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Abstract: Thirty-five years ago, we described fragmentation of the mitochondrial population in a
living cell into small vesicles (mitochondrial fission). Subsequently, this phenomenon has become an
object of general interest due to its involvement in the process of oxidative stress-related cell death and
having high relevance to the incidence of a pathological phenotype. Tentatively, the key component
of mitochondrial fission process is segregation and further asymmetric separation of a mitochondrial
body yielding healthy (normally functioning) and impaired (incapable to function in a normal way)
organelles with subsequent decomposition and removal of impaired elements through autophagy
(mitophagy). We speculate that mitochondria contain cytoskeletal elements, which maintain the
mitochondrial shape, and also are involved in the process of intramitochondrial segregation of waste
products. We suggest that perturbation of the mitochondrial fission/fusion machinery and slowdown
of the removal process of nonfunctional mitochondrial structures led to the increase of the proportion
of impaired mitochondrial elements. When the concentration of malfunctioning mitochondria reaches
a certain threshold, this can lead to various pathologies, including aging. Overall, we suggest a
process of mitochondrial fission to be an essential component of a complex system controlling a
healthy cell phenotype. The role of reactive oxygen species in mitochondrial fission is discussed.

Keywords: mitochondria; fission; division; mitophagy; segregation; asymmetry; cytoskeleton;
ultrastructure; quality control; dynamics

1. Introduction

From the time of its discovery, the mitochondrion was recognized as a highly dynamic structure
undergoing changes in shape and volume resulting in a mixed population of long and short
mitochondrial fragments within a single cell [1]. However, 35 years ago we reported that the entire
mitochondrial population in the cell could be converted into small rounded fragments originating
from long filamentous, often branched mitochondrial structures [2]. Although we were able to observe
the phenomenon of global mitochondrial fragmentation in the cell in response to a large number
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of drugs having both mitochondrial and non-mitochondrial targets [3,4], at that time it was not
possible ascribing this phenomenon to any known physiological situation. Later, mitochondrial
dynamics became the subject of a more comprehensive study (reviewed by [5,6]). Nowadays, the
global fragmentation of mitochondria (mitochondrial fission), among other functions, is attributed
to a cascade of reactions leading to pathological phenotypes and cell death [7–10], which puts this
phenomenon in the focus of a vast number of studies [11–15].

Since details of the intricate mechanism of mitochondrial fission have been frequently and
comprehensively explored [16–19], here we will review and update the reader on research of this
phenomenon which may help to clarify some hidden elements of its mechanism as well as its role in
mitochondrial and cellular physiology. Besides, we will briefly present a general picture of changes
associated with mitochondrial fragmentation division/fission/scission.

A master regulator role in mitochondrial fragmentation has been assigned to dynamin-related
proteins—Dnm1p in yeast and Drp1 in mammals. Mitochondrial division begins with the recruitment
of cytosolic Drp1, which self-assembles into polymers. GTP-dependent oligomerization of Drp1 drives
a limited constriction of a specific mitochondrial locus in an energy-dependent way (with GTP as
an energy source) forming a belt, compressing the site where mitochondria division will occur [20].
It is important that the constriction occurs at mitochondria–ER contact sites [21] in a Ca2+-dependent
mode [22].

There is data that the initial signal for mitochondria division comes from a site of mtDNA
replication located close to the mitochondria–ER contact site [23]. The next step of the mitochondrial
division is the recruitment of adapter proteins (MFF, MiD49, and MiD51 [24]) and outer mitochondrial
membrane-anchored protein Fis1 [25]. The last stage of the mitochondria division is the recruitment
of actin and myosin IIa, which provides the mechanical force to drive further constriction [26,27].
Besides, phospholipids of the outer mitochondrial membrane are involved in the final stage of the
fission machinery [28], forming a narrow hauling between two mitochondrial compartments. Further,
this bridge is cut either with the assistance of another member of dynamin family, Dnm2 [29] when the
mitochondrial radius is below 50 nm, or without the participation of Dnm2 when the mitochondrial
radius is up to 250 nm [30]. Thus, the consortium of cytosolic proteins is involved in the process of
mitochondrial fragmentation [31].

