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Abstract: TonEBP (tonicity-responsive enhancer binding protein) is a transcriptional regulator whose
expression is elevated in response to various forms of stress including hyperglycemia, inflammation,
and hypoxia. Here we investigated the role of TonEBP in acute kidney injury (AKI) using a line of
TonEBP haplo-deficient mice subjected to bilateral renal ischemia followed by reperfusion (I/R). In the
TonEBP haplo-deficient animals, induction of TonEBP, oxidative stress, inflammation, cell death,
and functional injury in the kidney in response to I/R were all reduced. Analyses of renal transcriptome
revealed that genes in several cellular pathways including peroxisome and mitochondrial inner
membrane were suppressed in response to I/R, and the suppression was relieved in the TonEBP
deficiency. Production of reactive oxygen species (ROS) and the cellular injury was reproduced in a
renal epithelial cell line in response to hypoxia, ATP depletion, or hydrogen peroxide. The knockdown
of TonEBP reduced ROS production and cellular injury in correlation with increased expression of
the suppressed genes. The cellular injury was also blocked by inhibitors of necrosis. These results
demonstrate that ischemic insult suppresses many genes involved in cellular metabolism leading to
local oxidative stress by way of TonEBP induction. Thus, TonEBP is a promising target to prevent AKI.

Keywords: necrosis; apoptosis; acute kidney injury; reactive oxygen species; peroxisome; mitochondrial
inner membrane

1. Introduction

Acute kidney injury (AKI) imposes a significant burden on the health care system as it affects more
than 13 million people globally and is associated with increased morbidity, prolonged hospitalizations,
and mortality [1–3]. Renal ischemia is a common cause of AKI along with sepsis and cisplatin
treatment [4]. Kidney tubules are highly susceptible to ischemic injury and much of the cellular
pathways involved have been delineated in recent years [5]. Ischemia causes acute tubular necrosis as
well as apoptosis via several pathways of regulated necrosis: necroptosis which is caused by membrane
rupture due to phosphorylation by the receptor-interacting protein kinase 3 [6], ferroptosis which is
caused by failure of glutathione-peroxidase 4 function and lipid peroxidation due to endoplasmic
reticulum stress and a lack of glutathione [7], and cyclophilin D-dependent mitochondrial-permeability
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transition-mediated regulated necrosis [8]. In addition, ischemia also causes local inflammation which
is tightly linked to the necrosis: so called necroinflammation in which cellular injury and inflammation
are reciprocally enhanced in an autoamplification loop [5]. Understanding molecular pathways leading
to necroinflammation would be critical for developing therapeutic strategies for AKI.

Initially discovered as a DNA binding transcriptional enhancer in response to hypertonicity [9],
TonEBP (tonicity-responsive enhancer binding protein) is a pleiotropic transcriptional regulator—both
as a transcriptional cofactor [10,11] and a transcriptional suppressor [12–15]. In addition, TonEBP is a
stress protein that is induced by a variety of stresses including hyperglycemia [16], excess calorie intake
or hyperlipidemia [15], inflammation [10,17,18], and hypoxia [19]. Here we discover that TonEBP is
induced by ischemia and mediates necroinflammation in the kidney by suppressing genes that encode
proteins in cellular pathways of metabolism leading to local oxidative stress. Our data show that
TonEBP is a critical mediator in AKI.

2. Materials and Methods

2.1. Animal Model

All the methods involving live mice were carried out in accordance with the approved guidelines.
All experimental protocols were approved by the Institutional Animal Care and Use Committee of the
Ulsan National Institute of Science and Technology. Five- to six-week-old heterozygous TonEBP+/∆

mice [20] that had been back-crossed for 10 generations onto the C57BL/6 background, as well as their
wild-type littermates (WT, TonEBP+/+), were used. The mice were anesthetized with an intraperitoneal
injectin of tiletamine (Zoletil, Virbac Laboratories, Carros, France) and xylazine hydrochloride (Rompun,
Bayer, Leverkusen, Germany). Following an abdominal midline incision, both renal pedicles were
bluntly dissected and clamped with a microvascular clamp (Roboz Surgical Instrument, Gaithersburg,
MD, USA) for 30 min. During these procedures, mice were kept well hydrated with warm sterile
saline at a constant temperature (37 ◦C). After the clamps were removed, the wounds were sutured
and the mice were allowed to recover with free access to chow and water. Sham-operated mice were
subjected to a similar surgical procedure except that the renal pedicles were not clamped. 24 h later
(24 h reperfusion), mice were reanesthetized, blood was obtained by retro-obital bleeding, and kidneys
were removed for analysis.

