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Abstract: Ovarian cancer (OC) is one of the leading causes of female cancer death. Recent studies
have documented its extensive variations as a disease entity, in terms of cell or tissue of origin,
pre-cancerous lesions, common mutations, and therapeutic responses, leading to the notion that OC
is a generic term referring to a whole range of different cancer subtypes. Despite such heterogeneity,
OC treatment is stereotypic; aggressive surgery followed by conventional chemotherapy could result
in chemo-resistant diseases. Whereas molecular-targeted therapies will become shortly available
for a subset of OC, there still remain many patients without effective drugs, requiring development
of groundbreaking therapeutic agents. In preclinical studies for drug discovery, cancer cell lines
used to be the gold standard, but now this has declined due to frequent failure in predicting
therapeutic responses in patients. In this regard, patient-derived cells and tumors are gaining more
attention in precise and physiological modeling of in situ tumors, which could also pave the way to
implementation of precision medicine. In this article, we comprehensively overviewed the current
status of various platforms for patient-derived OC models. We highly appreciate the potentials of
organoid culture in achieving high success rate and retaining tumor heterogeneity.

Keywords: ovarian cancer; patient-derived cells; organoid; spheroid; xenograft; pre-clinical model;
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1. Introduction

Ovarian cancer (OC) is the most devastating gynecologic cancer. Even after development of
many surgical techniques and chemotherapies, its overall five-year survival rate is still as low as
47% [1]. The prognosis appears favorable if patients are diagnosed at early stages, but early detection
is generally difficult due to manifestation of non-specific symptoms and the lack of reliable biomarkers.

With many histological variations, OC has been regarded as a highly heterogeneous disease.
Indeed, epithelial OC that comprises nearly 90% of OC is usually classified into many histologically
distinct subtypes. Major subtypes include serous carcinoma, endometrioid carcinoma, clear cell
carcinoma, and mucinous carcinoma. Recently, epithelial OC are more loosely classified into two
general categories by integrating the results from histopathological, molecular biological, and genetic
analyses, to underscore biological properties of OC. Type 1 cancers grow slowly and contain low-grade
serous carcinoma (LGSC), mucinous carcinoma, endometrioid carcinoma, clear cell carcinoma, and
transitional carcinoma. Type 2 cancers progress rapidly and contain high-grade serous carcinoma
(HGSC), undifferentiated carcinoma, and carcinosarcioma [2]. This dualistic model of ovarian cancers
was further revised and expanded to provide more detailed classification [3]. Researchers used to
automatically assume that most epithelial OC would derive from ovarian surface epithelium (OSE),
but accumulating evidence strongly suggests that its cell of origin might differ by histological subtypes.
For example, it has been established that HGSC predominantly originates from secretory cells or
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progenitor cells in the fallopian tubes, via pre-malignant lesions known as serous tubal intraepithelial
carcinoma (STIC) [4]. Endometrioid carcinoma and clear cell carcinoma are highly correlated with a
history of endometriosis, in which endometrial cells implanted on the ovary are the likely origin of
the tumors [5,6]. Genome analysis revealed that differences in mutation profiles underlie histological
subtypes. Whereas TP53 is exclusively mutated in HGSC in a proportion as high as 95% [7], RAS and
BRAF are frequently mutated in LGSC [8]. KRAS mutation is also implicated in mucinous carcinoma [9].
Clear cell carcinoma is characterized by ARID1A, PIK3CA, TERT promoter mutations [10–12], and
endometrioid carcinoma is characterized by PTEN, PIK3CA, ARID1A, and CTNNB1 mutations [13].
However, some tumors are not consistent with these typical features, hence molecular mechanisms
underlying carcinogenesis of each OC subtype are not fully understood.