2. Fission as a Possible Means of Segregating and Deleting of Damaged
Mitochondrial Compartments

Diazepam was the first compound identified to induce mitochondrial fission, also inhibiting cells
respiration at relatively high concentration [2]. Later, a long list of global fission inducers has been
compiled. In this list, the dominant positions were occupied by respiratory inhibitors like rotenone
(Figure 1A,B), antimycin A, cyanide, azide, oligomycin, and uncouplers [3,4], all of which diminish the
mitochondrial inner membrane potential (∆ψ). The electron microscopic study confirmed initial light
microscopy observations that this fission was associated with chopping mitochondrial filamentous
bodies into separate independent fragments ([2], also see reconstruction in Figure 1C,D).

Mitochondrial fragmentation or, as we later called it, “thread-grain transition” [32], can be
chemically-induced in cell culture [2,4,33]. The algorithm for estimating the size distribution of the
mitochondrial population within a cell has been suggested [34,35], and we successfully modified and
used it for the evaluation of a 3-D steady-state of mitochondrial reticulum [36]. Quantitative evaluation
of a level of mitochondrial fragmentation is applicable for widefield fluorescent microscopy of cells
attached to a substrate. Figure 2 demonstrates global mitochondrial fragmentation in the culture of the
tubular epithelial cells under oxidative stress caused by hypoxia/reoxygenation or UV exposure [37,38]
(Figure 2, upper level). These facts became a milestone demonstrating that the phenomenon of a global
mitochondrial fragmentation may be observed without chemical treatment. Additional evidence that
mitochondrial fission plays a physiological role came from experiments on the intact organ when
global mitochondrial fission was observed in cells of a kidney exposed to ischemia/reperfusion [39]
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(Figure 3 with arrowheads pointing to elongated mitochondria in A and broken mitochondria in B).
Thus, the phenomenon of a global mitochondrial fragmentation has been observed both at the cellular
and organ levels.
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Figure 1. Fragmentation of mitochondrial reticulum in pig embryo kidney epithelial cells. (A)
fluorescent microscopy of control culture loaded with rhodamine 123 (10 µM), (B) the same culture
loaded with rhodamine 123 after rotenone (2 µM) treatment for 6 h, and (C,D) three-dimensional
reconstruction made from electron microscopic serial section images for (A) and (B), respectively.
(From [41] with permission).

The core components of mitochondria scission machinery are specific evolutionary conserved
proteins, mostly GTPases residing in the outer membrane, intermembrane space, and the inner
membrane. They rearrange and remodel these mitochondrial compartments to separate the
mitochondrial fragment from the paternal mitochondrial body [13,16–19,40,41]. There is a consensus
that the shift towards either of these two morphological states (thread or grain) can be achieved
by specifically blocking one of two processes, resulting in either fission when fusion apparatus is
retarded or fusion when fission machinery is blocked. Such changes between different states can be
achieved indirectly by modulating the levels of PINK1 and Parkin proteins, involved in mitochondrial
quality control mechanisms. Overexpression of Parkin results in a mentioned shift of a balance
between fission and fusion and elimination of defected mitochondria, thereby enriching cells for
wild type mtDNA and restoring mitochondrial enzymatic activity [42]. Overexpression of PINK1
can rescue mitochondrial morphology and ameliorate ATP levels, cell integrity, and survival of the
organism [43]. Ultimately, it suggests that modulation of Parkin and PINK1 expression can ameliorate
certain mitochondrial diseases.