2.2. Immunoblot Analysis

The kidneys were perfused via heart with ice-cold PBS for 15 s to remove the blood. Cortex
and outer medulla were rapidly dissected from each kidney on glass plates kept ice-cold. They were
immediately homogenized for 20 s in hot (80 ◦C) lysis buffer (1% SDS, 1 mM sodium orthovanadate,
10 mM Tris-HCl, pH 7.5) using a polytran (Kinematica AG, Luzern, Switzerland) at full speed to
minimize proteolytic degradation of TonEBP. The homogenates were cleared by centrifugation and
separated on standard SDS gel electrophoresis for immunoblotting using antibodies against TonEBP
at 1:3000 dilution [9], Bax at 1:1000 (Cell Signaling Technology, Danvers, MA, USA), Bcl-2 at 1:1,000
(Cell Signaling Technology, Danvers, MA, USA), and Hsc70 at 1:5000 (Rockland Immunochemicals
Inc., Pottstown, PA, USA). The relative optical density of a band in each lane was normalized with the
density of the Hsc70 band from the same gel.

2.3. RNA Extraction and Quantitative Real-Time PCR

Total RNA was extracted from kidney tissues and cells using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA). cDNA was synthesized with oligo d(T)15 and M-MLV reverse transcriptase (Promega,
Madison, WI, USA). Quantitative PCR reactions were performed with SYBR Green I Master and
LightCycler 480 II (Roche, Basle, Switzerland). The housekeeping gene Cyclophilin A (CypA) was
used as a control to normalize the mRNA content of each sample.
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2.4. Histopathology Examination

Kidneys were fixed in periodate-lysine-2% paraformaldehyde and embedded in paraffin, and 4-µm
sections were cut and stained with Periodic acid-Schiff. Renal tubular damage was scored by a renal
pathologist who was blinded to the experimental groups. A grade scale of 0–5, as outlined by
Lien et al. [21], was used by counting the percent of tubules that displayed cell necrosis, loss of brush
border, cast formation, and tubule dilatation as follows: 0 = none, 1 ≤ 10, 2 = 11–25, 3 = 26–45, 4 = 46–75,
and 5 > 76%. At least 10 fields (original magnification × 100) were examined from each slide.

2.5. Immunohistochemistry

Immunohistochemistry was carried out as described previously [22]. Briefly, paraffin-embedded
kidney 4-µm sections were deparaffinized with xylene and rehydrated in a graded alcohol series,
then placed in citrate buffer solution (pH 6.0). Coplin jar containing slides were immersed in a Pyrex
container and heated with microwaves for 15 min to enhance antigen retrieval. After cooling, sections
were immersed in 3% hydrogen peroxide solution 30 min to block endogenous peroxidase, and then
treated normal serum (DAKO, Carpinteria, CA, USA) for 30 min. The sections were then incubated
with primary antibodies to 4-HNE (Abcam, Cambridge, UK), or 8-OHdG (JaiCA, Shizuoka, Japan)
at 4 ◦C for overnight. The next day, the slides were incubated for 1 h at room temperature with the
secondary antibody. After several washes, 3,3′-diaminobenzidine tetrahydrochloride was applied to
the slides to develop brown color, then histologic analysis was performed on randomly selected fields
using a color image analyser (TDI Scope EyeTM Version 3.0 for Windows, Olympus, Tokyo, Japan) by
a pathologist blinded to the identity of the groups.

2.6. In Situ TdT-Mediated dUTP-biotin Nick End Labeling Assay (TUNEL) Assay

Apoptosis in tissue sections was visualized using ApopTag in situ apoptosis detection kit
(Millipore, Billerica, MA, USA). TUNEL-positive cells were counted in 20 different fields in each section
at 200×magnification.

2.7. Analyses of Blood and Urine

Creatinine and blood urea nitrogen (BUN) were measured from serum samples using colorimetric
kits (Stanbio Laboratory, Boerne, TX, USA). Urine osmolality was measured by a vapor pressure
osmometer (Vescor, Orlando, FL, USA). Sodium from the serum and urine was measured by flame
photometry (Cole-Parmer, Niles, IL, USA). Fractional excretion of sodium was calculated using the
following formula: FENa = 100× (Naurine × creatinineplasma)/ (Naplasma × creatinineurine). Measurement
of 8-hydroxy-2′-deoxyguanosine Oxidative DNA damage was evaluated based on the level of the DNA
adduct 8-hydroxy-2′-deoxyguanosine (8-OHdG) in spot urine using a competitive enzyme-linked
immunosorbent assay (Cell Biolabs, San Diego, CA, USA). The amount of urinary 8-OHdG level was
normalized by the amount of creatinine.

