [CrossRef]

26. Aryee, M.J.; Jaffe, A.E.; Corrada-Bravo, H.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Irizarry, R.A.
Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation
microarrays. Bioinformatics 2014, 30, 1363–1369. [CrossRef]

http://dx.doi.org/10.1038/ng.243
http://dx.doi.org/10.18632/oncotarget.2485
http://dx.doi.org/10.1186/s13148-017-0431-6
http://dx.doi.org/10.1186/s13073-015-0136-4
http://dx.doi.org/10.1200/JCO.2015.62.1888
http://dx.doi.org/10.4103/0971-9261.145439
http://dx.doi.org/10.1038/nrurol.2017.163
http://dx.doi.org/10.1371/journal.pone.0109924
http://www.ncbi.nlm.nih.gov/pubmed/25313908
http://dx.doi.org/10.1158/1078-0432.CCR-16-0985
http://dx.doi.org/10.1002/cjp2.77
http://dx.doi.org/10.1200/JCO.2015.66.0001
http://dx.doi.org/10.1200/JCO.2015.66.1140
http://dx.doi.org/10.1016/j.juro.2016.05.100
http://dx.doi.org/10.1016/j.ejca.2017.04.005
http://dx.doi.org/10.3109/08880010903019344
http://dx.doi.org/10.1200/JCO.2015.64.4344
http://dx.doi.org/10.1093/bioinformatics/btu049


Cells 2019, 8, 921 14 of 15

27. Nordlund, J.; Bäcklin, C.L.; Wahlberg, P.; Busche, S.; Berglund, E.C.; Eloranta, M.L.; Flaegstad, T.; Forestier, E.;
Frost, B.M.; Harila-Saari, A.; et al. Genome-wide signatures of differential DNA methylation in pediatric
acute lymphoblastic leukemia. Genome Biol. 2013, 14, r105. [CrossRef]

28. Touleimat, N.; Tost, J. Complete pipeline for Infinium® Human Methylation 450K BeadChip data processing
using subset quantile normalization for accurate DNA methylation estimation. Epigenomics 2012, 4, 325–341.
[CrossRef]

29. Leek, J.T.; Storey, J.D. Capturing heterogeneity in gene expression studies by surrogate variable analysis.
PLoS Genet. 2007, 3, 1724–1735. [CrossRef]

30. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]

31. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray
experiments. Stat. Appl. Genet. Mol. Biol. 2004, 3. [CrossRef]

32. Peters, T.J.; Buckley, M.J.; Statham, A.L.; Pidsley, R.; Samaras, K.; Lord, R.V.; Clark, S.J.; Molloy, P.L. De novo
identification of differentially methylated regions in the human genome. Epigenet. Chromatin 2015, 8, 6.
[CrossRef]

33. McLean, C.Y.; Bristor, D.; Hiller, M.; Clarke, S.L.; Schaar, B.T.; Lowe, C.B.; Wenger, A.M.; Bejerano, G. GREAT
improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 2010, 28, 495–501. [CrossRef]

34. Andrews, S. Babraham Bioinformatics FastQC: A Quality Control Tool for High Throughput Sequence Data; Manual;
Babraham: Cambridge, UK, 2010.

35. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics
2014, 30, 2114–2120. [CrossRef]

36. Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011,
27, 863–864. [CrossRef]

37. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R.
STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [CrossRef]

38. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The
Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef]

39. Thorvaldsdóttir, H.; Robinson, J.T.; Getz, G.; Guttman, M.; Mesirov, J.P.; Winckler, W.; Lander, E.S. Integrative
genomics viewer. Nat. Biotechnol. 2011, 29, 24–26.

40. Anders, S.; Pyl, P.T.; Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data.
Bioinformatics 2015, 31, 166–169. [CrossRef]

41. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data
with DESeq2. Genome Biol. 2014, 15, 550. [CrossRef]

42. Vidal, E.; Sayols, S.; Moran, S.; Guillaumet-Adkins, A.; Schroeder, M.P.; Royo, R.; Orozco, M.; Gut, M.; Gut, I.;
Lopez-Bigas, N.; et al. A DNA methylation map of human cancer at single base-pair resolution. Oncogene
2017, 36, 5648–5657. [CrossRef]

43. Williams, L.A.; Mills, L.; Hooten, A.J.; Langer, E.; Roesler, M.; Frazier, A.L.; Krailo, M.; Nelson, H.H.;
Bestrashniy, J.; Amatruda, J.F.; et al. Differences in DNA methylation profiles by histologic subtype of
paediatric germ cell tumours: A report from the Children’s Oncology Group. Br. J. Cancer 2018, 119, 864–872.
[CrossRef]