The core components of mitochondria scission machinery are specific evolutionary conserved
proteins, mostly GTPases residing in the outer membrane, intermembrane space, and the inner
membrane. They rearrange and remodel these mitochondrial compartments to separate the
mitochondrial fragment from the paternal mitochondrial body [13,16–19,40,41]. There is a consensus
that the shift towards either of these two morphological states (thread or grain) can be achieved
by specifically blocking one of two processes, resulting in either fission when fusion apparatus is
retarded or fusion when fission machinery is blocked. Such changes between different states can be
achieved indirectly by modulating the levels of PINK1 and Parkin proteins, involved in mitochondrial
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quality control mechanisms. Overexpression of Parkin results in a mentioned shift of a balance
between fission and fusion and elimination of defected mitochondria, thereby enriching cells for
wild type mtDNA and restoring mitochondrial enzymatic activity [42]. Overexpression of PINK1
can rescue mitochondrial morphology and ameliorate ATP levels, cell integrity, and survival of the
organism [43]. Ultimately, it suggests that modulation of Parkin and PINK1 expression can ameliorate
certain mitochondrial diseases.Cells 2019, 8, x 5 of 17 
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Figure 2. Mitochondrial fragmentation in 60-s UV-exposed fibroblasts (upper left, control culture;
upper right, the same culture after exposure to UV). TMRE (200 nM) staining. The cells pretreated
with 120 nM SkQ1 (for 5 days, bottom left) are fully protected while with 3 mM LiCl (bottom right)
partially protected from UV-induced fragmentation. Bar, 20 µm. Diagram illustrates alterations of
average mitochondria fragments size (area occupied by a single mitochondrial fragment) under these
particular conditions. (From [38] with permission.)
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Figure 3. Mitochondria structure revealed by a membrane potential probe (TMRE) in vital rat kidney
slices. (A) Control kidney slice; (B) the slice made from the kidney exposed to ischemia/reperfusion.
Bar, 1 µm. (From [39] with permission.)

To understand the possible intrinsic mechanism of global mitochondrial fission, we must look at
the whole design of the mitochondrial architecture in the cell. In a majority of cells, mitochondria form
a reticular structure either by organizing a unified tree with continuous matrix [44] (as in fibroblasts
or epithelial cells) or with mitochondrial compartments having separate matrices (as in striated
muscles, including cardiac myocytes, where mitochondria form a reticulum consisting of head-to-head
mitochondria joined by intermitochondrial junctions [45]). The advantage of such unification may
be in the ability of such structures to form a networked electric power plant. It is able to conduct the
electrical form of transmembrane proton motive force to the regions experiencing an energy deficit
either along extended coupling of the inner membranes (as in the case of fibroblasts and epithelial cells)
or along many separate mitochondria unified by electrically permeable intermitochondrial junctions
(as in the striated muscle) [46–49].

On the other hand, mitochondrial unification is a double-edged sword since possible accumulation
of oxidized mitochondrial components (proteins, phospholipids, and DNA) can jeopardize not only
the existence of the whole mitochondrial tree, but the cell fate as well, because a single damaged
mitochondrion can generate a death signal for the host cell [50].