2.8. HK-2 Cells

HK-2 cells (ATCC CRL-2190), a cell line derived from normal human kidney tissue, were cultured
in DMEM supplemented with 10% (v/v) FBS. For cell death experiments, HK-2 cells were transfected
with TonEBP targeted siRNA or scrambled siRNA using Lipofectamine 2000 (Invitrogen, Carlsbad, CA,
USA) followed by hypoxia, ATP depletion, or hydrogen peroxide treatment. For hypoxic treatment,
cells were placed in a hypoxia chamber (APM-30D, Astec Co., Fukuoka, Japan) for 24 h with a compact
gas oxygen controller to maintain oxygen concentration at 1% by injecting a gas mixture of N2 and
CO2. Control cells were incubated in a regular cell culture incubator with 21% O2. For ATP depletion,
cells were treated with 10 µM of antimycin A (Sigma Aldrich, St. Louis, MO, USA), 10 mM of
2-deoxy-d-glucose (Sigma Aldrich, St. Louis, MO, USA), and 1 µM of ionomycin (Sigma Aldrich,
St. Louis, MO, USA) for 3 h. For treatment with hydrogen peroxide, cells were incubated with 0.5 or
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1 mM of hydrogen peroxide (H2O2, Sigma Aldrich, St. Louis, MO, USA) for 1 h. Cells were pretreated
with 1 µM of cyclosporin A (Sigma Aldrich, St. Louis, MO, USA), 0.5 µM of ferrostatin-1 (Sigma
Aldrich, St. Louis, MO, USA), or 5 µM of necrostatin-1 (Sigma Aldrich, St. Louis, MO, USA) for 1 h
then exposed to ATP depletion or 1 mM of hydrogen peroxide for 1 h. For protein analysis, cells were
transfected with TonEBP targeted siRNA or scrambled siRNA followed by hypoxia for 24 h, ATP
depletion, or hydrogen peroxide treatment for 6 h. For RNA analysis, cells were treated for 3 h.

2.9. Cell Viability Assay

Cell viability was determined by measuring the reduction of 3-(4,5-Dimethyl-2-thiazolyl)-2,5-
diphenyl-2H-tetrazolium bromide (MTT, Sigma Aldrich, St. Louis, MO, USA). To assess cell death,
culture medium was collected at the end of treatment. The amount of lactate dehydrogenase (LDH) in
culture medium was quantified using the LDH cytotoxicity detection kit (Clontech, Mountain View,
CA, USA).

2.10. Annexin-V/propidium Iodide (PI) Double Staining Assay

Apoptotic cells were determined with an FITC-Annexin V Apoptosis Detection Kit (BD Biosciences,
San Diego, CA, USA) according to the manufacturer’s protocol. Briefly, the cells were washed and
incubated for 15 min at room temperature in the dark containing FITC-Annexin V and PI. Afterwards,
apoptotic cells were analyzed by flow cytometry (BD Biosciences, San Diego, CA, USA).

2.11. Microarray Analysis

RNA samples were labeled and hybridized to SuperPrint G3 Mouse GE 8 × 60k Microarray kit
(Agilent Technologies, Santa Clara, CA, USA). The raw intensity values were background corrected,
log2 transformed and then quantile normalized. The microarray data were analyzed with gene
set enrichment analysis. Gene set enrichment analysis for the KEGG pathway [23] and Gene
Ontology [24,25] was performed using GSEA software [26]. Gene set size was limited by 10~300
and the gene-permuting method was used. The statistical significance between the two groups was
assessed by false discovery rate (FDR) [27].

2.12. Visualization of ROS

To detect reactive oxygen species (ROS), HK-2 cells grown on chamber slides (Lab-Tek, Nunc,
Naperville, IL, USA) were treated for 3 h with hypoxia, ATP depletion, or hydrogen peroxide.
After washing with PBS, the cells were treated for 30 min with 10µM of 2′,7′-dichlorodihydrofluorescein
diacetate (DCF-DA, Sigma Aldrich, St. Louis, MO, USA). After wash with PBS, DCF fluorescence
image was obtained using an FV1000 confocal fluorescence microscope (Olympus, Tokyo, Japan).

2.13. Statistical Analysis

All data are expressed as means ± SEM. Statistical significance (p < 0.05) was estimated by
an unpaired t-test for comparisons between two conditions. A one-way ANOVA was used for
comparisons between more than two conditions. Tukey’s post hoc test was used for multiple
comparisons. All statistics were performed with GraphPad Prism 8.2 software (GraphPad, San Diego,
CA, USA).