Despite the highly heterogeneous nature of OC, standard treatment of ovarian cancer is stereotypically
composed of aggressive surgery followed by platinum-taxane chemotherapy. Of the four major subtypes,
clear cell carcinoma and mucinous carcinoma tends to be refractory to chemotherapy [14,15]. Moreover,
recurrence after initial chemotherapy often results in platinum-resistant diseases, leading to low overall
five-year survival rates. To overcome this issue, some new therapeutic agents are in trial for OC.
Representative examples include PARP inhibitors for cases deficient in homologous recombination
repair, often caused by inactivation of BRACA1 or BRCA2 [16], and molecular targeted agents against
vascular endothelial growth factor (VEGF) [17]. Nonetheless, treatment options of ovarian cancer
are still limited, requiring new therapeutic options. For efficient drug discovery, preclinical models
that accurately mimic biological properties of in vivo human tumors would be of great value. In this
regard, patient-derived materials are currently becoming indispensable and will also be useful in
precision medicine. Along with recent implementation of precision medicine, high-throughput genome
sequencing analysis has been applied to explore effective therapeutic strategies for each patient [18].
However, identification of druggable targets may not necessarily warrant efficacy of the drug in a
clinical setting. Assays with patient-derived cells, by direct administration of drugs to cells in vitro or
to xenografts, would therefore be helpful in predicting drug response.

Such patient-derived models, especially primary cell culture, have not been intensively developed
for OC thus far, unlike for cancers of other vital organs. It is not clear whether this is because of any
technical difficulties specific to OC or researchers simply did not attempt to obtain patient-derived
material for OC. In this article, we comprehensively overview the current status of various
patient-derived platforms (Figure 1) and illustrate pros and cons of each system in OC to gain
perspectives on potential issues to be circumvented in OC research.
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Figure 1. Representative approaches for establishing patient-derived cancer models from diverse 
clinical samples. Patient-derived xenografts (PDXs) are generated by direct engraftment of clinical 
samples into immunodeficient mice. Monolayer culture is a common culture method, but cells from 
primary tumors often undergo crisis, leading to positive selection of specific clones. Spheroid culture 
with serum-free media is suitable for enrichment of cancer stem-like cells. Cancer tissue-originated 
spheroids (CTOS) method initiates culture by maintaining cell-cell contact of cancer cells. In the 
presence of extracellular matrix (ECM) such as Matrigel, organoid culture can propagate both normal 
and cancer cells while retaining heterogeneity and differentiation. CTOS of ovarian cancer have been 
not documented yet. These cells cultured by various methods can be used to generate xenografts. 

2. Cancer Cell Lines 

2.1. General Overview 

Cancer cell lines are special types of cells that acquire infinite proliferation potential on plastic 
dishes. They can expand as a monolayer sheet, with simple media that typically contains fetal bovine 
serum (FBS). For their high usability as adherent cells, cancer cell lines have long contributed to many 
areas of scientific research, including cell biology, biochemistry, physiology, and drug discovery, let 
alone cancer research [19]. To better interpret the results of experiments with cell lines, the Cancer 
Cell Line Encyclopedia (CCLE) has been released [20]. This catalog accommodates various molecular 
profiling, including genome and transcriptome, for around 1000 widely used cell lines derived from 

Figure 1. Representative approaches for establishing patient-derived cancer models from diverse
clinical samples. Patient-derived xenografts (PDXs) are generated by direct engraftment of clinical
samples into immunodeficient mice. Monolayer culture is a common culture method, but cells from
primary tumors often undergo crisis, leading to positive selection of specific clones. Spheroid culture
with serum-free media is suitable for enrichment of cancer stem-like cells. Cancer tissue-originated
spheroids (CTOS) method initiates culture by maintaining cell-cell contact of cancer cells. In the
presence of extracellular matrix (ECM) such as Matrigel, organoid culture can propagate both normal
and cancer cells while retaining heterogeneity and differentiation. CTOS of ovarian cancer have been
not documented yet. These cells cultured by various methods can be used to generate xenografts.

2. Cancer Cell Lines

2.1. General Overview

Cancer cell lines are special types of cells that acquire infinite proliferation potential on plastic
dishes. They can expand as a monolayer sheet, with simple media that typically contains fetal bovine
serum (FBS). For their high usability as adherent cells, cancer cell lines have long contributed to many
areas of scientific research, including cell biology, biochemistry, physiology, and drug discovery, let alone
cancer research [19]. To better interpret the results of experiments with cell lines, the Cancer Cell Line
Encyclopedia (CCLE) has been released [20]. This catalog accommodates various molecular profiling,
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including genome and transcriptome, for around 1000 widely used cell lines derived from various
cancer types. This resource will be helpful in linking experimental observations and clinical significance.