On the other hand, mitochondrial fission may help ensure the survival of mitochondrial DNA
by distributing DNA copies over isolated mitochondrial fragments. Specifically, in this context, it
looks attractive to assume that the most essential thing for the mitochondria functioning may be the
maintenance of the stability of mitochondrial DNA. The latter is hidden behind two mitochondrial
membranes with one carrying very high membrane potential (negative inside) prohibiting the passive
inward transport of anions including nucleic acids thus making a membrane potential a vital requisite
for normal mitochondria and cell functioning [51]. We can see an analogy between the mitochondrial
fission/fusion processes and the nucleic acid base excision repair pathway. In the latter, the oxidized
base is recognized, excised, and decomposed with further creation of a single-nucleotide repair patch,
thus returning to the original intact DNA structure [52]. Similarly, mitochondrial fission may act
like an excision step and later stage of fusion may be considered as a return to the original intact
organelle, however, accompanied by the prohibition of the participation of the damaged fragment
in the organization of the novel mitochondrion. Based on this model, it looks reasonable to suggest
that mitochondrial fragments should carry different membrane potential values since one or more
fragments have undergone oxidative damage, and this suggestion was confirmed [53], thus showing
functional asymmetry of fission events. Moreover, it has been shown that the fusion step which follows
after the fission is forbidden for mitochondria carrying low membrane potential [53], although the
magnitude of this membrane potential threshold remains unknown.
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Recently we discussed the issue of biological asymmetry during division including mitochondrial
division [54]. Apparently, mitochondrial fragmentation, occurring in response to the oxidative
challenge, leads to heterogeneity in the mitochondrial population thus shifting a balance between
normal and low-functional mitochondria. Figure 4 demonstrates mostly elongated mitochondrial
profiles with uniform ultrastructure in control cell culture (A), and round profiles of mitochondria
with two distinct conformations after exposure to a drug (B).Cells 2019, 8, x 7 of 17 
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Figure 4. Electron microscopy of ultrathin sections of cultured pig embryo kidney epithelial cells. (A)
control culture; (B) after diazepam treatment (150 µg/mL, 20 h). M-mitochondria. Bar, 1 µm). Note that
in exposed cells (B), mitochondria with dense matrix coexisted with swollen mitochondria. (From [2]
with permission.)

The mission of autophagy (mitophagy) is to reverse the balance to a normal one by the disposal of
dysfunctional (or low-functional) mitochondria. These two elements (mitochondrial fragmentation and
mitophagy) are the essence of the mitochondria quality control machinery which goal is to maintain
a healthy (young) mitochondrial phenotype. What is important, after fragmentation mitophagy
eliminates mitochondria harboring mtDNA mutations, and the remaining mitochondrial fragments
undergo fusion. Thus, fission followed by mitophagy controls the process of reducing heterogeneity of
mtDNA and reducing mitochondria heteroplasmy levels, thus pursuing the above-mentioned goal to
maintain the native integrity of the mtDNA [55]. The impaired machinery of fission or/and mitophagy
leads to the appearance of unhealthy (old) mitochondrial phenotype (Figure 5).

However, the mitochondrial quality control system is not limited to the delicate management
of the mitophagy process. In a recent review, mitochondrial quality control mechanisms were
deservedly called multi-tiered, operating at the protein, organelle, and cell levels [56]. Indeed,
these mechanisms include both the removal of damaged organelles and mitochondrial biogenesis
providing a constant flux between degradation and biogenesis. In addition, it includes the homeostatic
regulation of mitochondrial turnover on three levels: protein, organelle, and 3-D network level.
There is an apparent cross-talk between mitochondrial and other quality control pathways, including
mitochondrial unfolded protein response, proteases, ubiquitin-proteasome system and formation of
mitochondria-derived vesicles [56].

Autophagy is believed to be a terminal step in the mitochondria life cycle, representing one
of the possible mechanisms of mitoptosis, in which the permeability transition may play a primary
role [57–60]. A more exotic means of elimination of mitochondria and their content takes place when
they are ejected from the cell into the extracellular medium after fragmentation [61–64], although the
mechanism of such ejection remains unknown. It seems plausible to suggest that fission is necessary
for segregation of mitochondria in order to delete an unwanted mitochondrial compartment while the
fusion is aimed at organizing healthy mitochondria into a network. Another opinion considers the
fusion of mitochondria to serve for selective mixing and unification of mitochondrial compartments,
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which is essential for the inheritance and maintenance of the mitochondrial genome [65]. Depolarized
mitochondria incapable of fusion likely become a target for autophagy [53,65]. The observation that
fission inhibition results in the decreased mitochondrial autophagy and accumulation of oxidized
mitochondrial products in the cell [53] supports the segregation function of fission.
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Figure 5. Mitochondrial fragmentation as a determinant of young and old mitochondrial phenotypes.
First step represents normal uninjured mitochondrion; in the next step mitochondrion with damaged
structures are shown by blue; third step represents segregation of normal and damaged mitochondrial
compartments; next step is fragmentation of a mitochondrion, resulting in appearance of normal and
abnormal mitochondrial populations (note that partially damaged mitochondrion in the second step can
bypass step III and in young phenotype is directed to the lysosome); and then abnormal mitochondrion
is ubiquitinated (shown by red chains) and directed to the lysosome. Thus, the difference in young and
old cell phenotypes is in abundance of the mitochondrial population with impaired structures in old
phenotype (modified from [54]).