3. Results

3.1. Renal TonEBP is Induced in Response to Ischemic Insult in Association with Inflammation and Tissue
Injury

In hepatocytes, H2O2 stimulates TonEBP expression and H2O2-induced necrosis and inflammation
are dependent on TonEBP [11]. Since TonEBP is also induced by hypoxia [19] and ischemic injury in
the kidney is characterized by necroinflammation [5], we asked whether TonEBP played a role in the
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ischemic injury. Male B57BL/6 mice were subjected to a 30 min bilateral renal ischemia followed by
reperfusion (I/R) for 24 h as described in Methods. We found that renal TonEBP expression increased in
response to I/R both in the cortex and outer medulla (Figure 1). Since inflammation stimulates TonEBP
expression and vice versa [10,17], we investigated whether there were changes in local inflammation.
mRNA expression of inflammatory cytokines, chemokines, and adhesion molecules was robustly
induced in response to I/R in the outer medullae (Table 1). Among them, IL-6, IL-1β, IL-10, and MCP-1
mRNA increased more than 10-fold. Expression of these genes was also elevated in the renal cortex but
the increase was smaller (data not shown). Widespread necrosis was also observed mostly in tubular
structures in association with an increase in lipid peroxidation detected by 4-hydroxynonenal, a marker
of ferroptosis (Figure 2). In addition, there were clear signs of apoptosis based on TUNEL-positive cells
and higher expression of Bax in combination with lower expression of Bcl-2 (Figure 3). Renal function
was also compromised dramatically: serum creatinine, blood urea nitrogen (BUN), and fractional
excretion of sodium escalated while urinary osmolality dropped (Figure 4). As expected, the expression
of mRNA for kidney injury molecule-1 (KIM-1) increased prominently. Thus, renal TonEBP expression
increased in response to I/R in correlation with local inflammation, and histological and functional
tissue injury.
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Figure 1. TonEBP (tonicity-responsive enhancer binding protein) expression in TonEBP+/∆ (+/∆,
filled bars) mice and their TonEBP+/+ littermates (+/+, open bars) after ischemia/reperfusion (I/R) or
sham treatment of kidneys. TonEBP and Hsc70 immunoblot were performed from renal cortices (A)
and renal outer medullae (OM) (B), (C,D) Ratio of TonEBP and Hsc70 band intensity was determined
and shown in arbitrary unit (AU). Mean + SEM, * p < 0.05.
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Table 1. RT-qPCR analyses of inflammatory genes and adhesion molecules in the renal outer medullae
of TonEBP+/∆ mice (+/∆) and their TonEBP+/+ litter mates (+/+) after I/R or sham treatment of kidneys.
Abundance is calculated relative to sham, +/+. Mean ± SEM, n = 6–7. * p < 0.05 vs. corresponding +/+.
# p < 0.05 vs. corresponding sham.

Sham I/R

+/+ +/∆ +/+ +/∆

Cytokines & Chemokines

IL-6 1.0 ± 0.3 1.5 ± 0.5 29.1 ± 6.5 # 9.3 ± 2.5 #,*
IL-1β 1.0 ± 0.1 1.2 ± 0.2 12.5 ± 1.0 # 9.7 ± 1.3 #,*
IL-18 1.0 ± 0.1 0.9 ± 0.1 1.4 ± 0.2 1.0 ± 0.1 *

TNF-α 1.0 ± 0.1 0.8 ± 1.0 * 5.6 ± 0.5 # 4.6 ± 0.4 #

IFN-γ 1.0 ± 0.2 0.7 ± 0.1 1.7 ± 0.2 # 1.1 ± 0.1 #,*
IP-10 1.0 ± 0.1 1.1 ± 0.2 3.2 ± 0.3 # 2.5 ± 0.1 #,*

RANTES 1.0 ± 0.1 0.7 ± 0.1 * 1.1 ± 0.1 1.2 ± 0.2#

IL-10 1.0 ± 0.2 5.3 ± 1.7 * 17.2 ± 2.2 # 9.8 ± 1.8 #,*
MCP-1 1.0 ± 0.1 2.4 ± 0.8 * 40.9 ± 5.1 # 21.9 ± 2.7 #,*

Adhesion Molecules

ICAM 1.0 ± 0.1 1.6 ± 0.2 * 1.7 ± 0.1 # 1.4 ± 0.1 *
E-selectin 1.0 ± 0.3 0.9 ± 0.1 3.1± 0.4 # 1.8 ± 0.2 #,*
VCAM-1 1.0 ± 0.1 2.0 ± 0.3 * 3.3 ± 0.4 # 2.8 ± 0.2 #
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Figure 2. Renal tissues were obtained from TonEBP+/∆ (+/∆, filled bars) mice and their TonEBP+/+

