Supplemental Figure

HIF1α-dependent metabolic signals control the differentiation of follicular helper T cells

Lin Dong^{1,#}, Ying He^{1,#}, Shuping Zhou^{2,#}, Yejin Cao¹, Yan Li¹, Yujing Bi^{3,*}, Guangwei Liu^{1,*}

¹Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing China; ²Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical School, Jinan China; ³State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing China

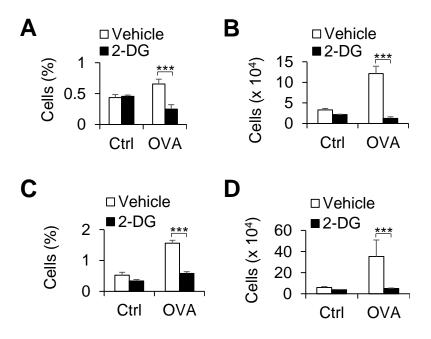


Figure S1. Blocking glycolysis inhibits T_{FH} cell differentiation upon foreign antigen stimuli. Flow cytometry analysis of plasma cells and IL-21⁺ CXCR5⁺T_{FH} cells in spleen. The percent and absolute number of plasma cells (**A** and **B**) and IL-21⁺CXCR5⁺T_{FH} cells (**C-D**) are shown. ***P< 0.001, compared with the indicated groups.

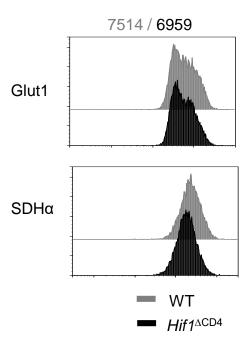


Figure S2. HIF1 α is responsible for glycolysis and OXPHOS in T_{FH} cell differentiation and GC responses. Flow cytometry analysis of Glut1 and SDH α expression of T_{FH} cells in spleen from WT and HIF1 α -deficient mice at 8 days after OVA-

immunization.

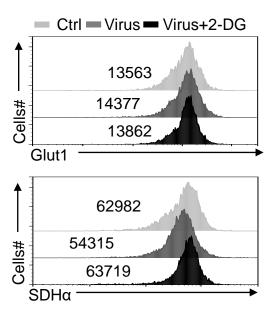


Figure S3. Alterations of glycolysis and OXPHOS signaling controls T_{FH} cell differentiation upon PR8 virus infection. Flow cytometry analysis of Glut1 and SDH α expression of T_{FH} cells in lung from PR8-infected mice at 8 days in the presence of 2-DG treatment.

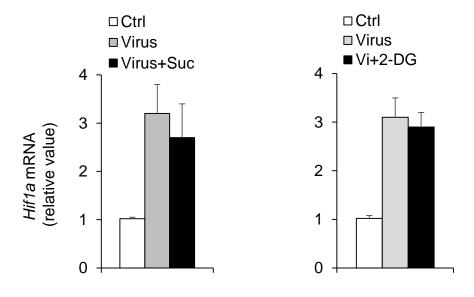


Fig. S4. Alterations of glycolysis and OXPHOS signaling controls T_{FH} cell differentiation upon PR8 virus infection. Real-time PCR of *Hif1a* mRNA in T_{FH} cells sorted from lung from PR8-infected mice at 8 days in the presence of 2-DG treatment.

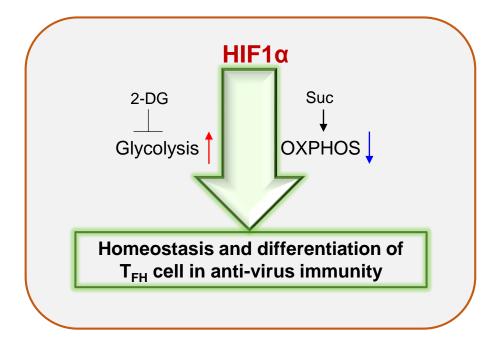


Fig. S5 Regulations of glycolytic activities on homeostasis and differentiation of T_{FH} cells in anti-virus immunity. Proposed model how glycolysis and OXPHOS in T_{FH} cells integrate the adaptive stimuli to regulate the GC responses and T_{FH} cell differentiation under steady state or antigen immunization even in anti-virus immunity through metabolic dependent mechanisms.