Detailed analysis of the mitochondrial fission process shows that fragmentation of the inner
membrane space precedes the breakage of the outer membrane [13]. This seems reasonable since
segregation of the matrix compartment destined for elimination is a prerequisite for its spatial and
functional separation from the remaining (undamaged) matrix part. It can prevent the leakage of
mitochondria damaged components into the cytosol and will preserve the sealing properties of the
inner membrane. One can expect that the situation where different mitoplasts share one common outer
membrane must not be unusual. Figure 6 demonstrates that this is exactly the case when fission of
mitochondria is launched. In this figure, within a shared outer membrane, there are three mitoplasts
carrying different conformations, i.e., having different energization.



Cells 2019, 8, 175 8 of 17
Cells 2019, 8, x 9 of 17 

 

 

Figure 6. Electron microscopy of four consecutive serial sections (A–D) over mitochondria of pig 
embryo kidney epithelial cells exposed to 140 µM diazepam for 16 h. Note the dumbbell-like shape 
of the central mitochondrion, which contains three separate compartments of different configuration. 
All three compartments are enclosed within the common outer membrane. Used methods as 
described in [2]. 

4. The Assumption of the Existence of an Intramitochondrial Skeleton 

As we indicated, the mitochondrial membrane potential should be uniform over one 
continuous inner membrane [46,47]. Theoretically, when there is a change in mitochondrial 
energization, the configuration of the whole mitochondrial compartment must change, and there is 
electron microscopic evidence to support this (Figure 2). On the other hand, although light 
microscopy does not permit us to make a conclusion, one intermediate step in mitochondrial 
fragmentation may involve local mitochondrial swelling with further scission of mitochondria into 
fragments (Figure 7). By electron microscopic analysis, we were able to detect the dumbbell-like 
mitochondria captured in an early stage of mitochondrial division. The observation of dumbbell-like 
mitochondria seems to conflict with the general opinion that the mitochondrion behaves like a real 
osmometer since within a separate insulated compartment the osmotic force created by its content 
must be single-valued. If this were true, then we would not be able to detect local changes of the 
configuration within a single mitochondrion and local swellings should not occur. However, Figure 
8 demonstrates that filamentous mitochondria may undergo local expansions along their length. 
This result can be explained only if one assumes the existence of some elements (probably of 
cytoskeletal origin) which locally constrain the expansion of mitochondria. Uneven changes of 
mitochondrial ultrastructure were observed only in a living cell in situ; such changes were never 
observed in vitro in isolated mitochondria, which do behave as real osmometers and swell or shrink 
equally along their volume.  

Figure 6. Electron microscopy of four consecutive serial sections (A–D) over mitochondria of pig
embryo kidney epithelial cells exposed to 140 µM diazepam for 16 h. Note the dumbbell-like shape of
the central mitochondrion, which contains three separate compartments of different configuration. All
three compartments are enclosed within the common outer membrane. Used methods as described
in [2].