littermates (+/+, open bars) after I/R treatment of kidneys. Tissue sections were stained with periodic
acid-Schiff stain (PAS) and acute tubular necrosis (ATN) score was obtained. Tissue sections were also
immunostained for 4-hydroxynonenal (4-HNE). 4-HNE positive area (%) was measured. Mean + SEM,
* p < 0.05.
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Figure 3. Renal apoptosis and expression of apoptotic proteins in TonEBP+/∆ (+/∆, filled bars) mice and
their TonEBP+/+ littermates (+/+, open bars) after I/R or sham treatment of kidneys. (A) Kidney sections
were stained for TUNEL. TUNEL-positive cells were counted and expressed as number per high power
field (HPF), (B) Renal cortices were immunoblotted for Bax, Bcl-2, and Hsc70, (C,D) Ratio of band
intensity, Bax/Hsc70, and Bcl-2/Hsc70, was calculated and shown in arbitrary unit (AU). Mean + SEM,
* p < 0.05.
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3.2. TonEBP Deficiency Protects Kidneys from Ischemia-Induced Inflammation and Tissue Injury

We asked whether the inflammation and renal injury in response to I/R were affected by TonEBP
deficiency. A TonEBP haplo-deficient line of mice (TonEBP+/∆) [20] on B57BL/6 background were
obtained as littermates of the wild type animals discussed above (TonEBP+/+). TonEBP deficiency in
the cortex and outer medulla was confirmed based on immunoblot analyses (Figure 1). While TonEBP
expression increased in response to I/R in the TonEBP+/+ animals, it did not increase in the TonEBP+/∆

animals. Among the inflammatory genes whose expression increased in response to I/R in the TonEBP+/+

animals, many of them including IL-6 and MCP-1 showed a significantly smaller increase in their
expression in the TonEBP+/∆ animals (Table 1) as expected from TonEBP deficiency. These animals
also displayed milder tubular necrosis and lipid peroxidation (Figure 2), fewer TUNEL-positive cells,
lower expression of Bax and higher expression of Bcl-2 (Figure 3). The increase in serum creatinine,
BUN, and fractional excretion of sodium were tempered along with improved urinary osmolality
plus a reduced expression of KIM-1 mRNA (Figure 4). In sum, TonEBP haplo-deficient animals were
protected from the I/R-induced renal inflammation and injury suggesting that TonEBP played a role.

3.3. TonEBP Mediates Renal Tubular Cell Death in Response to Ischemic Insult

Since tubular necrosis in response to I/R was significantly milder in the TonEBP haplo-deficient
animals (Figure 2), we asked whether TonEBP was involved. We addressed this question using
a human renal epithelial cell line, HK-2 cells. We found that HK-2 cells displayed cell death in
response to hypoxia (24 h in 1% oxygen) as indicated by reduced cell viability and increased LDH
release (Figure 5A). The cell death was also observed in response to ATP depletion and treatment
with H2O2 in a dose-dependent manner. The cell death in response to ATP depletion and H2O2 was
blocked by various inhibitors of necrosis—necrostatin-1, ferrostain-1, and cyclosporin A—confirming
that at least three forms of necrosis, i.e., necroptosis, ferroptosis, and mitochondrial-permeability
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transition-mediated necrosis, respectively, contributed to the cell death (Figure 5B). Importantly,
siRNA-mediated knockdown of TonEBP prevented cell death in all the conditions indicating that
TonEBP mediated the necrotic cell death.
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Figure 5. Effects of TonEBP knockdown and inhibitors on cell viability and release of lactate
dehydrogenase (LDH). (A) HK-2 cells were transfected with TonEBP targeted siRNA (filled bars) or
scrambled (non-targeting) siRNA (open bars). Cells were then incubated with hypoxia (1% O2) for
24 h, ATP depletion (AD—10 µM of antimycin A and 10 mM 2-deoxy-d-glucose, or ACD—10 µM of
antimycin A, 10 mM 2-deoxy-d-glucose and 1 µM of ionomycin) for 3 h, or H2O2 treatment for 1 h.
(B) Cells were pretreated for 60 min with vehicle (VH), cyclosporin A (CsA, 1 µM), ferrostatin-1 (Fer-1,
0.5 µM), or necrostatin-1 (Nec-1, 5 µM) followed by ATP depletion for 3 h or treatment with 1 mM
H2O2 for 1 h. CTL, not treated. Mean + SEM, * p < 0.05.

Renal ischemia also leads to apoptosis in association with elevated Bax expression and reduced
Bcl-2 expression as shown in Figure 3. We examined apoptosis in HK-2 cells using annexin V
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externalization and staining with propidium iodide. Hypoxia, ATP depletion, or H2O2 induced
apoptosis (Figure 6) in association with escalated Bax expression and lower Bcl-2 expression (Figure 7).
Interestingly, TonEBP was significantly induced in response to hypoxia, ATP depletion, or H2O2

(Figure 7, top panel). TonEBP knockdown prevented apoptosis (Figure 6) in association with lower
Bax expression and higher Bcl-2 expression (Figure 7) in all the conditions, demonstrating that TonEBP
mediated the ischemia-induced apoptosis.