44. Schultz, M.D.; He, Y.; Whitaker, J.W.; Hariharan, M.; Mukamel, E.A.; Leung, D.; Rajagopal, N.; Nery, J.R.;
Urich, M.A.; Chen, H.; et al. Human body epigenome maps reveal noncanonical DNA methylation variation.
Nature 2015, 523, 212–216. [CrossRef]

45. Charlton, J.; Williams, R.D.; Weeks, M.; Sebire, N.J.; Popov, S.; Vujanic, G.; Mifsud, W.; Alcaide-German, M.;
Butcher, L.M.; Beck, S.; et al. Methylome analysis identifies a Wilms tumor epigenetic biomarker detectable
in blood. Genome Biol. 2014, 15, 434. [CrossRef]

46. Cui, H.; Hedborg, F.; He, L.; Nordenskjöld, A.; Sandstedt, B.; Pfeifer-Ohlsson, S.; Ohlsson, R. Inactivation of
H19, an imprinted and putative tumor repressor gene, is a preneoplastic event during Wilms’ tumorigenesis.
Cancer Res. 1997, 57, 4469–4473.

47. Bjornsson, H.T.; Brown, L.J.; Fallin, M.D.; Rongione, M.A.; Bibikova, M.; Wickham, E.; Fan, J.B.; Feinberg, A.P.
Epigenetic specificity of loss of imprinting of the IGF2 gene in wilms tumors. J. Natl. Cancer Inst. 2007, 99,
1270–1273. [CrossRef]

http://dx.doi.org/10.1186/gb-2013-14-9-r105
http://dx.doi.org/10.2217/epi.12.21
http://dx.doi.org/10.1371/journal.pgen.0030161
http://dx.doi.org/10.1093/nar/gkv007
http://dx.doi.org/10.2202/1544-6115.1027
http://dx.doi.org/10.1186/1756-8935-8-6
http://dx.doi.org/10.1038/nbt.1630
http://dx.doi.org/10.1093/bioinformatics/btu170
http://dx.doi.org/10.1093/bioinformatics/btr026
http://dx.doi.org/10.1093/bioinformatics/bts635
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1093/bioinformatics/btu638
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1038/onc.2017.176
http://dx.doi.org/10.1038/s41416-018-0277-5
http://dx.doi.org/10.1038/nature14465
http://dx.doi.org/10.1186/s13059-014-0434-y
http://dx.doi.org/10.1093/jnci/djm069


Cells 2019, 8, 921 15 of 15

48. Ludgate, J.L.; Le Mée, G.; Fukuzawa, R.; Rodger, E.J.; Weeks, R.J.; Reeve, A.E.; Morison, I.M. Global
demethylation in loss of imprinting subtype of Wilms tumor. Genes. Chromosomes Cancer 2013, 52, 174–184.
[CrossRef]

49. Conway, E.; Healy, E.; Bracken, A.P. PRC2 mediated H3K27 methylations in cellular identity and cancer.
Curr. Opin. Cell Biol. 2015, 37, 42–48. [CrossRef]

50. Shah, N.; Sukumar, S. The Hox genes and their roles in oncogenesis. Nat. Rev. Cancer 2010, 10, 361–371.
[CrossRef]

51. Lau, H.H.; Ng, N.H.J.; Loo, L.S.W.; Jasmen, J.B.; Teo, A.K.K. The molecular functions of hepatocyte nuclear
factors—In and beyond the liver. J. Hepatol. 2018, 68, 1033–1048. [CrossRef]

52. Zhang, Q.; Lei, X.; Lu, H. Alterations of epigenetic signatures in hepatocyte nuclear factor 4α deficient
mouse liver determined by improved ChIP-qPCR and (h)MeDIP-qPCR assays. PLoS ONE 2014, 9, e84925.
[CrossRef]

53. Walesky, C.; Apte, U. Role of hepatocyte nuclear factor 4α (HNF4α) in cell proliferation and cancer. Gene Expr.
2015, 16, 101–108. [CrossRef]

54. Sadikovic, B.; Yoshimoto, M.; Chilton-MacNeill, S.; Thorner, P.; Squire, J.A.; Zielenska, M. Identification of
interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular
profiling. Hum. Mol. Genet. 2009, 18, 1962–1975. [CrossRef]

