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Abstract: The novel exchange protein activated by cyclic AMP (EPAC1) activator, I942,
induces expression of the suppressor of cytokine signalling 3 (SOCS3) gene, thereby inhibiting
interleukin 6 (IL6) inflammatory processes in human umbilical vein endothelial cells (HUVECs).
Here we use RNA-SEQ and ChIP-SEQ to determine global gene responses to I942, in comparison
with cyclic AMP production promoted by forskolin and rolipram (F/R). We found that I942 promoted
significant changes in the RNA expression of 1413 genes, largely associated with microtubule stability
and cell cycle progression, whereas F/R regulated 197 genes linked to endothelial cell function,
including chemokine production and platelet aggregation. A further 108 genes were regulated
by both treatments, including endothelial regulatory genes involved in purinergic signalling and
cell junction organization. ChIP-SEQ demonstrated that F/R induced genome-wide recruitment
of C/EBPβ and c-Jun transcription factors, whereas I942 promoted recruitment of c-Jun to genes
associated with IL6 signalling, with little effect on C/EBPβ activation. Despite this, certain key
inflammatory genes, including IL6, VEGF, CCL2/MCP1, VCAM1, SELE and ICAM1 were regulated
by I942 without significant c-Jun recruitment, suggesting an additional, indirect mode of action
for I942. In this regard, SOCS3 induction by I942 was found to require c-Jun and was associated
with suppression of IL6-promoted ERK MAP kinase and AKT activity and induction of ICAM1.
Pharmacological inhibition of ERK and AKT also potentiated ICAM1 induction by I942. We therefore
propose that c-Jun activation by I942 regulates endothelial gene expression in HUVECs through direct
mechanisms, involving recruitment of c-Jun or, as for ICAM1, through indirect regulation of tertiary
regulators, including SOCS3.

Keywords: vascular endothelial cells; cyclic AMP; EPAC1; c-Jun; C/EBPβ transcriptome; chromatin;
cell adhesion molecules

1. Introduction

Production of cyclic AMP in response to Gs-protein coupled receptor (GsPCR) activation leads
to the regulation of a striking number of physiological processes, including control of metabolism,
neuronal activity and immune cell processes through alterations in gene expression patterns in target
cells [1]. Classically, positive regulation of transcription by cyclic AMP occurs through phosphorylation
of members of the cyclic AMP response element (CRE)-binding protein (CREB) family of transcription
factors by protein kinase A (PKA), leading to their nuclear translocation, interaction with conserved
cyclic AMP response elements (CRE; TGACGTCA) and recruitment of transcriptional co-activators
to target gene promoters [2]. The CREB family of activators functions in diverse physiological
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processes, including the control of cellular metabolism and growth-factor-dependent cell survival.
In addition to CREB activation, cyclic AMP and PKA can suppress gene expression through cross-talk
with non-GsPCR receptors, for example inhibition of ERK (mitogen-activated protein (MAP) kinase)
activation by growth factor receptors [3].

Since the discovery of these gene-regulatory mechanisms, it has become clear that cyclic AMP now
regulates a range of “non-canonical” gene-regulatory mechanisms that do not involve PKA. For example,
elevations in intracellular cyclic AMP in response to activation of adenosine and prostaglandin GsPCRs
in human umbilical vein endothelial cells (HUVECs) leads to inhibition of interleukin 6 (IL6) receptor
activation of ERK and STAT3 [4]. This inhibition occurs independently of the classical route for cyclic
AMP signalling, through PKA and CREB family members, but is rather dependent on the induction of
the suppressor of cytokine signalling 3 (SOCS3) gene in response to activation of exchange protein
activated by cyclic AMP (EPAC) 1 [4]. SOCS3 is an E3 ubiquitin ligase component that targets IL6
signalling components for proteolytic degradation [5], whereas EPAC1 is a specific guanine nucleotide
exchange factor (GEF) for the Ras GTPase homologues Rap1 and Rap2 [6]. Cyclic AMP binding sites
in EPAC proteins facilitate their direct activation by cyclic AMP, thereby relieving auto-inhibitory
influences of the cyclic nucleotide binding domain (CNBD) toward the catalytic GEF domain [6].
Recent research now implicates EPAC1 in the regulation of multiple inflammatory processes in vascular
endothelial cells, like HUVECs, including regulation of endothelial cell–cell junction stability and
activation of integrins, reduction in endothelial permeability and down-regulation of IL6-mediated
inflammatory processes [7].

Induction of SOCS3 by EPAC1 therefore supports a paradigm for CREB-independent gene
induction in VECs, which we have shown to involve cooperativity between c-Jun and CCAAT enhancer
binding protein (C/EBP) transcription factors, which bind to a key AP1 (consensus ATGAGTCAT)
binding site in the SOCS3 promoter [4,8,9]. In this regard, our initial findings demonstrated mobilisation
of C/EBPβ, which is sufficient to induce SOCS3 gene expression in HUVECs following EPAC1
activation [10]. However, maximal SOCS3 gene expression by cyclic AMP also requires supporting
activity from the MAP kinases, ERK and JNK [11–13]. In this case ERK is activated by cyclic AMP,
independently of both PKA and EPAC1 [11], and this is required for the phosphorylation and activation
of multiple transcription factors associated with the SOCS3 promoter, including C/EBPβ (Thr235),
STAT3 (Ser727) and SP3 (Ser73) [12]. JNK activation is also promoted by cyclic AMP and principally
leads to activation of the AP1 transcriptional complex component c-Jun through phosphorylation on
Ser63 [13]. Consistent with reports implicating EPAC proteins as regulators of JNK activity in diverse
cell types [14,15], we previously found that activation of the SOCS3 minimal promoter by EPAC1
requires a single AP1 site that constitutively binds phosphorylated (Ser63) c-Jun in DNA-pull-down
assays. c-Jun (Ser63) becomes further phosphorylated following cyclic AMP stimulation and specific
activation of PKA, but not through selective activation of EPAC1. AP1 activation and SOCS3 induction
by EPAC1 in HUVECs therefore occur independently of JNK activation and c-Jun phosphorylation
on Ser63.

