
cells

Article

Biochemical Differences in Cerebrospinal Fluid
between Secondary Progressive and
Relapsing–Remitting Multiple Sclerosis

Stephanie Herman 1,2 , Torbjörn Åkerfeldt 1, Ola Spjuth 2 , Joachim Burman 3 and
Kim Kultima 1,*

1 Department of Medical Sciences, Clinical Chemistry, Uppsala University, 751 85 Uppsala, Sweden;
Stephanie.herman@medsci.uu.se (S.H.); Torbjorn.akerfeldt@akademiska.se (T.Å.)

2 Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University,
751 24 Uppsala, Sweden; Ola.spjuth@farmbio.uu.se

3 Department of Neuroscience, Uppsala University, 751 85 Uppsala, Sweden; Joachim.burman@neuro.uu.se
* Correspondence: Kim.kultima@medsci.uu.se; Tel.: +46-(0)18-611-4248

Received: 14 December 2018; Accepted: 22 January 2019; Published: 24 January 2019
����������
�������

Abstract: To better understand the pathophysiological differences between secondary progressive
multiple sclerosis (SPMS) and relapsing-remitting multiple sclerosis (RRMS), and to identify potential
biomarkers of disease progression, we applied high-resolution mass spectrometry (HRMS) to
investigate the metabolome of cerebrospinal fluid (CSF). The biochemical differences were determined
using partial least squares discriminant analysis (PLS-DA) and connected to biochemical pathways
as well as associated to clinical and radiological measures. Tryptophan metabolism was significantly
altered, with perturbed levels of kynurenate, 5-hydroxytryptophan, 5-hydroxyindoleacetate,
and N-acetylserotonin in SPMS patients compared with RRMS and controls. SPMS patients had
altered kynurenine compared with RRMS patients, and altered indole-3-acetate compared with
controls. Regarding the pyrimidine metabolism, SPMS patients had altered levels of uridine and
deoxyuridine compared with RRMS and controls, and altered thymine and glutamine compared
with RRMS patients. Metabolites from the pyrimidine metabolism were significantly associated with
disability, disease activity and brain atrophy, making them of particular interest for understanding the
disease mechanisms and as markers of disease progression. Overall, these findings are of importance
for the characterization of the molecular pathogenesis of SPMS and support the hypothesis that the
CSF metabolome may be used to explore changes that occur in the transition between the RRMS and
SPMS pathologies.

Keywords: multiple sclerosis; cerebrospinal fluid; metabolomics; mass spectrometry; tryptophan;
pyrimidine

1. Introduction

Multiple sclerosis (MS) is a common neurological disease. At onset, most patients are diagnosed
with relapsing-remitting MS (RRMS). Over time, many will progressively accumulate disability,
presumably due to a neurodegenerative process. This condition is called secondary progressive MS
(SPMS) [1]. The gradual transition between RRMS and SPMS makes it difficult to recognize at onset,
so SPMS is currently diagnosed retrospectively.

The pathophysiology of RRMS and SPMS is different and these conditions will probably require
different treatments. Many disease-modifying treatments are currently available for RRMS patients [2],
but only one (Ocrelizumab) has shown efficiency in treating progressive MS [3,4]. The need right now
is to accurately distinguish between these two phenotypes and identify markers of disease progression.
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This would enable more stringent characterization of the pathophysiology of MS phenotypes, as well
as improve selection of patients that are suited for certain clinical trials or interventions.

Metabolomics is a comprehensive profiling of the dynamic molecular networks composed of
low-weight molecules or metabolites. These metabolites essentially correspond to the intermediate
and end products of ongoing pathophysiological processes. Different metabolomic technologies have
been used to study pathophysiology in MS [5], mainly focusing on the blood [6–11]. Pathological
changes occurring in the central nervous system (CNS) are mirrored in the cerebrospinal fluid (CSF),
which makes the CSF an attractive source to study [5]. Nuclear magnetic resonance spectroscopy-based
methods have previously been used to study the CSF metabolome, comparing MS with controls and
other neurological diseases [12–17]. Using high-resolution mass spectrometry (HRMS), we recently
demonstrated that CSF metabolites integrated with protein and magnetic resonance imaging (MRI)
information can improve early detection of SPMS [18].

The aim of this study was to get a better understanding of the pathophysiological differences
between the SPMS and RRMS phenotypes. We profiled biochemical alterations in the CSF metabolome
of SPMS patients compared with RRMS and controls using HRMS and multivariate statistics.
The metabolomic differences were further connected to biochemical pathways and clinical data that
revealed tryptophan and pyrimidine metabolisms to be of particular interest for understanding the
disease mechanism and their metabolites as potential markers of disease progression.

2. Materials and Methods

2.1. Ethics Approval

The study was approved by the Regional Ethical Board of Uppsala (DNr 2008/182). All subjects
provided written informed consent.

2.2. Subjects

Subjects (n = 56) were recruited from the Uppsala University hospital, where 30 participants were
diagnosed with RRMS, 16 with SPMS and 10 were controls with other, non-inflammatory, neurological
diseases (e.g., idiopathic intracranial hypertension or thunderclap headache). All MS patients met
the revised McDonald’s criteria for MS diagnosis [19]. Seventeen of the RRMS and two of the SPMS
patients were actively inflammatory, with the presence of gadolinium enhancing lesions on MRI.

All participants underwent a clinical examination with scoring in the Expanded Disability Status
Scale (EDSS) and a lumbar puncture at inclusion. To record disease activity, MRI was performed
within a week of the lumbar puncture at 1.5 T using the same imager and imaging protocol in
all examinations. Gadopentetate dimeglumine (Magnevist®, Bayer AB, Solna, Sweden, 0.4 mL/kg
body weight, i.e., double dose) was used as a contrast agent and MR images were analyzed visually.
A detailed description of the MRI investigations has been published previously [18,20].

2.3. Sample Collection

The lumbar puncture was performed through the L3/L4 or L4/L5 interspace and CSF was
collected in accordance with the guidelines formed by the BioMS-eu network [21].