3. Are Reactive Oxygen Species (ROS) Involved in Mitochondrial Fragmentation?

Earlier, we postulated that ROS could be involved in the mitochondrial fission [32]. Later, we
found that mitochondria-targeted antioxidants prevent mitochondrial fragmentation caused by the
oxidative stress [38] and this, as well as some other indirect data, demonstrates the critical role of
ROS in mitochondrial scission. It has been also shown that direct exposure of cells to hydrogen
peroxide causes either transient mitochondrial fragmentation when the oxidative challenge was
transient, or significant changes in mitochondrial morphology and content when the oxidative stress
was persistent [66]. In two different sets of experiments, we observed the process of mitochondrial
fragmentation induced by photodynamic processes. Due to the existence of the mitochondrial and cell
membrane potential, certain cationic fluorescent dyes are accumulated in the mitochondrial matrix
to a very high concentration, exceeding that in the cytosol by more than three orders of magnitude.
After excitation of these dyes with light, ROS are generated inside mitochondria and can cause severe
damage (such as the induction of the permeability transition [57,58]) or moderate damage (as at
frequently reversible mitochondrial uncoupling [46,47]). In rhodamine-123 stained cells, we observed
fragmentation of the mitochondrial filament occurring within a few seconds after either exposure to a
short pulse (1/30 s) of green laser or constant illumination with the violet-blue light of the fluorescent
microscope (400–475 nM). Both types of irradiation generate ROS (Figure 7A,B; the arrow points to
a targeted mitochondrion). Also, at the high magnification of the light microscope, we were able to
detect an intermediate step of filamentous mitochondria fragmentation in which local mitochondrial
expansions are interconnected to form a “reading glass/dumbbell-like” pattern of mitochondria which
further evolves into a set of small, barely-recognizable mitochondrial fragments. Figure 7 shows
mitochondria in the fibroblast (C) later exposed to a local laser excitation light causing mitochondrial
fragmentation (D–F).
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Figure 7. Photodynamically-induced mitochondrial fragmentation in human skin fibroblasts loaded
with rhodamine 123. (A–D) mitochondrial fragmentation caused by a focused laser beam (the locus of
irradiation is indicated with an arrow; Ex = 543 nm, 0.1 W, exposure time 1/30 s). (A,C) Before and
(B,D) 30 s after the irradiation. (E,F) Phase contrast picture of the cell region in (C) and (D) under low
and high magnification; arrowheads point to the local expansions of mitochondrial filaments resulting
in the formation of a “reading glass” mitochondrial shape. Note that mitochondrial dye in (D) has
been significantly depleted over the entire visually fragmented filament. (G,H) Mitochondrial shape
changes after continuous illumination of the cell with blue light (1 min under the Zeiss microscope);
before (G) and 1 min after the illumination (H). Used methods as described in [2].

It is obvious that multicomponent mitochondrial fission machinery is designed in a way to
provide multiple controlling elements in order to maximally prevent spontaneous mitochondrial
fission ultimately ending in unwanted cell death. Essential time is needed for the recruitment of entire
proteinaceous machinery to complete a multistep fission process (starting from intermitochondrial
segregation following by formation of the septum (as in Figure 6) and further separation of
mitochondrial fragments into those sentenced to either death or survival. However, the entire
mitochondrial fission can take seconds when high levels of ROS become a challenge, apparently
accelerating or bypassing partial reactions of the process. Indeed, the example given in Figure 7
takes these seconds to accomplish mitochondrial fragmentation caused by the photodynamic
process. Earlier, it has been demonstrated that oxidative stress causes activation of PKCδ leading to
Drp1 phosphorylation and translocation of the Drp1/PKCδ complex to the outer mitochondrial
membrane, where Drp1 binds to Fis1 [67]. This is nothing more than an indication that these
mechanisms of mitochondrial fragmentation may be either different [68] or mitochondrial division
and fragmentation/fission are not identical processes.
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4. The Assumption of the Existence of an Intramitochondrial Skeleton