Taken together, the results in Figures 5–7 demonstrate that in HK-2 cells 1) TonEBP is induced
by ischemic insults and 2) tubular necrosis and apoptosis are prevented by TonEBP deficiency.
These observations are consistent with the induction of TonEBP in response to I/R, and the reduced
tubular necrosis and apoptosis in response to I/R in the TonEBP deficient animals described above.
The induction of TonEBP in response to I/R insult may be critical to necrosis and apoptosis in the
kidney. This idea was tested in the next section.
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Figure 6. Effects of TonEBP knockdown on apoptosis. (A) HK-2 cells were transfected with TonEBP
targeted siRNA or scrambled siRNA followed by hypoxia, ATP depletion, or H2O2 treatment. The cells
were then labeled with propidium iodide (PI) and annexin V and analyzed using fluorescence-activated
cell sorting. (B) Percentage of cells of early apoptosis (positive for annexin V and negative for PI) and
late apoptosis / dead (positive for both PI and annexin V) is shown in Mean + SEM, * p < 0.05.
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Figure 7. Effects of TonEBP knockdown on the expression of Bax and Bcl-2. HK-2 cells were transfected
with TonEBP targeted siRNA (Ton, filled bars) or scrambled siRNA (Scr, open bars) followed by hypoxia
(A), ATP depletion (B), or H2O2 treatment (C). CTL, not treated. Cell lysates were immunoblotted
for TonEBP, Bax, Bcl-2 and Hsc7, (D) TonEBP/Hsc70, Bax/Hsc70 and Bcl-2/Hsc70 ratio are shown.
Mean ± SEM, * p < 0.05.

3.4. TonEBP Promotes Oxidative Stress via Suppression of Metabolic Genes

TonEBP regulates many genes using a variety of action mechanisms—DNA binding transcription
factor [9], transcriptional co-factor [10,11], and epigenetic suppressor [12–15]. In order to understand
how TonEBP mediated the tissue damage and inflammation in response to I/R, we analyzed changes
in the renal transcriptome using microarray analysis as described in Methods. Bioinformatic analyses
revealed that several pathways—peroxisome, mitochondrial inner membrane, PPAR signaling,
and glycolysis/gluconeogenesis—were significantly elevated in the TonEBP deficient animals over
their wild type littermates after I/R (Table 2 and Figure 8). Among 77 genes in the peroxisome pathway,
25 genes (33%) showed significantly elevated expression in the TonEBP deficient animals. Likewise,
86 out of 291 genes (30%) in the mitochondrial inner membrane, 21 out of 79 genes (27%) in the
PPAR signaling, and 18 out of 56 genes (32%) in the glycolysis/gluconeogenesis pathway displayed
elevated expression in the TonEBP deficient animals after I/R. While many other genes showed
significant suppression in the TonEBP deficient animals after I/R, they did not aggregate significantly
into any particular pathway. Thus, those genes suppressed by TonEBP after I/R might have functional
consequences while other genes stimulated by TonEBP might not.
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Table 2. Pathways of genes whose renal expression is higher in the TonEBP+/∆ mice compared to their
TonEBP+/+ littermates after I/R treatment of kidneys. Microarray analyses were performed on RNA
samples (n = 4) obtained from kidneys. Number of Genes denotes (number of genes whose expression
was significantly higher in the TonEBP+/∆ mice)/(total number of genes in that particular pathway).
FDR: false discovery rate. See text for details.

Pathway Number
of Genes FDR q-Value Selected Genes in Cluster

Peroxisome 25/77 <0.001 Acox2, Pecr, Dao, Hacl1, Amacr, Baat, Hao1,
Mpv17l, Decr2, Agxt, Hao2, Abcd4

Mitochondrial Inner
Membrane 86/291 <0.001 Hmgc2, Prodh2, Maob, Slc25a25, Slc25a42,

Hsd3b3, Gatm, Slc25a10

PPAR Signaling Pathways 21/79 0.0035 Cyp4a14, Hmgcs2, Pck1, Fabp3, Cyp4a32,
Scd1, Acox2, Cyp4a10, Apoc3, Gyk