2.4. Metabolite Extraction

The protocols for metabolite extraction and mass spectrometry analysis have been previously
published by us [18]. Briefly, metabolites were extracted using ice-cold methanol (MeOH),
supplemented with a cocktail of internal standards that was added to 100 µL of CSF (thawed on
ice). After extraction, the samples were dried and reconstituted in 100 µL of 5% MeOH, 0.1% formic
acid, and 94.9% deionized MilliQ water upon analysis. Ten microliters of each sample were pooled to
create a quality control (QC) sample that can be injected repeatedly throughout the analysis.
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2.5. Mass Spectrometry Analysis

Ten microliters of each sample were injected in a constrained randomized order into a Thermo
Ultimate 3000 HPLC equipped with a Thermo Accucore aQ RP C18 column (100× 2.1 mm, 2.6 µm
particle size) and coupled to a Thermo Q-Exactive Orbitrap (all purchased from Thermo Fisher
Scientific, Hägersten, Sweden). The mass spectrometer was operated in positive and negative ion
mode and MS resolutions were set to 70,000 at m/z 200, AGC target 1,000,000, and maximum ion
injection time 250 ms. A QC and a blank injection were done every eighth sample. Finally, a 2-fold serial
dilution series ranging from 0.5 to 32.0 µL QC was injected. For improving metabolite identification,
eight tandem mass spectrometry analyses in both ion modes were performed separately on pooled
samples stratified on the diagnostic groups.

2.6. Quantification

The acquired raw data were converted to an open-source format (.mzML). Peak picking was
performed using msconvert from ProteoWizard [22] and preprocessing using the following pipeline
within the KNIME platform [23]. The peak-picked data were quantified by FeatureFinderMetabo [24]
and the resulting features were linked across the samples using FeatureLinkerUnlabelledQT [25].
The time tolerance was set to 10 s and a 5 ppm mass deviation was allowed. The non-default
parameters can be found in Table S1.

The quantified data were loaded into the statistical software environment R v3.4.0 [26]. Contaminants
were removed first by using the blank injections, according to our previously introduced pipeline [27],
and secondly by only keeping the metabolites that achieved an absolute Pearson correlation of 0.7
or higher between the relative abundances and injection volumes in the dilution series. To stabilize
variance, the intensity values were replaced by the log2 value and potential sample outliers were
detected and removed by calculating the total ion count (TIC) of each sample. Samples with a TIC less
than 60% of the average TIC were seen as outliers and removed from the study. No sample outliers
were removed.

All metabolic features with a 75% coverage were matched against an in-house library of
characterized metabolites using a 15 ppm mass tolerance and a 20 s time window. Only metabolic
features that matched a metabolite in the library were kept. To correct for potential intensity decay
throughout the analysis, LOESS curves were fitted for each metabolite using the R function “loessFit”
from the R-package limma and a span of 0.3, which were used for normalization [28]. To assess the
robustness of the metabolites, the coefficient of variation (CV) was calculated on inverse log2 values
for each identified metabolite in the QC samples. Thereafter, the in-between-replicate correlation was
calculated (minimum replicate correlation achieved was 0.99) and the replicates averaged. Spearman’s
rank correlation coefficients were calculated between the albumin ratio and the metabolites to eliminate
compounds that may originate from blood (leaking through the blood-brain barrier). Metabolites that
acquired a statistically significant (p-value < 0.05) absolute correlation higher than 0.5 were removed.
Finally, the remaining missing values were replaced by the average metabolite value.

2.7. Metabolite Identification

Metabolites (identified metabolic features) of interest were semi-automatically curated on MS/MS
fragmentation level when available. MS/MS peaks were extracted and matched to the corresponding
fragmentation pattern from the in-house library, where ≥50% coverage or at least five MS/MS peaks
in common, as well as a dot product score above 0.5, was seen as a match. Identities confirmed by
m/z and elution time of the pure standards and by MS/MS fragmentation pattern were depicted as
verified on validation level 2. Identities confirmed only by m/z and elution time of the pure standards
were depicted as verified on validation level 1. Identities of metabolites with an available MS/MS
fragmentation that did not match the fragmentation pattern of the pure standard were rejected.
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2.8. Statistical Analysis

Post hoc comparisons were performed for age, gender, EDSS, and disease duration for SPMS and
RRMS patients. For variables not significantly different from a normal distribution, Welch’s t-test was
applied, otherwise the non-parametric Mann-Whitney test was used. The Shapiro-Wilk normality
test was used to assess normality of variables. For the categorical variable gender, a Chi-squared
test was used. A p-value < 0.05 was considered statistically significant. To investigate treatment
status as a potential confounder, a partial least squares discriminant analysis (PLS-DA) model was
trained on all MS patients, discriminating between patients with ongoing treatments versus patients
without treatments.

Correction for age was done using linear detrending based on RRMS patients and controls.
Metabolic features with a significant age dependence (p-value < 0.05) were corrected by fitting a linear
regression model (R function “lm”) for the metabolite levels in RRMS patients and controls, with age
as the explanatory variable. The age coefficient was extracted from the model and used to correct the
metabolic levels in all individuals [29].

To target inter-group differences, supervised multivariate analysis using PLS-DA was performed
on identified metabolites. The data were scaled (zero mean, unit variance) and three PLS-DA
models were trained, comparing two groups at a time using the R package ropls [30]. The most
significant variables were obtained using the “Variable Importance in the Projection” (VIP). To assess
model performance, the quality metrics R2 and Q2 were extracted and the area under the receiver
operating characteristic (AUROC) was computed using the R package pROC [31]. To ensure
reproducibility, VIP scores and AUROC values, including the receiver operating characteristic (ROC)
curves, were collected through a 5-fold cross-validation, repeated 10 times. Briefly, the 5-fold
cross-validation divides the data into five balanced groups using stratified sampling. Four of these
groups are used for training the model, while the fifth is used for validation and performance
estimation. The procedure is repeated five times, so that each group may act as a test set. Variables with
an average VIP score equal to or above 1.0 were seen as significantly altered. Although the analytical
approach does not ensure significant changes in the independent metabolites, the direction of change
according to difference in group averages was indicated with arrows (↑↓), e.g., ↑ SPMS-controls
refers to an averaged increased level in SPMS patients compared with controls. However, to increase
the understanding of the altered metabolites (VIP ≥ 1.0) dependently, all altered metabolites were
subjected to a Welch’s t-test, which accounts for unequal variance and sample size. The p-value
adjustment for multiple comparisons was done using false discovery rate (FDR). Only when an FDR
value < 0.05 was achieved was the change in mean considered statistically significant.