It is clear therefore, that non-canonical cyclic AMP-regulation of gene expression requires further
investigation. In particular, we need to determine to what extent C/EBPs and c-Jun are required for the
regulation of global gene expression by cyclic AMP in VECs. To begin to address this we have begun
to develop potent, small molecule regulators of EPAC1 activity to determine its role in the control of
inflammatory gene expression. The first of these, I942, was initially identified by high-throughput
screening using the CNBD of EPAC1 as the target in a competition assay involving fluorescent cyclic
AMP [16]. Subsequent analysis using nuclear magnetic resonance (NMR) revealed that I942 directly
interacts with the EPAC1 CNBD and in vitro GEF assays revealed that I942 exerts agonist properties
towards EPAC1 and very little agonist action towards PKA [16]. Here we aim to build on these studies
to compare and contrast non-canonical transcriptional regulation by cyclic AMP and I942. To do this
we use a combination of RNA-SEQ and ChIP-SEQ approaches to determine the extent to which cyclic
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AMP-elevation and I942 promote genome recruitment of c-Jun and C/EBPβ and the nature of the genes
regulated by these treatments.

2. Materials and Methods

2.1. Materials

Pooled human umbilical vascular endothelial cells (HUVECs) and endothelial cell growth medium
2 (EGM2) were purchased from PromoCell (Heidelberg, Germany). Antibodies to ICAM1 and GAPDH
were obtained from New England Biolabs UK Ltd. (Hertfordshire, UK). Anti-SOCS3 antibodies
were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). SuperSignal™ West Pico
Chemiluminescent Substrate was from Fisher Scientific (Loughborough, UK). Secondary antibodies,
anti-rabbit-IgG horseradish peroxidase, anti-goat-IgG horseradish peroxidase and anti-mouse-IgG
horseradish peroxidase conjugates, were from Sigma-Aldrich Company Ltd. (Dorset, England).
Forskolin, rolipram and N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132) were obtained from
Calbiochem (Paisley, UK). I942 (N-(2,4-dimethylbenzenesulfonyl)-2-(naphthalen-2-yloxy)acetamide)
was purchased from MolPort (Riga, Latvia). Recombinant human interleukin 6 (IL6) protein and
recombinant human soluble IL6 receptor α (sIL6Rα) proteins were purchased from R and D Systems
(Abingdon, UK).

2.2. Cell Culture and mRNA Extraction

HUVECs were grown in EGM2 at 37 ◦C and 5% (v/v) CO2. Cells were passaged weekly to
a maximum of six passages. HUVECs were grown on 6-well plates until they had achieved 70–80%
confluence. Cells were then incubated in the presence or absence of 100 µM I942 or 10 µM forskolin and
10 µM rolipram (F/R) for 48 h. Total RNA was then isolated from cells using an RNeasy Kit (Qiagen,
Manchester, UK), according to the manufacturer’s protocol. RNA concentration was determined using
NanoDrop Spectrophotometer (Thermo Fisher Scientific, Paisley, UK). Isolated total RNA was used for
RNA sequencing and quantitative Real-Time PCR analysis.

2.3. RNA Sequencing (RNA-SEQ)

Sequencing libraries were prepared from total RNA using the Illumina TruSeq Stranded mRNA
Sample Preparation Kit. Libraries were sequenced in 75 base, paired end mode on the Illumina NextSeq
500 platform. Raw sequence reads were trimmed for contaminating sequence adapters and poor
quality bases using the program Cutadapt1 [17]. Bases with an average Phred score lower than 28 were
trimmed. Reads that were trimmed to less than 54 bases were discarded. The quality of the reads was
checked using the Fastqc program [18] before and after trimming. The reads were “pseudo aligned” to
the transcriptome using the program Kallisto2 [19]. The differential expressions for the analysis groups
were assessed using the Bioconductor package DESeq2 [20]. Duplicate results were removed from the
resulting gene lists and fold changes and adjusted p-values were log-transformed. Custom scripts for
MATLAB were written to create volcano plots and to compare gene lists for both treatments.

2.4. Chromatin Immunoprecipitation and Sequencing (ChIP-SEQ) Analysis

HUVECs were stimulated in the presence or absence of 100 µM I942 or F/R for 48 h at 37 ◦C in 5%
(v/v) CO2. Cells were then fixed and chromatin was extracted and sheared using the enzymatic “CHIP-IT
Express Kit” (Active Motif) according to the manufacturer’s instructions. Sheared chromatin from
I942-treated, F/R-treated and non-treated cells was then immunoprecipitated at 4 ◦C, overnight with
4 µg of either C/EBPβ or c-Jun ChIP-grade antibodies (Santa Cruz). DNA fragments were eluted from
immunoprecipitated chromatin and used to prepare a ChIP-SEQ DNA library for sequencing using the
“ChIP-SEQ Sample Prep Kit” from Illumina, according to the manufacturer’s protocols. Briefly, the first
step in library preparation was to convert any overhangs in the ChIP’d DNA into phosphorylated
blunt ends. The 3′ ends were then adenylated and adaptors ligated onto the ends of the fragments.
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The library was then size selected on an agarose gel and eventually enriched by PCR. The enriched
library samples were then loaded onto a flow cell at a concentration of 12 pM and cluster formation
was done on an Illumina Cluster station. Samples were then sequenced on an Illumina GA IIX giving
76 bp reads.