On the other hand, there are several drawbacks in cell lines. Firstly, they tend to be passaged too
many times. As the success rate for establishing cell lines from primary tumor tissues is generally low,
only a subset of cell lines has been extensively used, thereby cultured over a significantly long period
of time or many passages. With the high potential of FBS-based cultures to introduce mutations and
genome instability, cell lines could undergo drastic changes in terms of morphology and biological
properties, presumably by selection of some specific clones. Consequently, even cell lines under
the same name could harbor significant diversity between laboratories [21]. Diversity could arise
even within the same laboratory between early and late passage. For example, as xenografts in
immunodeficient mice, adenocarcinoma-derived cell lines may no longer exhibit a glandular structure
and even exhibit undifferentiated histology. Secondly, there is a cross contamination issue in commonly
used cell lines. As is so often observed, even cell lines from a large public-sector cell bank could suffer
from this issue. Consequently, requirements for authentication of cell lines have become increasingly
strict [22]. Presumably due to these two reasons, the responses of some cell lines to therapeutic agents,
either in monolayer culture or as xenograft, were not recapitulated in many clinical trials [23,24],
discouraging the use of cell lines as a pre-clinical model.

2.2. Ovarian Cancer Cell Lines

More than 50 OC cell lines have been so far established and are currently available for research.
As predicted, discrepancies in histology or mutation profiles between cell lines and original tumors
were documented in a study that investigated in detail the validity of 47 OC cell lines derived from
various OC subtypes [25]. Among the Pubmed literature that used any of these cell lines, the studies
using SK-OV-3, A2780, OVCAR-3, CAOV3, or IGROV1 as HGSC models held a share of 90%. However,
genomic profiling of SK-OV-3 and A2780 analysis demonstrated TP53 was intact, although this is a
hallmark mutation in HGSC. On the other hand, it detected mutations in ARID1A, BRAF, PIK3CA,
and PTEN, which are commonly mutated in other subtypes of OC. Besides, OVCAR-3 and CAOV3 were
not among the top-ranking HGSC cell lines based on integrative molecular profiling, although they in
fact possessed TP53 mutations and substantial copy number change. IGROV1 had a hypermutated
phenotype, which is frequently observed in endometrioid carcinoma rather than in HGSC. Strikingly,
the 12 cell lines evaluated as best candidates for HGSC models accounted for only 1% of the Pubmed
literature on the 47 analyzed cell lines. Morphological characterization of 39 OC cell lines also led
to a similar conclusion that questioned SK-OV-3, S2780, and IGROV1 as representative models for
HGSC [26]. These results strongly suggest that the most widely used "HGSC" cell lines might not in
fact represent HGSC. In some non-serous OC cell lines, considerable discrepancies in gene mutations
from earlier studies were observed as well [25], suggesting that the diversitification of the cell lines is
another critical issue in OC research.

Tumorigenicity assay was conducted by inoculating 17 OC cell lines into the subcutis, peritoneal
cavity, and ovaries of nude mice, revealing that the tumorigenicity varied among inoculation sites and
cell lines [27]. For example, whereas OVCAR-3 did not proliferate in the subcutis, but formed tumors
in the peritoneal cavity, HeyA8 formed tumors in either location. The integrated proteomic analysis
has divided 26 OC cell lines into three categories: epithelial type, clear cell type, and mesenchymal
type, and identified a protein signature that could potentially uncover the cell of origin for each OC
subtype and corresponding driver proteins [28]. Collectively, it is therefore advisable to select OC cell
lines appropriate for the purpose of the study by carefully examining the characteristics of the cell lines.
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3. Patient-Derived Xenografts (PDXs)