Altered metabolites with an available KEGG identifier from each model were separately subjected
to a pathway analysis using MetaboAnalyst [32] and the Homo sapiens pathway library. The significant
levels were based on the hypergeometric test and the relative betweenness centrality was used to
compute the pathway impact. A p-value < 0.05 was considered statistically significant.

Spearman’s ranked correlation analyses were performed between altered metabolite levels and
radiological data as well as the EDSS and disease duration reported in months in RRMS and SPMS
patients. A correlation with a p-value < 0.05 was seen as statistically significant. Hierarchical clustering
was performed on the correlation patterns using the R function hclust and the Euclidean distance was
used as a similarity measure.
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3. Results

3.1. Participant Demographics

This single-center study was conducted on 46 MS subjects (30 RRMS and 16 SPMS patients) and
10 controls with other, non-inflammatory neurological diseases. Seventeen of the RRMS patients and
two of the SPMS patients had active gadolinium-enhancing lesions on T1 weighted images, whereas
15 of the RRMS and one of the SPMS patients had ongoing treatment with disease-modifying drugs.
The post hoc analysis, comparing treatment status in MS patients, revealed no significant difference
between patients with or without ongoing treatments as the model did not achieve predictivity (Q2 < 0).
Follow-up data were available for 40 patients, revealing that four RRMS patients had been diagnosed
with SPMS two to three years after sample donation, of whom one had passed away from MS, Table 1.

Table 1. Clinical and demographic data including follow-up data on the patients. Four of the RRMS
patients had transitioned to SPMS, one of whom was deceased.

Cohort Controls RRMS SPMS

n 10 30 16
On treatment, n 0 15 1

Age *, mean (±SD) 39 (±13.1) 39 (±10.6) 58 (±9.3)
Female/Male 6/4 21/9 10/6

EDSS *, median(range) n/a 2.0 (0–7.5) 5.5 (3.0–7.5)
Disease duration *, median (range) n/a 92 (0.5–364) 283 (109–538)

Follow up RRMS SPMS

n 27 13
∆EDSS, median (range) 0.0 (−3.5–3.0) 1.5 (0–4.0)

Time interval in months, mean (±SD) 67.6 (±15.4) 54.8 (±18.6)
Transitioned, n 4 n/a

Deceased, n 1 0

* Signifies a significant difference between SPMS and RRMS patients. EDSS: Expanded Disability Status Score; n/a:
not applicable.

3.2. The CSF Metabolome Could Distinguish SPMS Patients from RRMS and Controls

In total, 117 metabolites with 75% coverage were successfully identified using an in-house library;
one was removed after investigating associations to the albumin ratio. To account for the potential
effects of age on metabolite expression, linear regression models were used to estimate the contribution
of age using RRMS patients and controls. In total, 17 (15%) of the identified metabolites were
age-dependent and therefore corrected for age in all subjects.

To extract altered metabolites distinguishing the groups, PLS-DA models were trained, comparing
two groups each (SPMS vs. RRMS, SPMS vs. controls and RRMS vs. controls). The model comparing
the MS phenotypes (SPMS vs. RRMS) (Figure 1a) achieved quality metrics of R2 = 0.81: p < 0.05,
Q2 = 0.47: p < 0.05 and an average AUROC of 0.92 (±0.097) (Figure 1c), where the four transitioning
patients were kept out of the training and instead projected into the model space. The second model
(SPMS vs. controls), Figure 1b, achieved quality metrics of R2 = 0.85: p < 0.25, Q2 = 0.34: p < 0.05 and an
average AUROC of 0.84 (±0.149), Figure 1d, whereas comparing RRMS patients with controls showed
no significant difference between the groups (Q2 < 0).
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Figure 1. Metabolic differences in SPMS compared with RRMS patients and controls. PLS-DA models
comparing (a) SPMS vs. RRMS with quality metrics of R2 = 0.81: p < 0.05, Q2 = 0.47: p < 0.05 and
(b) SPMS vs. controls with quality metrics of R2 = 0.85: p < 0.25, Q2 = 0.34: p < 0.05. The projected
transitioning RRMS patients are represented by blue stars. Average ROC curves with corresponding
average AUROC and standard deviation for the PLS-DA models comparing (c) SPMS with RRMS and
(d) SPMS with controls. The shadowed areas indicate the standard error of the mean of the sensitivity
and 1-specificity. (e) Pathway analyses on altered metabolites in SPMS compared with RRMS patients,
and (f) SPMS patients compared with controls. The size of the node indicates the pathway impact
(similar to the x-axis) computed by the relative betweenness centrality and the color corresponds to
the pathway. Pathways that were found non-significant in both comparisons have been colored white.
The red lines indicate the significance level of p = 0.05.
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3.3. Phenylalanine and Tryptophan Metabolisms Were Altered in SPMS Compared with RRMS Patients

Comparing SPMS with RRMS patients, 37 metabolites achieved averaged VIP scores ≥ 1.0 and
were seen as altered, Table 2. The univariate analyses showed that 28 were significantly altered in
independence, of which 21 remained significant after correcting for multiple comparisons. The pathway
analysis revealed eight biochemical pathways that were affected in SPMS compared with RRMS
patients: aminoacyl-tRNA biosynthesis; phenylalanine metabolism; tryptophan metabolism; valine,
leucine and isoleucine biosynthesis; pyrimidine metabolism; nitrogen metabolism; valine, leucine and
isoleucine degradation and purine metabolism (Figure 1e, Table 3). Complete results from the pathway
analysis are reported in Table S2.