Glycolysis/Gluconeogenesis 18/56 0.0037 G6pc, Pck1, Pklr, Acss2, Pfkm, Aldh3b1,
Pgam2, Aldoc, Gatm, Acss1
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bottom denote individual animals (n = 4).
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We noted that most of the elevated genes in the 4 pathways discussed above were suppressed after
I/R in TonEBP sufficient (wild type) animals (Figure 8). 22 out of the 25 genes (88%) in the peroxisome
pathway, 76 out of the 86 genes (88%) in the mitochondrial inner membrane pathway, 19 out of 21 genes
(91%) in the PPAR signaling pathway, and 13 out of 18 genes (72%) in the glycolysis/gluconeogenesis
pathway were significantly suppressed after I/R in TonEBP sufficient animals. We confirmed
these changes in selected genes using quantitative RT-PCR of kidney samples (Figure 9, left):
expression of Acox2 (Acyl-CoA Oxidase 2), Pecr (Peroxisomal Trans-2-Enoyl-CoA Reductase),
Pck1 (Phosphoenolpyruvate Carboxykinase 1), and G6pc (Glucose-6-Phosphatase Catalytic Subunit)
decreased significantly after I/R while expression of Hmgcs2 (3-Hydroxy-3-Methylglutaryl-CoA
Synthase 2), Slc25a25 (Solute Carrier Family 25 Member 25), Cyp4a14 (Cytochrome p450, Family 4,
Subfamily A, Polypeptide 14), and Pklr (Pyruvate Kinase L/R) did not. Taken together, the results
in Figure 9 suggest that the 4 pathways are suppressed in response to I/R because of the induction
of TonEBP by ischemic insults. In HK-2 cells, some of the genes in the 4 pathways such as Acox2,
G6pc, and Pklr were suppressed in response to ischemic insults but other genes were not. On the other
hand, most of them showed enhanced expression in response to TonEBP knockdown under ischemic
conditions (Figure 9, right) consistent with the idea that TonEBP suppressed their expression.
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Figure 9. RT-qPCR analyses of kidneys (left) and HK-2 cells (right) for selected genes in the clusters
shown in Table 2: (A) peroxisome, (B) mitochondrial inner membrane, (C) PPAR signaling pathways,
(D) glycolysis/gluconeogenesis. Kidneys were isolated from TonEBP+/∆ (filled bars) mice and their
TonEBP+/+ littermates (open bars) after I/R or sham treatment. HK-2 cells were transfected with
scrambled (open bars) or TonEBP-targeted siRNA (filled bars) followed by treatment with hypoxia
(1% O2), ATP depletion (10 µM of A.A. and 10 mM of 2-DG) or 0.5 mM H2O2 for 3 h. Mean + SEM,
* p < 0.05.
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Many of the genes in the family pathways encode enzymes involved in lipid and carbohydrate
metabolism, and components of mitochondrial ATP synthesis including 8 genes for proton transporting
ATP synthase, 13 genes for complex I and 6 genes for complex III. We suspected that suppression of
these genes would lead to oxidative stress, or production of ROS, in the renal tubular cells. In order
to test this idea, we examined 8-hydroxy-2′-deoxyguanosine (8-OHdG), a marker of oxidative stress,
in the kidney. Immunohistochemial analysis showed that 8-OHdG was abundantly detected in the
kidneys after I/R, and the signal was reduced in animals with TonEBP haplo-deficiency (Figure 10A).
Urinary excretion of 8-OHdG also increased in response to I/R, and the excretion was significantly
lower in TonEBP haplo-deficiency (Figure 10B). In HK-2 cells we examined ROS using the conversion
of 2′,7′-dichlorofluorescin diacetate (DCF-DA) to fluorescent DCA (Figure 10C). DCF fluorescence was
dramatically induced in response to hypoxia, ATP depletion, or H2O2 demonstrating that ischemic
insult led to robust production of ROS. As expected, the increased fluorescence was blunted by TonEBP
knockdown. These observations demonstrate that ischemic insult causes oxidative stress in a manner
dependent on TonEBP, i.e., via suppression of metabolic genes.Cells 2019, 8, x FOR PEER REVIEW 15 of 19 

 

 
Figure 10. Effects of TonEBP deficiency on oxidative stress in kidneys and HK-2 cells. Renal I/R or 
sham treatment was performed on TonEBP+/Δ mice (+/Δ, filled bars) and their TonEBP+/+ littermates 
(+/+, open bars). (A) Kidney sections were stained for 8-OHdG. 8-OHdG and creatinine were 
measured from urine samples and their ratios in ng/mg are shown (B). (C) HK-2 cells were transfected 
with TonEBP targeted (open bars) or scrambled siRNA (filled bars) followed by no treatment (CTL), 
or treatment with hypoxia, ATP depletion, or H2O2. Fluorescent images of DCF (green) and Hoechst 
33342 (blue) in HK-2 cells loaded with DCF-DA are shown at the top. DCF fluoresence intensity as 
Mean ± SEM is shown at the bottom. * p < 0.05. 