2.5. ChIP-SEQ Data Analysis

The ChIP DNA was sequenced on an Illumina GA IIx, one lane of the flow cell per sample.
The quality of the reads was assessed using Fastqc [18]. The sequence reads were aligned to the mouse
genome (release version mm9) using the Bowtie aligner (version 0.12.7) [21,22], which was set up to
report only uniquely aligning reads. Duplicate reads were removed using Samtools (version 0.1.18) [22].
The ChIP analysis was performed using the Homer (version 3.9) suite of tools [23]. Custom scripts
were created in MATLAB to compare the list of known genes closest to ChIP peaks with gene lists
generated from RNA-SEQ experiments.

2.6. Quantitative Real-Time PCR

HUVECs were stimulated in the presence or absence of 100 µM I942 or a combination of 10 µM
forskolin plus 10 µM rolipram (F/R) for 48 h at 37 ◦C in 5% (v/v) CO2. For reverse-transcription, 1 µg
of total RNA was converted to first-strand cDNA using RT2 First Strand Kit (Qiagen) in accordance
with the manufacturer’s instructions. First, genomic DNA was eliminated using the buffer provided
in the kit (5 min at 42 ◦C), followed by reverse-transcription reaction (15 min at 42 ◦C followed
by 5 min at 95 ◦C). Real-Time PCR analysis was performed using the Qiagen Human Endothelial
Cell Biology RT2 Profiler PCR Array (384-well format containing 4 × 96 PCR arrays) and RT2 SYBR
Green Mastermix (Qiagen) using a 7900HT Fast Real-Time PCR System (Thermo Fisher Scientific),
according to the manufacturer’s protocol. Each PCR Array included 89 validated qPCR Primers Assays,
including 5 housekeeping genes and a control panel. The thermal cycling program was as follows:
10 min at 95 ◦C for HotStart DNA Taq Polymerase activation, 40 cycles of denaturation at 95 ◦C for 15 s
and annealing and extension at 60 ◦C for 1 min. Each experiment was run in triplicate. Data analysis
and quantification of relative mRNA gene expression were performed by the CT method using the free
PCR Array Data Analysis web portal [24].

2.7. siRNA Procedures

For siRNA treatments, cells were seeded at 70,000–100,000 cells per well of a 6-well culture plate
and grown in 2 mL complete growth medium until 50–60% confluent. The c-Jun EPAC1 siRNA (Qiagen
FlexiTube Hs_RAPGEF3_5) or non-targeting siRNA (Qiagen AllStars Negative Control) was prepared
for transfection by mixing 7 µL PromoFectin-HUVEC solution (Promocell) in 100 µL serum-free culture
medium with 12 µL siRNA (from 20 µM stock), also dissolved in 100 µL serum-free medium, and then
incubating for 20 min at room temperature. Following this, the cell culture medium was replaced with
0.9 mL fresh serum-free medium and the siRNA/PromoFectin-HUVEC solution (200 µL) was added
dropwise, while gently shaking the plate, giving a final siRNA concentration of 200 nM. Cells were
then incubated at 37 ◦C in 5% (v/v) CO2 for 4 h. After incubation, the medium was removed carefully
by aspiration and then 2 mL of fresh complete growth medium was added, and cells were further
incubated for 48 h, after which experimental procedures were carried out.

2.8. Western Blotting

For Western blotting, cells were harvested by scraping directly into 150 µL of SDS-polyacrylamide
gel electrophoresis sample buffer [62.5 mM Tris-HCl, pH 6.8, 2% (w/v) SDS, 10% (v/v) glycerol, 10 mM
DTT, and 0.01% (w/v) bromophenol blue]. Samples were mixed by vortexing, denatured by heating
for 5 min at 95 ◦C, separated on 10% (w/v) resolving gels and then electroblotted onto nitrocellulose
membranes. Membranes were then blocked in 5% (w/v) milk powder in Tris-buffered saline containing
0.1% (v/v) Tween 20. Blots were incubated in primary antibodies overnight at 4 ◦C followed by
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appropriate horseradish peroxidase-conjugated secondary antibodies for 1 h at room temperature.
Blots were then developed using SuperSignal™West Pico Chemiluminescent Substrate and visualised
using a Fusion FX7-SPECTRA system (Vilber, Germany) fitted with a CCD camera.

2.9. Densitometry and Statistical Analysis

Non-saturated immunoblots from multiple experiments were quantified densitometrically using
ImageJ software [25]. Statistical significance was determined by one-way ANOVA using InStat Software
(GraphPad Software, San Diego, CA, USA).

3. Results

3.1. Identification of Genes Regulated by Cyclic AMP and I942 in HUVECs

We previously showed that when activated by cyclic AMP, the EPAC1/Rap1 pathway mediates the
induction of the SOCS3 gene in human umbilical vein endothelial cells (HUVECs), independently of PKA
activation [8,9], and that EPAC1 activation by I942 has the potential to suppress IL6 pro-inflammatory
gene expression through the inhibition of JAK/STAT3 signalling in the same cells [26].