As we indicated, the mitochondrial membrane potential should be uniform over one continuous
inner membrane [46,47]. Theoretically, when there is a change in mitochondrial energization, the
configuration of the whole mitochondrial compartment must change, and there is electron microscopic
evidence to support this (Figure 2). On the other hand, although light microscopy does not permit
us to make a conclusion, one intermediate step in mitochondrial fragmentation may involve local
mitochondrial swelling with further scission of mitochondria into fragments (Figure 7). By electron
microscopic analysis, we were able to detect the dumbbell-like mitochondria captured in an early
stage of mitochondrial division. The observation of dumbbell-like mitochondria seems to conflict with
the general opinion that the mitochondrion behaves like a real osmometer since within a separate
insulated compartment the osmotic force created by its content must be single-valued. If this were true,
then we would not be able to detect local changes of the configuration within a single mitochondrion
and local swellings should not occur. However, Figure 8 demonstrates that filamentous mitochondria
may undergo local expansions along their length. This result can be explained only if one assumes the
existence of some elements (probably of cytoskeletal origin) which locally constrain the expansion of
mitochondria. Uneven changes of mitochondrial ultrastructure were observed only in a living cell
in situ; such changes were never observed in vitro in isolated mitochondria, which do behave as real
osmometers and swell or shrink equally along their volume.
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Figure 8. Local mitochondrial swellings in situ. (A) Electron microscopic picture of a cell from a
kangaroo rat kidney epithelium exposed to high hydrostatic pressure (100 mPa). Note multiple local
mitochondrial expansions (local mitochondrial swellings) over a single mitochondrial filament with
continuous matrix; electron microscopic and fluorescent microscopic evidence (B,C), respectively of
a local swelling of mitochondrial filaments in pig embryo kidney epithelial cells after exposure to
diazepam. Rhodamine 123 staining in C; note that mitochondrial stain is localized in spots adjacent to
the membrane. Used methods as described in [54].

Perhaps the first report, albeit not fully confirmed by subsequent evidence, on mitochondrial
volume changes caused by non-osmotic forces with the assumption of the presence of contractile
proteins in mitochondria was a short communication published by Ohnishi and Ohnishi in 1962 [69].
The concept of the existence of contractile proteins in the mitochondria was also supported by one of
the most known biochemists, Albert Lehninger [70]. In addition, a few years later it was emphasized
that “an explanation of changes in mitochondrial volume exclusively in terms of osmotic phenomena
is far from adequate” [71]. Such inconsistency between ultrastructural changes and functionality
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of mitochondria has been later forgotten in parallel with a loss of excellent old school of electron
microscopists, which in combination with superior bioenergetic school, used to give information
on the relationship of mitochondrial structure and functions. However, we must admit that there
was growing evidence on the interaction of mitochondria with other cellular components including
cellular cytoskeleton. In 1978, the association of mitochondria with microtubules was reported [72]
with subsequent confirmation of the role of tubulin in the regulation of mitochondrial activity [73–75].
With the discovery of rhodamine 123 allowing visualization of fluorescing mitochondria in a cell [76],
it became possible to observe the intracellular distribution of these organelles relatively to cytoskeletal
elements obviously pointing to their interaction. Mitochondria were found to tightly associate with
intermediate filaments [77], which can be distinguished biochemically and immunologically and we
can classify several types of intermediate filaments known that they interact directly or indirectly with
mitochondria (reviewed in [78]). These include vimentin, keratin and desmin filaments, neurofilaments,
and glial acidic protein filaments. It is important that intermediate filaments are highly susceptible
to proteolysis, especially the Ca2+-dependent one. This proteolytic mechanism is thought to have a
regulatory role in changes of shape and locomotion thus making intermediate filaments integrators
of cellular (and mitochondrial) space [79]. Apparently, regulation of the mitochondrial shape [80]
providing a balance between fragmentation and fusion, ultimately modulates the energy balance of
a cell [81]. Besides (or due to) that cytoskeletal elements act as organizers of the cellular space, they
perform a large number of specific functions participating in cell growth and death, differentiation,
signal transduction, and motility [78]. For instance, vimentin filaments were found to regulate
mitochondrial membrane potential [82] and to exert a strong influence on the mechanisms regulating
mtDNA duplication and afford tolerance to oxidative stress [83]. Similar effects of desmin on the
respiratory capacity of mitochondria, metabolic channeling, compartmentation, and energy transfer
networks were reported [84–86].