3.1. General Overview

Patient-derived xenografts (PDXs) are usually generated by directly engrafting tumor fragments
into immunodeficient mice. Not only surgically resected tumors, but also samples from biopsy, ascites,
and pleural effusion can be used. Inoculation sites are most commonly subcutaneous tissues. Depending
on the tumor types and purposes of the experiments, orthotopic engraftment or intraperitoneal injection
could be an option. Established PDXs can be serially engrafted to multiple mice without a culture step in
between. Starting from primary tumors, the tumor take rate of PDX is generally higher than the success
rate of establishing cancer cell lines. One possible explanation is that microenvironments reconstituted
by interactions between subcutaneous tissues and tumor fragments might be physiological, accelerating
tumor development faster than in cell lines, with only epithelial cells in an artificial condition. PDXs
have been established from various types of cancer [29]. In most cases, histological features of
the original tumors were basically retained, in terms of tissue structure and microscopic findings,
including gland structures, mucin production, and cystic development. Moreover, PDXs also retained
genetic aberrations and gene expression profiles of the original tumors [30], even after serial in vivo
passages [31]. Importantly, reflecting these features, high correlation between therapeutic efficacy in
PDX model and patients was documented [32]. These findings established PDXs as an indispensable
preclinical model in drug discovery. However, the take rate significantly differs among cancer types
and it is still challenging to efficiently develop PDXs from certain cancers, including breast [33] and
prostate cancer [34]. Accordingly, optimization of the protocol for each tumor type seems necessary.

On the other hand, there are downsides to PDXs. Firstly, maintaining tumors in immunocompromised
mice might be costly and require a more specialized skill in serial passage in mice, compared to simple
monolayer cultures of cell lines. Besides, mice with more severely compromised immunity than nude
mice might be eventually required to increase the tumor take rate. These mice include non-obese
diabetic/severe combined immunodeficiency (NOD/SCID) mice, and NOD/SCID/IL2Rγnull (NSG) mice,
which could further involve a significant cost. For that reason, use of PDXs for high-throughput
drug screening might be limited. Secondly, PDXs often require long latency to be established [35],
and could therefore undergo tumor clonal evolution in a way to adapt to microenvironments in
mice [36]. In principle, this effect may be inevitable to this experimental system, and needs to always
be taken into account in interpretation of the results of any assays. But researchers have identified
such mouse-specific signatures, potentially paving the way to subtract these artificial effects from
the data. Thirdly, interactions between PDX and immune systems are totally different from those
in humans. As mice lacking functional elements of immune systems are used for generation of
PDX, critical differences lie in both species and immunity. To circumvent these issues, humanized
mice have been developed. In these immune-deficient mice, CD34+ cells isolated from blood of the
same patient were intravenously inoculated to reconstitute a functional human immune system [37].
PDXs with patient-matched immune systems may be valuable models for the evaluation of immune
checkpoint inhibitors.

3.2. PDX for Ovarian Cancer

The first xenograft model for OC was described back in 1977, in which tumor tissue was
engrafted into subcutaneous tissue of nude mice [38]. Several years later, PDXs were also established
by intraperitoneal inoculation of tumor tissue or ascites-derived cancer cells [39], and orthotropic
engraftment into the capsule of an ovary [40]. Since then, many studies have documented OC PDXs.
As a large-scale study of OC PDXs, more than 150 OC PDXs have been established by intraperitoneal
inoculation into SCID mice with a take rate of 74% [41]. Implantation sites have been shown to
affect the take rate of clinical OC samples [42], being relatively high in non-orthotropic sites such
as subcutis and renal capsule, although these sites lack the microenvironment inherent to ovary or
peritoneum [42,43]. Orthotropic OC models have several advantages over the models in other sites,
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because it can recapitulate tumor growth, metastasis, and ascites formation as observed in human
disease [44–46]. OC cells in ascites were transduced ex vivo with luciferase and intraperitoneally
inoculated to generate 14 OC PDX models [46], enabling non-invasive and simple evaluation of tumor
burden. PDXs basically retained histological features and genome aberrations of the original OC.
Genetic stability of OC xenografts was demonstrated even after serial transplantation into the renal
capsule of NOD/SCID mice [47]. In mRNA profiling, HGSC PDXs successfully recapitulated three out
of four human HGSC subtypes that were previously proposed by TCGA [7], with an exception for
the immunoreactive subtype [48], which obviously requires the presence of intact immune system.
As mRNA in the PDX could be derived from both murine and human cells, an efficient bioinformatics
method was developed to extract only human transcripts from PDX transcriptome data obtained by
RNA sequencing. It revealed that differentially expressed genes between the human tumors in PDX
and the original tumors were mostly implicated in stromal components, suggesting the lack of human
stroma might both directly and indirectly affect transcriptome of human components in the PDX [49].