However, we still had to determine the full range of genes regulated by cyclic AMP and
I942 in VECs. Here we aimed to identify genes in HUVECs regulated by elevations in global
cyclic AMP, as induced by a combination of the adenylyl cyclase activator, forskolin, and the
type 4 PDE inhibitor, rolipram (F/R), and further determine their responsiveness to I942 treatment.
We therefore performed RNA-sequencing (RNA-SEQ) in HUVECs treated for 48 h with either I942 or
F/R (Supplementary Data File). Volcano plots from these mRNA reads (Figure 1a,b) demonstrate that
both treatments induced a profound up-regulation or down-regulation of target genes, many of which
were greater than 2-fold in magnitude (indicated in red in Figure 1a,b). Further analysis identified
108 genes whose activities were similarly regulated by both I942 and F/R treatments, whereas 1413
gene expression changes were attributable to I942 treatment alone and 197 gene expression changes
were attributable to F/R treatment alone (Venn diagram in Figure 1c). Gene ontology (GO) analysis
of these gene expression changes indicates that I942 predominantly regulates genes associated with
microtubule functions associated with chromosome functions and cell cycle progression (Figure 2,
middle panel). Genes regulated by F/R included those associated with specific VEC functions (Figure 2,
upper panel), including cell junction organisation and purinergic signalling, which is associated with
anti-inflammatory actions in these cells [4,27–29]. Gene expression changes shared by both treatments
also included those normally associated with specific VEC cell functions, including inflammatory
actions and platelet activation (Figure 2, lower panel).
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Figure 1. In order to identify genes regulated by I942, confluent human umbilical vein endothelial cells
HUVECs were stimulated for 48 h with (a) 10 µM forskolin plus 10 µM rolipram (F/R) or (b) 100 µM
I942. Total RNA was then extracted from cells and processed for RNA-SEQ and plotted as volcano
plots as described in Materials and Methods, with gene expression changes greater than 2-fold being
indicated in red. Genes that were significantly (p < 0.05, dotted blue line) regulated individually or by
both treatments (see Supplementary Materials) are expressed as a Venn diagram in (c).
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3.2. Genome-Wide Mobilisation of c-Jun and C/EBPβ Transcription Factors by Cyclic AMP and I942

Using the paradigm of induction of the SOCS3 gene by cyclic AMP, we previously showed that
non-canonical regulation of gene transcription following EPAC1 activation in HUVECs is associated
with the activation and chromatin recruitment of c-Jun and C/EBPβ transcription factors [9,31]. Here we
extended these studies to determine if the gene expression changes associated with F/R and I942
treatment in Figure 1 are also associated with recruitment of these transcription factors to regulated gene
promoters. For this, we applied chromosome precipitation followed by next generation sequencing
(ChIP-SEQ) to identify transcription factor binding sites for F/R and I942-regulated c-Jun and C/EBPβ
throughout the human genome. For this, HUVECs were stimulated for 48 h with either F/R or I942,
then cells were fixed, lysed and cellular chromatin was isolated, fragmented and immunoprecipitated
(ChIP’d) with anti- c-Jun or anti-C/EBPβ antibodies. The genomic DNA associated with ChIP’d samples
was then sequenced using a genome analyser to identify binding sites for c-Jun and C/EBPβ throughout
the human genome. The HOMER suit of in silico tools was used to verify that a significant majority of
genes contained bona fide c-Jun and C/EBPβ DNA binding sites (Table 1). While this was found to be
the case, it was observed that CEBPβ activated by I942 was found to associate significantly with CREB
binding sites (Table 1), which might mirror a level of cross-reactivity between cyclic AMP-activated
transcription factors at the genome level. Further analysis using a Circos plot to map c-Jun and C/EBPβ
binding to known genes demonstrates that treatment with either F/R or I942 promotes genome wide
association of transcription factors, with binding sites on all chromosomes (Figure 3). It should be
noted that treatment with F/R promoted more extensive genome interactions with c-Jun and C/EBPβ
than those promoted by I942 treatment (Figure 3), suggesting that cooperation between PKA and EPAC
signalling might be required for full transcriptional activation.

Table 1. Results of c-Jun and C/EBPβ ChIP-SEQ. Human umbilical vein endothelial cells (HUVECs)
were incubated for 48 h in the presence or absence of I942 or forskolin and rolipram (F/R).
Following stimulation cells were fixed, chromatin was isolated and then immunoprecipitated (ChIP’d)
with anti-c-Jun or anti-C/EBPβ antibodies, as described in Materials and Methods. ChIP’d DNA
samples were then sequenced (ChIP-SEQ) on an Illumina GA IIx DNA sequencer. ChIP analysis
of the resulting DNA sequences was then performed using the Homer (version 3.9) suite of tools
[23]. The figure shows part of the Homer analysis indicating that aligned sequences from each ChIP
experiment contained bone fide AP-1 [32] and C/EBP [33] consensus binding motifs, hence validating
the experimental technique.

ChIP Treatment Motif Alignment Name p-Value

C/EBPβ F/R
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suggesting that cooperation between PKA and EPAC signalling might be required for full 
transcriptional activation. 

Table 1. Results of c-Jun and C/EBPβ ChIP-SEQ. Human umbilical vein endothelial cells (HUVECs) 
were incubated for 48 h in the presence or absence of I942 or forskolin and rolipram (F/R). Following 
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c-Jun or anti-C/EBPβ antibodies, as described in Materials and Methods. ChIP’d DNA samples were 
then sequenced (ChIP-SEQ) on an Illumina GA IIx DNA sequencer. ChIP analysis of the resulting 
DNA sequences was then performed using the Homer (version 3.9) suite of tools [23]. The figure 
shows part of the Homer analysis indicating that aligned sequences from each ChIP experiment 
contained bone fide AP-1 [32] and C/EBP [33] consensus binding motifs, hence validating the 
experimental technique. 

ChIP Treatment Motif Alignment Name p-Value 

C/EBP F/R 

 

RTGTTGCAA- 
-TTNNNCAAY 

CEBP/AP1 0.001 

C/EBP I942 

 

TGACGTCA 
TGACGTCA 

CREB/ATF 0.001 

c-Jun F/R 

 

RTGTTGCAA- 
-TTNNNCAAY 

CEBP/AP1 0.001 

c-Jun I942 

 

TGASTCA 
TGAGTCA 

Jun/AP1 0.001 

TGACGTCATGACGTCA CREB/ATF 0.001

c-Jun F/R
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suppression of target gene expression. To examine this, and to complement the ChIP-SEQ 
experiments, the RNA-SEQ data presented in Figure 1 was re-analysed to determine whether the 
genes that contain c-Jun- or C/EBPβ-binding sites, identified by ChIP-SEQ, are also regulated at the 
level of transcription (Figure 4).  