Table 2. Altered metabolites with an average VIP score greater than or equal to 1.0 from the PLS-DA
comparing SPMS with RRMS patients. A positive log2 fold change (FC) SP-RR indicates an averaged
increase in SPMS compared with RRMS patients and vice versa. Identities confirmed by m/z and
elution time of the internal standards and by MS/MS fragmentation pattern (validation level 2).
Identities confirmed by m/z and elution time of the internal standards (validation level 1). Coefficient
of variation (CV) is reported for all altered metabolites in the QC samples.

Metabolite KEGG VIP Mean (95% CI) log2 FC
SP-RR

p-Value FDR CV Validation
Level

Thymine C00178 2.01 (1.95, 2.07) 0.49 5.0 × 10−5 1.8 × 10-3 7.9% 1
Glutarylcarnitine - 1.84 (1.79, 1.90) 0.48 2.4 × 10−4 4.4 × 10-3 9.3% 2

Biliverdin C00500 1.78 (1.72, 1.83) 0.90 1.6 × 10−3 0.011 24.7% 1
Pipecolate C00408 1.77 (1.70, 1.83) 0.56 1.9 × 10−3 0.011 7.5% 1

Uridine C00299 1.76 (1.70, 1.82) 0.33 9.4 × 10−4 0.011 7.4% 2
4-Acetamidobutanoate C02946 1.72 (1.67, 1.78) 0.40 2.1 × 10−3 0.011 9.2% 2

Deoxyuridine C00526 1.67 (1.62, 1.72) −0.50 1.4 × 10−3 0.011 13.8% 1
Ethylmalonate - 1.63 (1.56, 1.70) 0.46 9.7 × 10−3 0.030 7.1% 2

Valine C00183 1.61 (1.56, 1.66) 0.25 4.2 × 10−3 0.020 4.5% 2
O-Succinyl-homoserine C01118 1.57 (1.52, 1.62) 0.24 6.4 × 10−3 0.021 14.3% 1

Methionine C00073 1.56 (1.51, 1.62) 0.32 6.0 × 10−3 0.021 3.4% 2
Glutamine C00064 1.51 (1.46, 1.56) 0.31 6.3 × 10−3 0.021 22.3% 2

3-Methoxytyrosine
[M + H] - 1.38 (1.31, 1.45) 0.80 0.075 0.088 6.8% 2

Phenylacetate C07086 1.38 (1.32, 1.43) 0.26 0.031 0.052 8.7% 2
N-Acetylleucine C02710 1.37 (1.33, 1.42) 0.24 0.016 0.038 5.8% 1
Phenylalanine C00079 1.35 (1.30, 1.39) 0.23 0.021 0.043 4.6% 2

1-Methyladenosine C02494 1.34 (1.28, 1.39) 0.26 0.017 0.040 11.5% 2
Urate C00366 1.25 (1.20, 1.31) 0.44 0.013 0.037 8.6% 2

Caffeine * C07481 1.25 (1.18, 1.32) −1.12 0.078 0.088 24.4% 2
Ketoleucine C00233 1.25 (1.19, 1.31) 0.09 0.034 0.052 7.6% 2

Tyrosine C00082 1.25 (1.21, 1.29) 0.25 0.034 0.052 5.2% 2
N6-(delta2-

isopentenyl)-adenine C04083 1.23 (1.17, 1.29) 0.29 0.028 0.049 5.4% 1

N-Acetylphenylalanine *
[M + H] C03519 1.23 (1.18, 1.27) 0.21 0.044 0.061 6.9% 1

3-Methoxytyramine * C05587 1.20 (1.14, 1.26) −0.75 0.038 0.054 26.7% 1
Cyclic AMP C00575 1.20 (1.10, 1.31) 0.28 0.020 0.043 12.0% 1

N-Acetylserotonin C00978 1.20 (1.15, 1.25) 0.44 0.023 0.045 16.8% 1
3,4-Dihydroxyphenylglycol C05576 1.18 (1.13, 1.24) 0.28 0.015 0.038 15.9% 1

Guanosine C00387 1.17 (1.10, 1.25) 0.16 0.035 0.052 7.8% 2
Kynurenine C00328 1.12 (1.06, 1.18) 0.37 0.048 0.063 7.9% 2

Isoleucine/Leucine C00407 1.10 (1.05, 1.15) 0.21 0.078 0.088 6.5% 2
Kynurenate C01717 1.09 (1.02, 1.16) 0.43 0.050 0.064 9.1% 1

5-Hydroxytryptophan C00643 1.09 (1.02, 1.15) 0.45 0.055 0.068 15.8% 1
3-Methoxytyrosine

[M − H] - 1.08 (1.05, 1.12) 0.65 0.146 0.150 12.0% 1

4-Guanidinobutanoate C01035 1.06 (1.01, 1.12) −0.24 0.028 0.049 7.9% 1
5-Hydroxyindoleacetate C05635 1.06 (0.99, 1.12) −0.35 0.083 0.091 11.7% 1

Trigonelline C01004 1.05 (0.97, 1.12) 0.09 0.157 0.157 11.3% 1
3-Hydroxymethylglutarate C03761 1.01 (0.94, 1.08) −0.25 0.107 0.113 13.3% 1

* Metabolite with a demonstrated age dependence that has been corrected. CI: confidence interval.



Cells 2019, 8, 84 8 of 18

Table 3. Results from the pathway analysis based on the altered metabolites in SPMS compared with
RRMS patients.

Pathway Coverage p-Value FDR Impact

Aminoacyl-tRNA biosynthesis 6/56 4.2 × 10−4 0.034 0
Phenylalanine metabolism 4/45 2.9 × 10−3 0.103 0.173

Tryptophan metabolism 5/79 3.9 × 10−3 0.103 0.146
Valine, leucine & isoleucine biosynthesis 3/27 5.5 × 10−3 0.110 0.052

Pyrimidine metabolism 4/60 8.3 × 10−3 0.133 0.088
Nitrogen metabolism 3/39 0.015 0.188 0

Valine, leucine & isoleucine degradation 3/40 0.016 0.188 0.042
Purine metabolism 4/92 0.035 0.350 0.018

3.4. Tryptophan Metabolism Were Altered in SPMS Compared with Controls

Comparing SPMS with controls, 32 metabolites were found to be altered between the groups, Table 4.
Fourteen of these were independently altered, of which eight remained significant after correcting for
multiple comparisons. In the pathway analysis we found three biochemical pathways that were
affected in SPMS compared with controls: tryptophan metabolism; phenylalanine metabolism and
caffeine metabolism (Figure 1f, Table 5). Complete results from the pathway analysis are reported in
Table S3.