55. Lee, K.H.; Lim, S.W.; Kim, H.G.; Kim, D.Y.; Ryu, S.Y.; Joo, J.K.; Kim, J.C.; Lee, J.H. Lack of death receptor 4
(DR4) expression through gene promoter methylation in gastric carcinoma. Langenbeck Arch. Surg. 2009, 394,
661–670. [CrossRef]

56. Martinez, R.; Setien, F.; Voelter, C.; Casado, S.; Quesada, M.P.; Schackert, G.; Esteller, M. CpG island promoter
hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma
multiforme. Carcinogenesis 2007, 28, 1264–1268. [CrossRef]

57. Martinez, R.; Martin-Subero, J.I.; Rohde, V.; Kirsch, M.; Alaminos, M.; Fernandez, A.F.; Ropero, S.;
Schockert, G.; Esteller, M. A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics
2009, 4, 255–264. [CrossRef]

58. Cheng, Y.; Wang, X.; Wang, P.; Li, T.; Hu, F.; Liu, Q.; Yang, F.; Wang, J.; Xu, T.; Han, W. SUSD2 is frequently
downregulated and functions as a tumor suppressor in RCC and lung cancer. Tumor Biol. 2016, 37, 9919–9930.
[CrossRef]

59. Watson, A.P.; Evans, R.L.; Egland, K.A. Multiple Functions of Sushi Domain Containing 2 (SUSD2) in Breast
Tumorigenesis. Mol. Cancer Res. 2012, 11, 74–85. [CrossRef]

60. Zhang, S.; Zeng, N.; Alowayed, N.; Singh, Y.; Cheng, A.; Lang, F.; Salker, M.S. Downregulation of endometrial
mesenchymal marker SUSD2 causes cell senescence and cell death in endometrial carcinoma cells. PLoS ONE
2017, 12, e0183681. [CrossRef]

61. Zhao, S.; Geybels, M.S.; Leonardson, A.; Rubicz, R.; Kolb, S.; Yan, Q.; Klotzle, B.; Bibikova, M.; Hurtado-Coll, A.;
Troyer, D.; et al. Epigenome-wide tumor DNA methylation profiling identifies novel prognostic biomarkers
of metastatic-lethal progression in men diagnosed with clinically localized prostate cancer. Clin. Cancer Res.
2017, 23, 311–319. [CrossRef]

62. Saghafinia, S.; Mina, M.; Riggi, N.; Hanahan, D.; Ciriello, G. Pan-Cancer Landscape of Aberrant DNA
Methylation across Human Tumors. Cell Rep. 2018, 25, 1066–1080. [CrossRef]

63. Oostveen, R.M.; Pritchard-Jones, K. Pharmacotherapeutic Management of Wilms Tumor: An Update.
Pediatr. Drugs 2019, 21, 1–13. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/gcc.22017
http://dx.doi.org/10.1016/j.ceb.2015.10.003
http://dx.doi.org/10.1038/nrc2826
http://dx.doi.org/10.1016/j.jhep.2017.11.026
http://dx.doi.org/10.1371/journal.pone.0084925
http://dx.doi.org/10.3727/105221615X14181438356292
http://dx.doi.org/10.1093/hmg/ddp117
http://dx.doi.org/10.1007/s00423-009-0484-x
http://dx.doi.org/10.1093/carcin/bgm014
http://dx.doi.org/10.4161/epi.9130
http://dx.doi.org/10.1007/s13277-015-4734-y
http://dx.doi.org/10.1158/1541-7786.MCR-12-0501-T
http://dx.doi.org/10.1371/journal.pone.0183681
http://dx.doi.org/10.1158/1078-0432.CCR-16-0549
http://dx.doi.org/10.1016/j.celrep.2018.09.082
http://dx.doi.org/10.1007/s40272-018-0323-z
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Sample Collection and DNA and RNA Extraction 
	Infinium HumanMethylation450 BeadChip Arrays (Illumina) Procedures 
	Methylation Statistical Analysis 
	RNA Library Construction and Sequencing 
	Gene Expression Analysis 

	Results 
	DNA Variability Suggests the Existence of Two Groups of Metastatic Tissues 
	Methylation Differences May Be Related to DNMTs and TETs Expression 
	Genes Controlled by DNA Methylation Confirm the Existence of Two Groups of Metastases 
	Characterization of the DMRs within the Metastatic Groups 

	Discussion 
	Conclusions 
	References