Figure 3. Custom scripts were created to compare the list of known genes closest to ChIP peaks
(see Supplementary Materials). These corroborated gene lists were visualised on a chromosome map
using Circos plots (circos.ca). Genes that demonstrate c-Jun binding following stimulation are indicated
by peaks in the purple (for I942) and yellow (for F/R) coloured bands, whereas genes that demonstrate
C/EBPβ binding sites following stimulation are in the blue (for F/R) and green (for I942) coloured bands.
Chromosome number is indicated by numerals in bold and chromosome positions are indicated in the
outside ring.

While the Circos plot in Figure 3 accurately maps DNA binding sites throughout the human
genome, it does not indicate whether transcription factor recruitment leads to induction or suppression
of target gene expression. To examine this, and to complement the ChIP-SEQ experiments, the RNA-SEQ
data presented in Figure 1 was re-analysed to determine whether the genes that contain c-Jun- or
C/EBPβ-binding sites, identified by ChIP-SEQ, are also regulated at the level of transcription (Figure 4).
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associated with c-Jun (blue) or C/EBPβ (red) recruitment associated with either (a) F/R or (b) I942
treatment from ChIP-SEQ experiments.

It can be seen in Figure 4a that the majority of significant gene expression changes induced by
F/R in HUVECs contain binding sites for active c-Jun and/or C/EBPβ. In contrast, genes regulated
by I942 treatment contained very few C/EBPβ binding sites and instead favour genome interaction
with c-Jun (Figure 4b). This suggests that c-Jun and C/EBPβ may play a minor role in the regulation
of gene expression by I942 yet play a major role in gene responsiveness to elevations in intracellular
cyclic AMP.

To examine this further, we re-examined RNA-SEQ data to determine whether activation of
c-Jun and C/EBPβ is associated with the regulation of 84 genes known to be involved in endothelial
cell function (Figure 5). These candidate genes are involved in functions such as inflammation,
cell adhesion, platelet activation, angiogenesis, coagulation and apoptosis (Figure 5). We also used
Human Endothelial Cell Biology RT2 Profiler™ PCR Arrays to examine the expression of the same
set of 84 endothelial-specific genes in HUVEC cells following F/R and I942 treatment (Figure 6).
We found that treatment of HUVECs with F/R or I942 for 48 h led to either an up- or down-regulation
of endothelial-specific genes in HUVECs as determined by either RNA-SEQ experiments (Figure 5)
or RT-PCR experiments (Figure 6). Importantly, by cross-referencing with ChIP-SEQ data, we found
that many of the genes up regulated by F/R treatment were also associated with c-Jun and/or C/EBPβ
interaction (Figure 6a), highlighting an important role for these transcription factors in the response
to cyclic AMP in VECs. In contrast, we could find no binding of C/EBPβ to endothelial-specific
genes regulated by I942, and only two genes interacting with c-Jun (Figure 6b). Of these two,
induction of the ANGPT1 gene, is associated with c-Jun binding to upstream sequence elements,
following stimulation with either F/R (Figure 6c) or I942 (Figure 6d). Despite this, certain key
inflammatory genes, including IL6, VEGF, CCL2/MCP1, VCAM1, SELE and ICAM1 were regulated
by I942, without significant c-Jun recruitment (Figure 6b), suggesting an indirect mode of action.
Although I942 clearly promotes genome-wide mobilisation of c-Jun and C/EBPβ (Figure 3) it does not
appear to play a direct role in the regulation of endothelial-specific genes by I942. Indeed, GO analysis
of I942-regulated genes that interact with c-Jun (Figure 7) identify multiple gene families involved
in receptor signalling, including the IL6 signalling pathway, which we have previously shown to be
inhibited by I942 in HUVECs [34]. I942 may therefore regulate c-Jun-dependent transcription through
the regulation of receptor signalling pathways including the IL6 pathway.
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Figure 5. The RNA-SEQ data generated for Figure 1 was re-analysed to identify changes in the 
expression of 84 genes in (a) F/R and (b) I942 treated cells, which were previously identified as being 
specifically associated with endothelial cell function (green squares). Gene identities include those 
associated with angiogenesis, vasoconstriction/dilation, inflammation, apoptosis, cell adhesion, 
coagulation and platelet aggregation [35] and are subsequently used in Figure 6 for RT-PCR 
experiments. 
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Figure 5. The RNA-SEQ data generated for Figure 1 was re-analysed to identify changes in the
expression of 84 genes in (a) F/R and (b) I942 treated cells, which were previously identified as
being specifically associated with endothelial cell function (green squares). Gene identities include
those associated with angiogenesis, vasoconstriction/dilation, inflammation, apoptosis, cell adhesion,
coagulation and platelet aggregation [35] and are subsequently used in Figure 6 for RT-PCR experiments.
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Figure 6. HUVECs were stimulated for 48 h with (a) F/R or (b) 100 μM I942 or and then total cell RNA 
was extracted and subjected to RT-PCR using a RT2 Profiler™ PCR Array for Human Endothelial Cell 
Biology as described in Materials and Methods. The bar graph is coloured to show genes that were 
identified by ChIP-SEQ as interacting with either C/EBPβ (yellow), c-Jun (red) or both C/EBPβ and c-
Jun (green). Plotted in (c) and (d) is the region for ANGPT1, which interacts with c-Jun and is induced 
by both F/R (a) and I942 (b), along with the sequence read coverage (in blue) in that region from 
alignments. Stimulation with either F/R (c) or I942 (d) results in a peak immediately up-stream of the 
ANGPT1 gene, although the binding site appears different for each stimulus. 