Table 4. Altered metabolites with an average VIP score greater than or equal to 1.0 from the PLS-DA
comparing SPMS patients with controls. A positive log2 fold change (FC) SP-C indicates an averaged
increase in SPMS patients compared with controls and vice versa. Identities confirmed by m/z and
elution time of the internal standards and by MS/MS fragmentation pattern (validation level 2).
Identities confirmed by m/z and elution time of the internal standards (validation level 1). Coefficient
of variation (CV) is reported for all altered metabolites in the QC samples.

Metabolite KEGG VIP Mean (95% CI) log2 FC
SP-C

p-Value FDR CV Validation
Level

Caffeine * C07481 1.84 (1.80, 1.88) −1.97 4.3 × 10−3 0.033 24.4% 2
Citrulline C00327 1.83 (1.76, 1.90) 0.55 5.4 × 10−3 0.033 14.2% 1

1-Methyladenosine C02494 1.80 (1.77, 1.84) 0.40 1.9 × 10−3 0.033 11.5% 2
3-Methoxytyramine * C05587 1.79 (1.72, 1.85) −1.16 0.012 0.049 26.7% 1

4-Acetamidobutanoate C02946 1.69 (1.64, 1.74) 0.43 6.1×10−3 0.033 9.2% 2
N-Acetylserotonin C00978 1.65 (1.57, 1.73) 0.59 6.2 × 10−3 0.033 16.8% 1

O-Succinyl-homoserine C01118 1.64 (1.60, 1.69) 0.28 4.7 × 10−3 0.033 14.3% 1
N6-(delta2-isopentenyl)-adenine

[M + H] C04083 1.64 (1.59, 1.69) 0.36 9.8 × 10−3 0.045 5.4% 1

Trigonelline C01004 1.59 (1.51, 1.66) 0.20 0.021 0.067 11.3% 1
5-Hydroxytryptophan C00643 1.47 (1.42, 1.52) 0.57 0.016 0.057 15.8% 1

Kynurenate C01717 1.37 (1.32, 1.43) 0.60 0.039 0.113 9.1% 1
N-Acetylneuraminate C00270 1.37 (1.29, 1.45) −0.27 0.062 0.117 7.0% 2

N6-(delta2-isopentenyl)-adenine
[M − H] C04083 1.32 (1.26, 1.38) 0.29 0.075 0.126 8.3% 1

N-Acetylphenylalanine *
[M + H] C03519 1.32 (1.26, 1.37) 0.23 0.054 0.116 6.9% 1

Deoxyuridine C00526 1.31 (1.24, 1.37) −0.37 0.050 0.114 13.8% 1
Homogentisate C00544 1.28 (1.21, 1.36) 0.21 0.050 0.114 18.6% 1

5-Hydroxyindoleacetate C05635 1.26 (1.20, 1.32) −0.38 0.101 0.135 11.7% 1
Pipecolate C00408 1.24 (1.16, 1.31) 0.37 0.042 0.113 7.5% 1

N-Acetylleucine C02710 1.19 (1.13, 1.26) 0.15 0.145 0.178 5.8% 1
Indole-3-acetate C00954 1.19 (1.13, 1.24) 0.54 0.066 0.117 12.2% 2

Uridine C00299 1.17 (1.10, 1.24) 0.19 0.087 0.132 7.4% 2
Indoxyl sulfate * C08481 1.17 (1.09, 1.25) −0.35 0.244 0.252 24.0% 2

N-Acetyltryptophan * C03137 1.12 (1.06, 1.18) 0.35 0.058 0.116 4.3% 1
Deoxycarnitine C01181 1.10 (0.99, 1.20) −0.27 0.214 0.228 6.8% 1

Xanthosine C01762 1.09 (1.02, 1.16) 0.26 0.096 0.134 8.8% 1
Phenylacetate C07086 1.08 (1.00, 1.16) 0.18 0.202 0.222 8.7% 2
Ketoleucine C00233 1.07 (1.02, 1.11) 0.07 0.083 0.132 7.6% 2

Carnitine C00318 1.07 (0.97, 1.16) −0.18 0.166 0.189 5.8% 2
Guanosine C00387 1.06 (0.99, 1.13) 0.13 0.162 0.189 7.8% 2

N-Acetylphenylalanine *
[M − H] C03519 1.03 (0.96, 1.11) 0.13 0.260 0.260 9.3% 1

4-Pyridoxate C00847 1.02 (0.97, 1.06) 0.48 0.094 0.134 12.2% 1
4-Hydroxybenzoate C00156 1.02 (0.94, 1.09) 0.17 0.113 0.145 11.5% 1

* Metabolite with a demonstrated age dependence that has been corrected. CI: confidence interval.
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Table 5. Results from the pathway analysis based on the altered metabolites in SPMS patients compared
with controls.

Pathway Coverage p-Value FDR Impact

Tryptophan metabolism 5/79 1.5 × 10−3 0.123 0.159
Phenylalanine

metabolism 3/45 0.013 0.522 0.054

Caffeine metabolism 2/21 0.022 0.595 0.184

Comparing metabolites that were altered in SPMS patients compared with RRMS and controls,
19 metabolites were in common: 1-methyladenosine, 3-methoxytyramine, 4-acetamidobutanoate,
5-hydroxyindoleacetate (5-HIAA), 5-hydroxytryptophan (5-HTP), caffeine, deoxyuridine, guanosine,
ketoleucine, kynurenate (KYNA), N-acetylleucine, N-acetylphenylalanine, N-acetylserotonin,
N6-(delta2-isopentenyl)-adenine, O-succinyl-homoserine, phenylacetate, pipecolate, trigonelline
and uridine. These biochemical changes represents alterations unique to the SPMS phenotype in
comparison with both RRMS and controls.