The responses to platinum chemotherapy in OC PDXs were highly correlated with those in the
donor patients [41,50–53], underscoring the validity of PDX as a preclinical model. Naturally, several
potential candidates for therapeutics have been tested on PDXs established from platinum-resistant
OC in an effort to overcome drug-resistance [51,53,54]. OC PDXs were also used to test the efficacy
of targeted therapy [55]. For example, sensitivity to inhibitors targeting PARP, CHEK1, or ATR
was investigated in BRCA-mutated OC PDXs to optimize therapeutic strategies for homologous
recombination-deficient OC [56,57]. Hedgehog pathway, upregulated in a subset of OC [58], was also
targeted with a specific inhibitor, leading to significant decrease of tumor volume in OC PDX [59]. More
recently, combinatorial therapy including both chemotherapeutic agents and HER2 inhibitors was
evaluated on OC PDX [60]. Furthermore, tumorigenicity as xenografts per se proved to be inversely
correlated with progression-free survival [61]. Based on these findings, the potential relevance of
PDX in OC is highly appreciated in terms of both drug discovery and precision medicine. One caveat
with OC PDXs is that they predominantly originate from HGSCs, and take rate and latency for other
histological subtypes is low and long, respectively [41,53,62]. These issues are to be addressed for the
future improvement of this approach to OC in general.

4. Patient-Derived Cells

4.1. Two-Dimensional Adherent Culture

4.1.1. General Overview

As mentioned earlier, establishment of cell lines from primary cultures of patient-derived samples
has only a low efficiency. For example, only 10 breast cancer cell lines were established out of 135
resected primary tumors [63]. Other researchers also established 18 breast cancer cell lines, but with a
success rate of 10% [64]. This inefficiency might be partly due to the challenging adaptation of primary
cancer cells to an adhesive monolayer culture. Cancer cells frequently lose growth potential after some
passages and go into crisis, suggesting that overcoming replicative senescence might be a critical step
in becoming a cell line under culture conditions with FBS. Even in successful cases, loss of tumor
heterogeneity and proliferation of specific clones were commonly observed during in vitro adaptation.
In a long-term serial passage of uveal melanoma (UM) cell lines, severe reduction of the expression of
genes encoding UM markers MART-1, and p16 was observed [65].

4.1.2. Ovarian Cancer Cell Lines

Intriguingly, 25 novel cell lines were recently established from primary OC with significantly high
efficiency, by using culture media and conditions optimized to each histological subtype [66]. More
importantly, it was shown that these established cells retained the genomic landscape, histopathology,
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and molecular features of the original tumors. While how such a high success rate could be achieved
needs to be clarified, if this method proves robust enough, it will benefit a broad area of cancer research.

4.2. Three-Dimensional Culture

4.2.1. Spheroid Culture

General Overview

Spheroids are sphere-like cell aggregates, which are usually maintained as floating three-dimensional
structures. Among various spheroid culture methods so far documented [67], the standard protocol is
as follows. Tumor tissues are subjected to physical and enzymatic dissociation, followed by filtration
with cell strainers, or cell sorting by flow cytometry with stem cell markers. Subsequently, obtained
single cell suspensions are cultured in low-attachment plates with serum-free media. Tumor-derived
spheroids can develop from a single cell or cell aggregates. Culture supplements include growth
factors, such as epidermal growth factor (EGF) and fibroblast growth factor (FGF). It is generally
accepted that cell populations with stem cell-like properties will be functionally enriched by spheroid
culture. As cancer stem cell theory argues that malignant phenotypes of cancer are mainly mediated by
such stem cell-like fractions, spheroid cultures are most commonly adopted in investigations of drug
resistance and metastasis [68–70]. Spheroids can be also used to generate PDXs, thereby evaluating
the tumorigenicity of the original tumors. However, normal epithelial cells do not grow in spheroid
culture conditions, therefore there is a lack of a reference sample on the same platform.