3.3. c-Jun Is Required for SOCS3 Induction and Suppression of IL6 Signalling by I942 in HUVECs 

To confirm the GO analysis in Figure 7, which suggests I942 regulates IL6 signalling through an 
indirect, c-Jun-dependent mechanism we determined the impact of I942 on IL6 signalling in 
HUVECs. It has previously been shown that EPAC1 activation in HUVECs leads to SOCS3 gene 
induction and suppression of IL6 mediated STAT3 and ERK activation [4,11,34]. Moreover, we 
recently demonstrated that I942 can also induce SOCS3 expression to suppress STAT3 activation by 
IL6 in HUVECs [11]. We have also shown that SOCS3 induction by EPAC1 requires activation of c-
Jun and C/EBPβ transcription factors, which interact with an essential AP1 transcription factor-
binding site within the SOCS3 minimal promoter [12,31]. We therefore determined whether I942 and 
F/R, could also induce c-Jun-dependent SOCS3 expression in HUVECs (Figure 8). We found that 
depletion of c-Jun with siRNA significantly inhibited SOCS3 induction by both I942 and F/R (Figure 
8). These results suggest that c-Jun is required for SOCS3 induction by I942 with the potential to 
inhibit IL6 signalling.  

In agreement with this, we show here that I942 also significantly inhibits late-stage ERK and 
AKT activation in response to IL6 signalling in HUVECs (Figure 9). One of the effects of long-term 
IL6 treatment is up-regulation of the protein product of the ICAM1 gene, as previously demonstrated 
[26], which correlates with inhibition of IL6-activated ERK, AKT (Figure 9) and STAT3 [26]. This 
suggests that induction of c-Jun-dependent SOCS3 has the ability to indirectly regulate ICAM1 gene 
expression through inhibition of IL6-regulated signalling pathways. 

Figure 6. HUVECs were stimulated for 48 h with (a) F/R or (b) 100 µM I942 or and then total cell
RNA was extracted and subjected to RT-PCR using a RT2 Profiler™ PCR Array for Human Endothelial
Cell Biology as described in Materials and Methods. The bar graph is coloured to show genes that
were identified by ChIP-SEQ as interacting with either C/EBPβ (yellow), c-Jun (red) or both C/EBPβ
and c-Jun (green). Plotted in (c) and (d) is the region for ANGPT1, which interacts with c-Jun and is
induced by both F/R (a) and I942 (b), along with the sequence read coverage (in blue) in that region
from alignments. Stimulation with either F/R (c) or I942 (d) results in a peak immediately up-stream of
the ANGPT1 gene, although the binding site appears different for each stimulus.
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identify gene expression changes in I942-stimulated cells that were associated with interaction with
c-Jun and are presented here as a CNET plot of genes with associated functions.
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3.3. c-Jun Is Required for SOCS3 Induction and Suppression of IL6 Signalling by I942 in HUVECs

To confirm the GO analysis in Figure 7, which suggests I942 regulates IL6 signalling through
an indirect, c-Jun-dependent mechanism we determined the impact of I942 on IL6 signalling in
HUVECs. It has previously been shown that EPAC1 activation in HUVECs leads to SOCS3 gene
induction and suppression of IL6 mediated STAT3 and ERK activation [4,11,34]. Moreover, we recently
demonstrated that I942 can also induce SOCS3 expression to suppress STAT3 activation by IL6 in
HUVECs [11]. We have also shown that SOCS3 induction by EPAC1 requires activation of c-Jun and
C/EBPβ transcription factors, which interact with an essential AP1 transcription factor-binding site
within the SOCS3 minimal promoter [12,31]. We therefore determined whether I942 and F/R, could also
induce c-Jun-dependent SOCS3 expression in HUVECs (Figure 8). We found that depletion of c-Jun
with siRNA significantly inhibited SOCS3 induction by both I942 and F/R (Figure 8). These results
suggest that c-Jun is required for SOCS3 induction by I942 with the potential to inhibit IL6 signalling.Cells 2019, 8, x 14 of 21 

 

 
Figure 8. Confluent HUVECs were pre-incubated with siRNA to c-Jun or non-targeting siRNA (NT) 
for 24 h and then stimulated for 5 h in the presence or absence of 100 μM I942 (upper left panel) or 10 
μM F/R (upper right panel). Cell extracts were then prepared and immunoblotted with antibodies to 
SOCS3 protein, c-Jun and GAPDH, as a loading control. Densitometry was carried out on 3 Western 
blots and results are shown as a bar graph. Significant increases in SOCS3 protein expression, relative 
to diluent-stimulated control cells, are indicated; *** p < 0.001. Significant inhibition of SOCS3 
induction relative to NT siRNA-treated cells is also indicated; ### p < 0.001. 

Figure 8. Confluent HUVECs were pre-incubated with siRNA to c-Jun or non-targeting siRNA (NT)
for 24 h and then stimulated for 5 h in the presence or absence of 100 µM I942 (upper left panel) or
10 µM F/R (upper right panel). Cell extracts were then prepared and immunoblotted with antibodies to
SOCS3 protein, c-Jun and GAPDH, as a loading control. Densitometry was carried out on 3 Western
blots and results are shown as a bar graph. Significant increases in SOCS3 protein expression, relative to
diluent-stimulated control cells, are indicated; *** p < 0.001. Significant inhibition of SOCS3 induction
relative to NT siRNA-treated cells is also indicated; ### p < 0.001.

In agreement with this, we show here that I942 also significantly inhibits late-stage ERK and AKT
activation in response to IL6 signalling in HUVECs (Figure 9). One of the effects of long-term IL6
treatment is up-regulation of the protein product of the ICAM1 gene, as previously demonstrated [26],
which correlates with inhibition of IL6-activated ERK, AKT (Figure 9) and STAT3 [26]. This suggests
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that induction of c-Jun-dependent SOCS3 has the ability to indirectly regulate ICAM1 gene expression
through inhibition of IL6-regulated signalling pathways.
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antibodies to pERK/ERK, pAKT/AKT, ICAM1 or GAPDH, as indicated. (b) Densitometric values from 
3 separate immunoblots are shown on the left with significant decreases in the ratio of pERK/ERK 
and pAKT/AKT in cells stimulated with IL6 and I942, relative to stimulation with IL6 alone, being 
indicated; # p < 0.05 (n = 3). 