Combining the results from both pathway analyses revealed that seven biochemical pathways
were linked to four or more metabolites: purine metabolism (cyclic AMP, glutamine, guanosine,
urate, xanthosine), pyrimidine metabolism (deoxyuridine, glutamine, thymine, uridine), arginine
and proline metabolism (4-acetamidobutanoate, 4-guanidinobutanoate, citrulline, glutamine),
tyrosine metabolism (3,4-dihydroxyphenylglycol, 3-methoxytyramine, homogentisate, tyrosine),
phenylalanine metabolism (4-hydroxybenzoate, N-acetylphenylalanine, phenylacetate, phenylalanine,
tyrosine), tryptophan metabolism (5-HIAA, 5-HTP, indole-3-acetate, KYNA, kynurenine (KYN),
N-acetylserotonin, tryptophan) and aminoacyl-tRNA biosynthesis (glutamine, isoleucine/leucine,
methionine, phenylalanine, tyrosine, valine) (Figure 2). The metabolites phenylalanine, tyrosine,
and glutamine were recurrent in many of these pathways, e.g., these three metabolites comprised half
of the metabolites that were linked to aminoacyl-tRNA biosynthesis. Notably, tryptophan metabolism
was the pathway linked to the most unique metabolites.

3.5. Metabolites Linked to Pyrimidine and Tryptophan Metabolisms Were Associated with Clinical
Measurements in MS Patients

To assess associations between the 50 altered metabolites and clinical measures, the metabolites
were associated to radiological data, EDSS, and disease duration, and grouped using hierarchical
clustering. Seventeen metabolites depicted significant correlations to EDSS, 16 to disease duration,
12 to the size of the third ventricle, 12 to the size of the spinal cord, four to total T1, and three to total
T2. The cluster containing glutamine, N-acetyltryptophan, O-succinyl-homoserine, thymine, uridine,
glutarylcarnitine, 3-methoxytyrosine, methionine, 4-acetamidobutanoate, pipecolate, ketoleucine,
indole-3-acetate and 1-methyladenosine depicted multiple significant positive associations to clinical
measures as well as a negative association to the size of the spinal cord (see Figure 3, Table 6,
and Table S4). O-Succinyl-homoserine depicted significant associations with all measures, except the
size of the spinal cord, whereas methionine, glutarylcarnitine, deoxyuridine, and N-acetyltryptophan
demonstrated associations with four clinical measurements, where all three were associated with EDSS
and the size of the third ventricle.

The strongest positive associations with disease duration was found for 4-acetamidobutanoate
and indole-3-acetate; EDSS: glutarylcarnitine and methionine; the size of the third ventricle:
O-succinyl-homoserine and ketoleucine; the size of spinal cord: caffeine and 3-methoxytyramine.
The strongest negative associations with disease duration were found for deoxyuridine and caffeine;
EDSS: deoxyuridine and 5-HIAA; the size of the third ventricle: deoxyuridine; the size of spinal cord:
thymine and biliverdin.
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Figure 2. Metabolite to biochemical pathway linkages. The altered metabolites have been linked
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In summary, many metabolites including glutamine, thymine, uridine, and deoxyuridine from the
pyrimidine metabolism, and indole-3-acetate and 5-HIAA from the tryptophan metabolism displayed
associations to multiple clinical measures, but no association with ageing.

Table 6. Association analysis between altered metabolites and clinical data: radiological data, the
expanded disability score scale (EDSS) and disease duration. Only metabolites that depicted a
significant association with at least one measure have been included.

Metabolite Spinal
Cord

Third
Ventricle EDSS Disease

Duration
Total

T1
Total

T2

Caffeine * 0.45 # −0.12 −0.21 −0.33 # −0.19 −0.14
1-Methyladenosine −0.14 0.37 # 0.04 0.44 # 0.24 0.18

3-Methoxytyramine * 0.39 # −0.16 −0.18 −0.23 −0.07 −0.10
4-Acetamidobutanoate −0.33 # 0.39 # 0.23 0.60 # 0.23 0.10

N-Acetylserotonin −0.27 0.17 0.08 0.39 # 0.04 −0.04
O-Succinyl-homoserine −0.17 0.47 # 0.30 # 0.31 # 0.37 # 0.33 #

N6-(delta2-isopentenyl)-adenine
[M + H] −0.16 0.32 # 0.19 0.26 0.16 0.24

Deoxyuridine 0.28 −0.35 # −0.41 # −0.34 # −0.32 # −0.26
5-Hydroxyindoleacetate 0.35 # 0.03 −0.38 # 0.0 −0.12 −0.01

Pipecolate −0.41 # 0.38 # 0.21 0.42 # 0.19 0.16
Indole-3-acetate -0.12 0.26 0.24 0.52 # 0.31 # 0.27

Uridine −0.42 0.23 0.43 # 0.42 # 0.27 0.11
N-Acetyltryptophan * −0.09 0.45 # 0.34 # 0.12 0.30 # 0.31 #

Deoxycarnitine −0.45 # 0.03 0.27 0.09 −0.12 −0.20
Phenylacetate −0.08 0.33 # 0.07 0.16 0.16 0.11
Ketoleucine −0.25 0.48 # 0.24 0.34 # 0.27 0.11

Thymine −0.50 # 0.28 0.42 # 0.39 # 0.26 0.08
Glutarylcarnitine −0.44 # 0.39 # 0.52 # 0.29 # 0.26 0.18

Biliverdin −0.46 # 0.08 0.41 # 0.32 # 0.12 −0.03
Ethylmalonate −0.27 0.26 0.31 # 0.25 0.02 0.02

Valine −0.25 0.30# 0.31 # 0.15 0.21 0.13
Methionine −0.35 # 0.30# 0.44 # 0.39 # 0.21 0.16
Glutamine −0.14 0.27 0.43 # 0.31 # 0.27 0.28

3-Methoxytyrosine [M + H] −0.33 # 0.27 0.38 # 0.28 0.23 0.16
Phenylalanine −0.17 0.23 0.35 # 0.14 0.16 0.16

Urate −0.22 0.26 0.23 0.33 # 0.12 0.10
3,4-Dihydroxyphenylglycol −0.27 0.16 0.29 # 0.19 0.11 0.01

Isoleucine/Leucine −0.22 0.24 0.36 # 0.1 0.12 0.15
3-Methoxytyrosine [M − H] −0.30 0.20 0.33 # 0.14 0.09 0.11

4-Guanidinobutanoate 0.16 0.03 −0.01 0.03 0.23 0.38 #

* Metabolite with a demonstrated age dependence that has been corrected. # Significant correlation values (p-value <
0.05). EDSS: Expanded Disability Status Score.