4. Discussion 
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Figure 10. Effects of TonEBP deficiency on oxidative stress in kidneys and HK-2 cells. Renal I/R or sham
treatment was performed on TonEBP+/∆ mice (+/∆, filled bars) and their TonEBP+/+ littermates (+/+,
open bars). (A) Kidney sections were stained for 8-OHdG. 8-OHdG and creatinine were measured from
urine samples and their ratios in ng/mg are shown (B). (C) HK-2 cells were transfected with TonEBP
targeted (open bars) or scrambled siRNA (filled bars) followed by no treatment (CTL), or treatment
with hypoxia, ATP depletion, or H2O2. Fluorescent images of DCF (green) and Hoechst 33342 (blue) in
HK-2 cells loaded with DCF-DA are shown at the top. DCF fluoresence intensity as Mean ± SEM is
shown at the bottom. * p < 0.05.
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4. Discussion

Due to high mitochondrial content and energy demand in combination with unique hemodynamic
characteristics, kidney proximal tubules are readily susceptible to ischemic injury leading to AKI.
In fact, AKI due to ischemia, sepsis, and cisplatin share common features: necrosis and apoptosis of
the proximal tubules in association with pathological changes in mitochondria – reduced biogenesis,
swelling and physical disruption with loss of mitochondrial respiratory proteins. The damaged
mitochondria release ROS, cytochrome c and mitochondrial DNA leading to cellular injury due to
apoptosis and necroinflammation [4]. The mitochondrial dysfunction and ROS production are critical
because the restoration of mitochondrial biogenesis using chemical agents blocks cisplatin-induced
AKI [28,29]. Likewise, the administration of antioxidants [30] and hyperactivation of anti-oxidative
transcription [31] prevents AKI in response to ischemia. The data presented here uncover that renal
TonEBP is induced in response to ischemic insult due to the ROS produced by mitochondrial damage
(Figure 11). This is supported by the observations in HK-2 cells where TonEBP is induced by hypoxia
and ATP depletion as well as H2O2, each of which stimulates ROS production. Since TonEBP is also
induced by lipopolysaccharide [10,14] and cisplatin (unpublished), TonEBP is likely to mediate AKI
induced by sepsis and cisplatin as well.
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Figure 11. Model for the role of TonEBP in acute kidney injury. Mitochondrial damage in response
to ischemia (as well as sepsis and cisplatin) leads to the production of reactive oxygen species (ROS)
in addition release of cytochrome c and mitochondrial DNA in renal tubules. Induced by ROS,
TonEBP promotes further ROS production via suppression of genes involved in cellular pathways
including peroxisome, mitochondrial inner membrane, PPAR signaling, and glycolysis/gluconeogenesis.
ROS causes apoptosis and necorinflammation (cell death and inflammation) in tubular cells leading to
functional kidney injury. See text for details.

Another salient finding of this study is that the elevated TonEBP expression in response to ischemic
insult is critical for local production of ROS or oxidative stress. Among the genes shown in Table 2
and Figure 8, suppression of 111 genes in the peroxisome and mitochondrial inner membranes are
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likely to contribute to the ROS production. This represents a “second wave” of ROS production as it
depends on the induction of TonEBP in response to the initial ROS produced by mitochondrial damage
(Figure 11). In other words, the TonEBP induction is a link for maintaining ROS production and kidney
injury. This is supported by the milder kidney injury in TonEBP deficient mice and protection of HK-2
cells whose TonEBP is knocked down from ischemic insult. In hepatocytes, ROS also induces TonEBP
which in turn promotes cellular injury [11]. TonEBP appears to be a general mediator of ROS-induced
cellular injury.

TonEBP mediates chronic inflammation by way of controlling gene expression. In macrophages,
TonEBP promotes M1 phenotype by stimulating the transcription of proinflammatory cytokines and
enzymes [10,18]. In addition, TonEBP suppresses the M2 phenotype by transcriptional suppression of
PPARγ, IL-10, and HO-1 [12–14]. Thus, in macrophages TonEBP simultaneously regulates two opposing
groups of genes–stimulation of M1 genes and suppression of M2 genes. This study uncovers that
TonEBP contributes to the ROS production in the renal tubules by suppression of genes involved in the
function of peroxisome and mitochondrial inner membrane, and cellular pathways of PPAR signaling
and carbohydrate metabolism. TonEBP appears to be a stress protein responding to inflammatory
signals in macrophages, oxidative stress in hepatocytes and mitochondrial injury in renal proximal
tubules. Genome wide association studies have linked single nucleotide variations within the introns
of the TonEBP gene with inflammation and renal injury [16], and type 2 diabetes mellitus risk [32].
As such, targeting TonEBP might prove to be efficacious against preventing chronic inflammation
and AKI. Since specific inhibitors of TonEBP are not known, knockdown of TonEBP using siRNA or
TonEBP-targeting lentivirus could be used.
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