Ovarian Cancer Spheroids

For OC patients, drug resistance and peritoneal dissemination accompanied by cancerous ascites
are two major factors that could profoundly affect prognosis. Given the morphological similarity
between tumor cell aggregates within cancerous ascites and tumor spheroids in culture, it was natural
that researchers initiated spheroid culture studies of OC with cancerous ascites samples. As was
observed in other types of cancer, only a subset of ascites-derived cancer cells exhibited stem-cell like
properties, which indeed developed tumors in immune-deficient mice [71]. Resected tumor samples
from five ovarian HGSC were subjected to spheroid culture, and cell surface protein CD117 and
CD44 were identified as tumor-initiating cell markers [72]. Detailed analysis of spheroids revealed a
reciprocal regulatory circuit involving ALDH1 and SOX2 in OC stem cells [73]. Drug sensitivity for
cisplatin, ALDH inhibitors, and the JAK1/2 inhibitor ruxolitinib was also evaluated using a hanging
drop spheroid culture of ALDH1+ CD133+ stem cells derived from cancerous ascites of OC patients [74].
Throughout these studies, serous carcinomas of advanced stage, predominantly obtained from ascites,
were exclusively used as sources of spheroids. Future refinement of protocols will therefore be
necessary to extend the application of this approach to other types of OC.

Non-Single Cell-Based Approaches

For spheroid culture, standard preparation of tumor samples begins by obtaining singly dissociated
cells. However, this was originally optimized for hematopoietic cells or neuronal cells, by which stem
cell biology has considerably evolved. In sharp contrast, destruction of cell-cell adhesion could readily
induce anoikis for epithelial cells, which significantly lowers the success rate of spheroid formation for
many types of tumors of epithelial origin. To address this issue, only partially digested colorectal cancer
(CRC) tissues were selectively subjected to spheroid formation, resulting in substantial improvement
of the success rate of primary culture [75]. This approach, designated as the cancer tissue-originated
spheroids (CTOS) method, has been successfully applied to various tumor tissues, including cancer of
the colon [75], endometrial [76], and lung [77]. Established CTOS basically retained features of the
original tumors and was feasible for in vitro high-throughput drug screening with CRC samples [78].
As CTOS do not grow beyond a certain volume, they are usually required to be physically fragmented,
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but not completely dissociated into single cells, for efficient passage. Alternatively, CTOS can be
diverted to xenografts for extensive propagation of cancer cells, which can be in turn switched to CTOS
again. While OC-derived CTOS has not been documented yet, given the simple and robust nature of
the method, its application to patient-derived OC samples will be expected in the near future. With
another culture technique, in which minced tumor tissues were used for spheroid culture for three to
six months, 12 spheroid cell lines were established, and high-throughput assay for anti-cancer agents
conducted [79].

4.2.2. Organoid Culture

General Overview

An organoid is an emerging concept that is literally a mini-organ exclusively composed of
epithelial cells. Without the aid of a stromal niche, even a single normal stem cell can differentiate into
all the lineages of the organ, while stem cells self-renew, thereby reconstituting in vivo homeostasis of
the whole organ. In 2009, it was first demonstrated that murine intestinal stem cells marked by LGR5+

could infinitely proliferate in vitro [80]. This study was based on the idea that stem cell niches would
be alternatively reconstituted without stroma by defined factors and matrices. Intestinal stem cells
are characterized by an activated Wnt pathway and inhibition of the bone morphogenetic protein
(BMP) pathway. Besides, it was known that extracellular matrix laminin is enriched in the niche.
Specifically, isolated intestinal crypts were embedded in Matrigel with abundant laminin, and cultured
in a serum-free media supplemented with R-spondin 1, which is a WNT agonist and ligand of
LGR5, epidermal growth factor (EGF), and the bone morphogenetic protein (BMP) inhibitor Noggin.
Consequently, tissue homeostasis was reconstituted in vitro and the stem cells formed self-organizing
organotypic structures referred to as organoids. Under the same concept, the original experimental
protocol was further optimized for various murine and human normal organs [81–83]. Its application
has been extended to many fields, including bacterial infection [84], developmental biology [85],
and epithelial regeneration [86].