In agreement with this, we show here that I942 induces ICAM1 mRNA (Figure 6b and 
Supplementary Material) and protein (Figure 9a) in HUVECs and this is further enhanced by 
inhibition of ERK and AKT with selective inhibitors (Figure 10). Accordingly, the ERK inhibitors 
AZD6244 and PD0325901 provoked a dramatic increase in basal ICAM1 protein expression, as well 
as enhancing I942-induced ICAM1 expression (Figure 10a). This indicates that inhibition of ERK 
activity by prolonged I942 stimulation may be linked to induction of ICAM1 gene expression. 
Moreover, inhibition of PI3K/AKT signalling with GDC094 and MK2206, respectively, also 
potentiated ICAM1 induction by I942 (Figure 10b). Together these results demonstrate that the 
induction of ICAM1 by long-term I942 treatment is linked to c-Jun-dependent SOCS3 induction and 
late-stage suppression of ERK and AKT activities in HUVECs. 
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Figure 9. (a) HUVECs were stimulated for the indicated times with IL6 (5 ng/mL) plus sIL6Rα
(25 ng/mL) in the presence or absence of 100 µM I942. Cell extracts were then immunoblotted with
antibodies to pERK/ERK, pAKT/AKT, ICAM1 or GAPDH, as indicated. (b) Densitometric values from
3 separate immunoblots are shown on the left with significant decreases in the ratio of pERK/ERK and
pAKT/AKT in cells stimulated with IL6 and I942, relative to stimulation with IL6 alone, being indicated;
# p < 0.05 (n = 3).

In agreement with this, we show here that I942 induces ICAM1 mRNA (Figure 6b and
Supplementary Materials) and protein (Figure 9a) in HUVECs and this is further enhanced by inhibition
of ERK and AKT with selective inhibitors (Figure 10). Accordingly, the ERK inhibitors AZD6244 and
PD0325901 provoked a dramatic increase in basal ICAM1 protein expression, as well as enhancing
I942-induced ICAM1 expression (Figure 10a). This indicates that inhibition of ERK activity by prolonged
I942 stimulation may be linked to induction of ICAM1 gene expression. Moreover, inhibition of
PI3K/AKT signalling with GDC094 and MK2206, respectively, also potentiated ICAM1 induction by
I942 (Figure 10b). Together these results demonstrate that the induction of ICAM1 by long-term I942
treatment is linked to c-Jun-dependent SOCS3 induction and late-stage suppression of ERK and AKT
activities in HUVECs.
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Figure 10. (a) HUVECs were stimulated for the indicated times with the MEK inhibitors, AZD6244 or 
PD032590, in the presence or absence of 100 μM I942. Cell extracts were then prepared and 
immunoblotted with anti-ERK and phospho-ERK antibodies or anti-ICAM1 antibodies, as indicated. 
(b) HUVECs were stimulated for the indicated times with the PI3 kinase inhibitor, GDC0941 (10 μM), 
or the AKT inhibitor, MK2206 (10 μM). Cell extracts were then immunoblotted with anti-AKT and 
phospho-AKT antibodies or anti-ICAM1 antibody. (c) ICAM1 densitometric values from 3 separate 
immunoblots are shown as a bar graph with significant changes in ICAM1 expression, relative to cells 
stimulated with diluent alone being indicated; * p < 0.05, ** p < 0.01, *** p < 0.001. 

4. Discussion 

The aims of this study were to compare and contrast non-canonical transcriptional regulation 
by cyclic AMP and a newly discovered selective EPAC1 agonist, I942. This is important because 
classical transcriptional regulation by cyclic AMP is thought largely to occur through PKA-mediated 
activation of the ATF family of transcription factors, the archetypical member being CREB [2]. It is 
not widely appreciated that PKA-independent mechanisms of gene transcription also exist, but this 
is now an important consideration since the discovery of PKA-independent modes of cyclic AMP 
action through novel effectors, including EPAC and POPDC proteins [36], suggests alternative 
mechanisms exist. In this regard, we have previously identified 425 I942-regulated genes that were 
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Figure 10. (a) HUVECs were stimulated for the indicated times with the MEK inhibitors, AZD6244
or PD032590, in the presence or absence of 100 µM I942. Cell extracts were then prepared and
immunoblotted with anti-ERK and phospho-ERK antibodies or anti-ICAM1 antibodies, as indicated.
(b) HUVECs were stimulated for the indicated times with the PI3 kinase inhibitor, GDC0941 (10 µM),
or the AKT inhibitor, MK2206 (10 µM). Cell extracts were then immunoblotted with anti-AKT and
phospho-AKT antibodies or anti-ICAM1 antibody. (c) ICAM1 densitometric values from 3 separate
immunoblots are shown as a bar graph with significant changes in ICAM1 expression, relative to cells
stimulated with diluent alone being indicated; * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