In all aforementioned schemes, intermediate filaments and microtubules have been designated as
extramitochondrial structures. It is clear that membrane cellular elements (e.g., endo-/sarcoplasmic
reticulum) and cytoskeleton tightly interacting with mitochondria in the cell can restrain changes in
mitochondrial shape and somehow maintain the stability of mitochondrial volume. However, local
mitochondrial swelling in situ which we observe as partial enlightenment of the mitochondrial matrix
(an example is given in Figure 8B) cannot be fully explained by factors external to mitochondria such
as ER [87]. The reasonable explanation of this is an assumption of the presence of intramitochondrial
3-D frame, which may locally respond to the structural and functional challenges.

The idea of an intramitochondrial skeleton serving as a solid organelle framework or armature
has been already discussed in the 1980s [88] after detection of intramitochondrial filaments [89] and
intracristae helical structures [90]. This idea is still under debate. Another, although indirect evidence
of structural organization of mitochondria is the result of the analysis of mitochondrial deformation
demonstrating significant structural anisotropy between the orthogonal short axes (i.e., width and
depth) [91]. Admitting the scarcity of available information, we would like to notice that although
the presence of actin in the nucleus was first suggested almost half a century ago [92], after a long
period of skepticism, this has only recently been demonstrated directly (reviewed in [93]). A similar
fate can befall the intramitochondrial “mitoskeleton” since recent findings support the existence of
intramitochondrial cytoskeleton at least in the form of γ-tubulin [93]. Immunoelectron microscopy
confirmed that γ-tubulin is a mitochondrial protein, which, when diminished, causes cytochrome
C release from mitochondria. In spite of the great similarity of the mitochondrial proteome to that
of some bacteria, most mitochondria lack FtsZ playing a role of a major cytoskeletal element in
bacterial division [94], and possibly γ-tubulin plays a similar role in mitochondrial division [93]. It
seems very attractive to speculate that this protein, and/or some other cytoskeletal elements are
involved in the intramitochondrial segregation of waste products eventually leading to asymmetric
mitochondrial division.
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5. Conclusions

Mitochondrial shape is the result of the balance of two opposing processes: fragmentation (fission)
and assembly (fusion). We speculate that mitochondrial fission is a form of intramitochondrial
compartmentalization which allows segregation of mitochondrial components (proteins, lipids,
and DNA) destined to be mitochondrial waste ready for decomposition with a principal role of
the cytoskeleton in this “clean-up” process. The well-organized decomposition and removal of
unwanted/damaged mitochondrial components is a part of the normal turnover, which includes
a poorly understood process of mitochondrial mixing and segregation. Additional studies are still
needed to prove the universality of mechanisms of mitochondrial fission/scission (fragmentation).
Technically, it is not so easy to prove the fragmentation in striated muscle, where the mitochondrial
reticulum is formed by small mitochondrial bodies joined by intermitochondrial junctions [45] forming
an electrically coupled unit [46]. For irrefutable proof, 3-D reconstruction of mitochondrial content
of the striated muscle cell has to be done at high resolution. Currently, researchers limit themselves
to the description of the increased level of fission proteins or reduced level of fusion proteins [95].
Others use electron microscopic images of single ultrathin sections and describe changes in the size and
number of mitochondria there [96]. This is not enough since morphological changes of mitochondria
not necessarily match the changes in the levels of proteins involved in mitochondrial dynamics [97].
However, a limited number of studies such as those had used models of heart failure, chronic contractile
activity, or heat exposure provided some evidence of the increased level of mitochondria fragmentation
concordant with changes of fission/fusion proteins [97–99]. The same problem exists for mitochondria
in the midpiece of the spermatozoon, which are also organized into an electrical circuit [100], possibly
by means of intermitochondrial cement [101]. One can speculate that in these sophisticated systems,
the elimination of unwanted (damaged) mitochondria may be preceded by the electrical decoupling of
a particular mitochondrion. Nevertheless, in these and other cell types, including cardiac myocytes,
our knowledge of the mitochondrion as a structurally autonomous entity is incomplete, albeit the
progress is impressive [102,103].
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