4. Discussion

There is a current need to understand the molecular basis of the SPMS phenotype. Using HRMS,
we have identified and semi-quantified 117 metabolites in CSF that are typically targeted in isolation.
By extracting the biochemical differences between SPMS, RRMS, and controls using PLS-DA and connecting
these differences to biochemical pathways, we found that multiple pathways, including tryptophan-,
phenylalanine-, and pyrimidine metabolism, were altered in SPMS patients. The metabolites
phenylalanine, tyrosine, and glutamine were shared between many of these pathways. Thymine,
methionine, uridine, deoxyuridine, and glutamine from the pyrimidine metabolism pathway are
associated with disability, disease activity, and brain atrophy. These metabolites show no association
with ageing, making them of particular interest for understanding the disease mechanisms and as
markers of disease progression.

The tryptophan- and phenylalanine metabolism were found to be commonly altered between
SPMS and both RRMS patients and controls. Tryptophan metabolism demonstrated strong relevance
as it achieved the highest impact in the comparison between SPMS and controls and the second
highest in the comparison with RRMS patients. Tryptophan metabolism, and especially metabolites in
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the tryptophan-degrading kynurenine pathway, has previously been demonstrated to be altered in
different stages of MS [11,33]. These metabolites have been recognized as a medium of communication
between the immune system and the CNS and may play a central role in the course of the disease [34].
From the kynurenine pathway, KYNA (↑ SP-RR) is directly generated through deamination of KYN
(↑ SP-RR, ↑ SP-C) and has been identified as a neuroprotective agent involved in the neurotoxic
processes and degenerative mechanisms of MS. Increased levels of KYN have previously been
associated with a higher relapse rate in RRMS patients [35]. Elevated levels of KYNA have been
found in the plasma of MS patients [36]. Lower KYNA CSF levels have been found in RRMS patients
in remission [37], whereas increased levels have been found in acute relapse MS [38]. Herein, we found
elevated KYNA levels in SPMS compared with RRMS patients, indicating that the levels change
throughout the course of MS and vary between MS phenotypes. Xanthurenate (validated on level 1)
from the kynurenine pathway and tryptophan (validated on level 2) were found and identified but not
selected as important by the models, suggesting similar levels in SPMS patients compared with RRMS
and controls. A summary of the tryptophan-related findings can be found in Figure 4.

+

Tryptophan

↑Kynurenate

Xanthurenate

↓5-hydroxyindoleacetate

↑5-hydroxytryptophan

Quinolinate

NAD

CO2 + ATP

Serotonin3-hydroxykynurenine

Kynurenine pathway Serotonin pathway

↑Indoleacetate

↑Kynurenine

↑N-acetylserotonin

Figure 4. Tryptophan metabolism and the observed changes in the kynurenine and serotonin pathways.
The metabolites marked in red were identified and measured, where ↑ illustrates an averaged increase
and ↓ an averaged decrease in SPMS patients.

From the closely related serotonin pathway, we found significantly increased levels of 5-HTP
(↑ SP-RR, ↑ SP-C) and decreased levels of 5-HIAA, (↓ SP-RR, ↓ SP-C) (Figure 4). Also, significantly
increased levels of the serotonin derivative N-acetylserotonin were found in SPMS compared with
RRMS patients and controls, which also demonstrated association with disease duration. Similarly,
5-HIAA demonstrated associations with EDSS and the size of the spinal cord, where the negative
correlation with EDSS is in line with previous findings in the CSF of MS patients [39]. The relationship
between MS and the serotonergic system (SS), of which serotonin’s main metabolite 5-HIAA is a part,
is currently not well understood. Previous studies have shown alterations in the SS in MS patients
and underlined the necessity of a deeper characterization of the role of SS in MS pathology [40,41].
Fluoxetine, a candidate drug for repurposing that increases serotonin levels in the CNS, is now clinically
tested as a neuroprotective treatment for SPMS patients [42,43]. The neurotransmitter serotonin is
known to regulate macrophages, T cells, and dendritic cells and is partially modulated by the gut
microbiome [44]. A recently suggested hypothesis propose a connection between an unbalanced
microbiota and MS pathology, through SS modulation [41]. This is supported by another recent study
emphasizing the potential role of tryptophan metabolism by the gut microbiota in neuroinflammation
and MS [35]. Indole-3-acetate (↑ SP-C), which was found to be associated with disease duration and the
number of MRI lesions (total T1), has also recently been demonstrated to be a gut microbiota-dependent
metabolite. Studies have suggested that indole-3-acetate directly modulates inflammatory responses
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in hepatocytes and macrophages by attenuation of the release of pro-inflammatory cytokines and
induction of the liver to synthesize free fatty acids [45]. These are novel findings and provide a potential
link in the host-microbiota crosstalk and interorgan communication in the tryptophan metabolism that
may be of importance for the disease [46].

Pyrimidine-, nitrogen-, and purine metabolism, and valine, leucine, and isoleucine biosynthesis
and degradation were uniquely altered between SPMS and RRMS patients. The highest impact was
found for pyrimidine metabolism and the four metabolites linked to pyrimidine metabolism were all
significantly altered in SPMS compared with RRMS patients, where glutamine (↑ SP-RR), thymine
(↑ SP-RR), and uridine (↑ SP-RR, ↑ SP-C) were increased and deoxyuridine was decreased (↓ SP-RR,
↓ SP-C). Furthermore, all demonstrated associations with disease duration and EDSS, where thymine
and uridine were also associated with the size of the spinal cord and deoxyuridine with the size of the
third ventricle and total T1. The expression of these metabolites showed no association with ageing.
Glutamine has previously been reported to be increased in the plasma of MS patients compared
with healthy controls [9], and decreasing glutamine brain levels have been reported through disease
progression in SPMS patients [47]. The other pyrimidine-linked metabolites have, to the best of our
knowledge, not been connected to MS previously.