The aims of this study were to compare and contrast non-canonical transcriptional regulation
by cyclic AMP and a newly discovered selective EPAC1 agonist, I942. This is important because
classical transcriptional regulation by cyclic AMP is thought largely to occur through PKA-mediated
activation of the ATF family of transcription factors, the archetypical member being CREB [2]. It is
not widely appreciated that PKA-independent mechanisms of gene transcription also exist, but this is
now an important consideration since the discovery of PKA-independent modes of cyclic AMP action
through novel effectors, including EPAC and POPDC proteins [36], suggests alternative mechanisms
exist. In this regard, we have previously identified 425 I942-regulated genes that were are also
regulated by the EPAC1-selective cyclic AMP analogue, 007, the majority of which are involved in
the control of key vascular functions, including the gene for the cell adhesion molecule, VCAM1 [26].
Both I942 and 007 inhibited IL6-induced expression of VCAM1 at the protein level and blocked
VCAM1-dependent monocyte adhesion to HUVECs [26]. This highlights an important role for
non-canonical, EPAC1-dependent signalling mechanisms involved in the control of key vascular
functions linked to disease.
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Here we expanded on this original study and used a combination of RNA-SEQ and ChIP-SEQ to
determine global gene responses to I942, in comparison with cyclic AMP production promoted by
F/R, in HUVECs. Consistent with our previous RNA-SEQ studies we found that 108 gene expression
changes were promoted by both treatments and are linked to the regulation of vascular function,
including purinergic receptor signalling and cell junction organization, which are linked to inflammatory
responses in these cells. Since these responses are duplicated by both treatments, it can be argued that
these represent EPAC1-regulated responses. F/R treatment also promoted gene expression changes in
a further 197 genes, again linked to endothelial cell function, including chemokine production and
platelet aggregation. These responses therefore represent either PKA-dependent responses or a result
of simultaneous activation of both EPAC1 and PKA signalling pathways. Treatment with I942 alone
provoked significant changes in the RNA expression of 1413 genes, which were largely associated with
microtubule stability and cell cycle progression (Figure 2). While it can be argued that many of the gene
expression changes evoked by I942 could represent “off-target” effects, it should be pointed out that
EPAC1 activation has already been linked to microtubule stability [37–40], cell cycle progression [41–48]
and physical interaction with microtubule cytoskeleton components [49–53], so these results are
consistent with “on-target” EPAC1-dependent actions of I942. Moreover, it has been shown that EPAC1
and PKA signalling responses are often mutually dependent [48,54]. It could also be envisaged that
PKA activation may suppress certain EPAC1-dependent actions. The result of this kind of mutual
dependency would result in EPAC1 activation by I942 provoking radically different cell responses
to F/R treatment, which activates both EPAC1 and PKA. Further work will therefore be required to
determine the interplay between EPAC1 and PKA signalling at the level of transcriptional control
in VECs.

ChIP-SEQ analysis demonstrated that F/R treatment led to genome-wide recruitment of C/EBPβ
and c-Jun transcription factors, whereas I942 promoted recruitment of c-Jun to genes associated with
IL6 signalling and signalling from other receptor types, with little effect on C/EBPβ activity. In the case
of F/R treatment, genome-recruitment of C/EBPβ and c-Jun was associated with the transcriptional
regulation of the majority of genes identified by RNA-SEQ as being cyclic AMP sensitive (Figure 4a).
This points towards a role for C/EBPβ and c-Jun as key players in non-canonical cyclic AMP signalling,
although their mode of action remains to be determined. In this regard, we have previously shown that
SOCS3 induction by EPAC1 in HUVECs requires the expression of protein kinase C (PKC) isoforms,
α and δ [8,12]. However, it is not yet clear how these contribute to the regulation of C/EBPβ activity.
We do know that PKCα and PKCδ are required for ERK activation by cyclic AMP, independently of
EPAC1, leading to C/EBPβ activation through phosphorylation of Thr235 [8,12]. This would go some
way to explain why I942 treatment does not lead to global recruitment of C/EBPβ in the present study,
because direct activation of EPAC1 does not lead to ERK activation and hence phosphorylation of
C/EBPβ on Thr235 [8]. Indeed, we show here that short-term stimulation of HUVECs has no effect on
ERK activation (Figure 10a) and long-term stimulation actually inhibits IL6-promoted ERK activation
(Figure 9b) and is therefore unlikely to activate C/EBPβ.

The mechanisms by which I942 regulates c-Jun activity also remain to be determined, but it has
been known for some time that PKC enhances c-Jun activation by promoting the dephosphorylation
of three key residues in the c-Jun DNA binding domain [55]. Indeed, mutation of one of these
sites (Ser243) to phenylalanine inhibits the phosphorylation of all three sites, leading to enhanced
c-Jun DNA binding activity [55]. It is therefore likely that I942, acting through EPAC1, leads to
c-Jun activation through protein kinase C, including activation of phosphatases that target Ser243 of
c-Jun. However, despite the ability of I942 to promote c-Jun DNA-binding activity, we found that key
inflammatory genes, including IL6, VEGF, CCL2/MCP1, VCAM1, SELE and ICAM1 were regulated
by I942, without significant c-Jun recruitment (Figure 6b), suggesting an indirect mode of action
involving induction of SOCS3 and suppression of IL6-promoted ERK, AKT (Figure 9b) and STAT3
activation [26]. This would be brought about by SOCS3 binding to JAK-phosphorylated receptors,
via the SOCS3 SH2 domain, thereby inhibiting JAK activity and, consequently, activation of STATs
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1 and 3 [56], ERK and AKT [11]. SOCS3 would then also target multiple SH2-bound proteins for
proteasomal degradation [56] with proteolytic targets including JAK2 [57]. IL6 has been reported to
promote acute and chronic inflammatory disease in the absence of SOCS3 [58] and conditional deletion
of the SOCS3 gene in VECs results in pathological angiogenesis [59]. Given this, novel treatments
based on the regulation of SOCS3 levels in cells, as shown for I942 here, could therefore have efficacy
in the treatment of inflammatory diseases where there is over-stimulation of JAK signalling.

5. Conclusions

Transcriptional regulation of endothelial-specific genes by cyclic AMP is associated with
genome-wide recruitment of c-Jun and C/EBPβ transcription factors, which are activated
through non-canonical signalling mechanisms. The novel EPAC1 activator, I942, also regulates
endothelial-specific gene expression through distinct mechanisms involving either direct recruitment
of c-Jun to target gene promoters, as is the case for SOCS3, or through indirect regulation
of tertiary regulators, including SOCS3, which inhibit gene-regulatory signalling pathways,
including IL6-activated ERK, AKT and STAT3 (please see Figure 11 for graphical summary).
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