Organoid-Based Carcinogenesis Model

Organoids can be subjected to genetic engineering by viral introduction of shRNA and cDNA.
With highly efficient lentiviral gene transduction into murine organoids [87], we demonstrated that
the whole processes of multi-step carcinogenesis could be recapitulated for the intestine, lungs and
the biliary tract, as subcutaneous tumors in nude mice [88–90]. Essentially similar results to earlier
in vivo studies were obtained in a significantly shorter period of time, suggesting that this approach
might at least partly substitute and complement the conventional gene-targeting approach in modeling
carcinogenesis. Similarly, multiple genetic alterations were reconstituted in human colon organoids
with CRISPR/Cas9 technology to generate full-blown tumors, although premalignant or benign lesions
were not recapitulated in immunodeficient mice [91,92]. These organoid-based carcinogenesis models
might be useful for elucidation of the molecular mechanisms underlying carcinogenesis.

Primary Tumor Organoid

Organoid culture techniques can be applied to various patient-derived samples, such as resected
tissue, biopsy, ascites, and pleural effusions. Obvious advantages of organoid culture over PDX and
spheroid culture include that it allows propagation of normal cells and precancerous cells, and a higher
success rate for cancer cells. In CRC, the success rate of organoid culture was significantly higher than
that of PDX or spheroid culture [93]. Given that cancer is not an organ in a strict sense, one might
argue that it may not be adequate to use the term "organoids" for cancer cells. However, many
researchers stretched the interpretation of the term by taking cancer stem cells as an analogy of tissue
stem cells. Accordingly, patient-derived cells propagated in Matrigel were defined as tumor-derived
organoids in this review. On the other hand, some researchers appear to go beyond that definition, by
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referring to patient-derived cells that were cultured by any 3D culture methods, spheroids for instance,
as “organoids”. Such confusion in nomenclature needs to be taken into account when looking into
the literature.

Establishment of tumor-derived organoids from various cancer types has been reported, namely
colon [94], pancreatic [95], gastric [96], prostate [97], breast [98], esophageal [99], bladder [100],
and endometrial cancers [101]. Whereas the success rate of organoid culture varies by cancer types
and tumor grade, it reaches 80 to 90% in colon cancer. Propagated tumor-derived organoids basically
retain both histological and genetic features of original tumors and are feasible for in vitro drug
sensitivity assay [102], which recapitulates clinical responses of matched patients [103]. Collectively,
tumor-derived organoids will likely serve as a promising resource for evaluating clinical response
of individual patients. In addition, tumor-derived organoids were used in high-throughput drug
screening for precision medicine. For example, drug screening of a library containing more than
50 compounds was conducted with 19 colorectal cancer organoids, demonstrating correlation between
drug sensitivity and genetic aberrations [104]. Thirty-seven anti-cancer drugs were screened in nine
gastric cancer organoids, which identified a good response toward some new target drugs [96].
Also, various applications are under way, such as secondary establishment of xenografts and single
cell analysis [105].

On the other hand, there are several shortcomings in organoid culture. Firstly, tumor-derived
organoids lack stroma, immune cells, and blood vessels. To address this issue, some co-culture
systems involving pancreatic ductal adenocarcinoma-derived organoids and murine pancreatic
stellate cells was established to investigate interactions between cancer cells and cancer-associated
fibroblasts [106]. Recently, tumor sensitivity to T cell-mediated immune response was also evaluated,
by co-culturing colorectal cancer or non-small cell lung cancer-derived organoids and peripheral
blood lymphocytes [107]. Secondly, organoid culture is costly in comparison with conventional 2D
culture due to supplemental factors and extra cellular matrix such as Matrigel. However, conditioned
medium derived from L-WRN cells, which secrete Wnt3a, R-spondin3, and Noggin, became available
for organoid culture, at least partially circumventing this issue [108,109]. Thirdly, the success rate of
organoid culture is not high enough in a subset of tumor types. Besides, establishment of organoids
from tiny clinical samples is still technically challenging. However, tumor-derived organoids could be
established from biopsy samples [110], suggesting improvements in success rate. Similarly, further
improvement of organoid culture technique might ultimately enable establishment of organoids from
circulating tumor cells and tumors spread in spinal fluid. Lastly, culture and assay protocols currently
vary among researchers and laboratories, even for the same cancer types. Such differences might
potentially affect the outcomes of drug screening assays.