Pyrimidine metabolism regulates the nucleotide homeostasis through de novo synthesis,
catabolism, and nucleotide salvaging and recycling. Nucleotide metabolism has previously been
noted to be altered in RRMS patients compared with healthy controls [48]. Furthermore, it is known
that pyrimidines play an important role in the modulation of the CNS and alterations in pyrimidine
metabolism have been shown in Alzheimer’s disease [49,50]. Pyrimidine synthesis inhibitors are used
in treatment of RRMS to block de novo pyrimidine synthesis. These inhibitors interrupt the S phase
of the cell cycle in proliferating active T and B cells, limiting their reproduction and involvement in
inflammatory processes [51,52]. Thymine, uridine, and deoxyuridine are pyrimidines that would be
affected by pyrimidine synthesis inhibitors; however, none of the patients herein were being treated
with such drugs.

Taken together, these findings support the importance of pyrimidine metabolism in MS and in
particular in the SPMS stage of the disease, and suggest them as potential markers of disease progression.

We found significantly increased levels of methionine (↑ SP-RR) and the methylated adenine
residue 1-methyladenosine (↑ SP-RR, ↑ SP-C) in SPMS patients. Methionine is an essential amino
acid participating in protein synthesis and the transfer of methyl groups to histones and DNA.
Methylation of DNA is known to regulate the expression of thousands of genes and a potential
role for epigenetic mechanisms in the course of MS has previously been suggested [53–55]. In support
of this, dysregulation of methionine metabolism has previously been found in plasma from RRMS
patients [56] and post mortem MS brain tissue [57]. Here, we found that methionine had significants
association with EDSS, disease duration, and the size of spinal cord and third ventricle, but no
association with ageing. These findings support a potential role of epigenetic modifications in MS and
suggest that the levels of CSF methionine can be a potential marker of disease progression.

The measurement of identified CSF metabolites in SPMS and RRMS patients, as well as controls,
enabled us to develop PLS-DA models with good discriminative power between SPMS and RRMS
patients and moderate separation between SPMS patients and controls, which is in line with results
based on analysis of metabolites in blood [6,11]. By projecting the transitioning patients into the model
space, we found that one of four patients depicted an early biochemical pattern resembling that of an
SPMS patient. This detection rate can be improved by adding CSF protein and MRI measurements to
the model, as demonstrated by us previously [18].

The most important limitations of the study are the number of patients and the inadequate
number of controls that were not age-matched. To correct for the potential effects of ageing on
metabolite expression, the age effect was estimated using the RRMS patients and controls by assuming
linearity [58], thus covering the age span of SPMS patients. Five of the controls/RRMS patients were
above the age of 50 and the oldest patient in the study was an RRMS patient. However, the weakness
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of this approach is that the linear models will be sensitive for the fewer observations (controls/RRMS
patients) present in the higher age span. Moreover, including the SPMS patients in the estimation of
ageing would risk removing alterations caused by the neurodegeneration. The general effects of ageing
are a challenging confounder in understanding the mechanisms of neurodegenerative diseases [59],
and thus we cannot completely rule out the risk that individual metabolite alterations may still be
affected by age.

The inter-group post hoc comparisons could rule out gender and treatment status as potential
confounding factors. However, even though these factors are not confounding, there may be metabolite
expressions that are affected by them. Furthermore, the chance that other potentially underlying
confounders that were not investigated or adjusted for are affecting the relationships between
metabolite levels and radiological or clinical outcome measures cannot be ruled out either. As such,
any novel findings herein need to be replicated in another cohort.

While the limited sample size decreased the statistical power and confidence of our findings, a
single-center study design has the advantage of avoiding inter-center variabilities and other confounding
factors that can be difficult to correct for [27]. Facing this limitation, a pathway analysis was
advantageous as it couples statistical testing to molecular functioning and investigates the metabolites
in groups rather than independently [60]. In addition, to ensure reproducibility, cross-validation was
performed to more accurately estimate AUROC values and VIP scores of the metabolites. Finally,
the metabolites were associated with radiological and clinical measures, which would serve as another
level of validation.

Finally, the major challenge in the field of non-targeted metabolomics is metabolite identification [61].
When increasing the number of identified metabolites, it is likely that the discriminative power of
the PLS-DA models will increase. Post-identification using an in-house library has the advantage of
providing highly reliable identities but is limited to the compounds within the library. Although the
identified metabolites were able to separate SPMS from RRMS patients and controls, there are more
metabolites of interest than those investigated herein.

5. Conclusions

Multiple biochemical pathways were altered in SPMS patients, whereof the metabolites
phenylalanine, tyrosine, and glutamine were shared between multiple pathways. Metabolites from the
kynurenine and serotonin pathways in the tryptophan metabolism were found to be altered in SPMS
compared with RRMS patients and controls, indicating a connection between these two pathways and
MS pathology, as well as a potential connection with microbiota through the serotonergic system.

Metabolites from the pyrimidine metabolism were all significantly altered between SPMS and
RRMS patients and associated with disability, disease activity, and brain atrophy, while showing no
association with ageing. This suggests that pyrimidine metabolism and its members are of particular
interest for understanding disease mechanisms and as markers of disease progression.

These findings are of importance for the characterization of the molecular pathogenesis of SPMS
and support the hypothesis that the CSF metabolome may be used to explore changes that occur in the
transition between the RRMS and SPMS pathologies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/8/2/84/s1,
Table S1: Non-default parameter values used for pre-processing in KNIME. For all parameters not mentioned, the
default values were used, Table S2: Complete results from the pathway analysis based on the altered metabolites in
SPMS compared with RRMS patients, Table S3: Complete results from the pathway analysis based on the altered
metabolites in SPMS patients compared to controls, Table S4: Complete results from the association analysis
between altered metabolites and radiological/clinical data.
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