Ovarian Cancer Organoid

Unlike many other types of cancer, only a few studies have documented organoid cultures of
OC (Table 1). Drug response of OC cells in monolayer cultures and organoid cultures was compared
by using cancer cells collected from tumor tissues, ascites and pleural effusions of metastatic serous
OC. Drug effects in organoids proved more diverse and rather refractory [111]. Patient-derived HGSC
organoids were developed with a high success rate and used for functional profiling of DNA repair,
accurately predicting clinical response of patients to DNA repair inhibitors [112]. More recently,
comprehensive establishment of 56 OC organoid lines from 32 OC cases was reported [113]. Although
two-thirds of organoids were derived from serous OC in this study, it achieved a success rate of 65%.
Notably, it covered all the four major subtypes for the first time and basic features of the original
tumors were mostly retained. Moreover, organoids established from normal fallopian tube and OSE
were subjected to p53 inactivation to model HGSC. We also established an efficient organoid culture
method for ovarian and endometrial tumors [114]. We modified a Matrigel bilayer organoid culture
protocol (MBOC), originally developed for a murine carcinogenesis model ex vivo [115], to cope with
the digestion-resistant nature of OC. A total of nine OC-organoid lines were established from not
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only HGSC, but also mucinous, endometrioid carcinoma, and even borderline or early-stage tumors.
Propagated organoids retained many aspects of the original tumors, including histopathological
features, mutation profiles, and intra-tumoral heterogeneity. Drug response assay was also feasible
using organoid-derived spheroids. Thus, the organoid platform might be potentially promising in
drug discovery and personalized medicine.

Table 1. List of studies on primary organoid culture of ovarian cancers.

Reference
Success

Histological Type Patient’s Material PDX
Case (n) Rate (%)

[102] 1 100 N.D. N.D. N.T.
[111] 9 N.D. SC Tissue, Ascites, Pleural effusion Yes
[112] 23 80–90 HGSC, CS Tissue, Pleural effusion N.T.
[113] 32 65 MBT, SBT, CCC, EMC, MC, LGSC, HGSC Tissue, Ascites, Pleural effusion Yes
[114] 9 (4*, 5#) 60 (44*, 83#) BBT, SBT, EMC, MC, HGSC Tissue Yes

SC, serous carcinoma; HGSC, high-grade SC; LGSC, low-grade SC: CS, carcinosarcoma, CCC, clear cell carcinoma,
EMC; endometrioid carcinoma; MBT, mucinous borderline tumor, SBT, serous borderline tumor; BBT, borderline
Brenner tumor; N.D., not described; N.T., not tested.; PDX, patient-derived xenograft; *standard Matrigel bilayer
organoid culture (MBOC); #modified MBOC.

To better understand the biological features of OC, thorough elucidation of interactions between
tumor cells and the microenvironment is a critical issue. However, standard organoid culture consists
of only epithelial cells and lacks such interactions. To address this issue, 3D organotypic models that
reproduce a similar situation to that in vivo have been developed [116]. Specifically, the microenvironment
of OC was first reconstituted in vitro, by using omentum-derived primary mesothelial cells and fibroblast
at early passages. OC cells were then plated to examine the mechanisms underlying attachment and
invasion of OC. Another model is a 3D microfluid-based model that dynamically reconstitutes interactions
of OC with mesothelial cells during peritoneal dissemination. In this platform, living cells are infused into
micrometer-sized chambers, enabling accurate control of the cellular microenvironment [117]. While these
organotypic co-culture models are complex systems and may not be ideal for robust propagation of
organoids, their physiological features might be suitable for drug discovery in the next-generation.

5. Conclusions

Until very recently, use of patient-derived OC as preclinical models has been quite limited because
the success rate of primary cultures was low, and even if cell lines are established, features often
differ from those of the original tumors. Recent remarkable advances in 3D culture technique have
allowed us to reconstitute many features of the original tumors in an in vitro setting. In the light
of rapid implementation of precision medicine, which largely depends on genomic information of
each cancer, establishment of patient-derived cell-based assays will be of critical relevance. Among
various platforms, the organoid might be the most powerful tool in high-throughput drug screening
and establishment of xenografts. Now that OC organoids are becoming available, its nation-wide
banking will be readily started as a valuable resource for OC researches. Collectively, OC organoids
per se and organoid-derived PDX will likely contribute to the development of novel therapies as well
as elucidation of its pathogenesis.
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