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Abstract: Background: Retroelements (REs) are mobile genetic elements comprising ~40% of human
DNA. They can reshape expression patterns of nearby genes by providing various regulatory
sequences. The proportion of regulatory sequences held by REs can serve a measure of regulatory
evolution rate of the respective genes and molecular pathways. Methods: We calculated RE-linked
enrichment scores for individual genes and molecular pathways based on ENCODE project epigenome
data for enhancer-specific histone modification H3K4me1 in five human cell lines. We identified
consensus groups of molecular processes that are enriched and deficient in RE-linked H3K4me1
regulation. Results: We calculated H3K4me1 RE-linked enrichment scores for 24,070 human genes
and 3095 molecular pathways. We ranked genes and pathways and identified those statistically
significantly enriched and deficient in H3K4me1 RE-linked regulation. Conclusion: Non-coding
RNA genes were statistically significantly enriched by RE-linked H3K4me1 regulatory modules, thus
suggesting their high regulatory evolution rate. The processes of gene silencing by small RNAs,
DNA metabolism/chromatin structure, sensory perception/neurotransmission and lipids metabolism
showed signs of the fastest regulatory evolution, while the slowest processes were connected with
immunity, protein ubiquitination/degradation, cell adhesion, migration and interaction, metals
metabolism/ion transport, cell death, intracellular signaling pathways.

Keywords: human genome evolution; histone modifications; H3K4me1; enhancers of transcription;
retrotransposons; retroelements; molecular pathways; gene ontology; epigenetics; gene expression regulation

1. Introduction

Transposable elements occupy nearly one-half of human genome [1]. Among them, retroelements
(REs) form the most numerous and active class that shaped ~40% of human DNA [2]. REs impact human
gene expression by providing functional regulatory regions including enhancers [3,4]. RE-linked
enhancers act via recruiting of transcription factor proteins to the enclosed transcription factor binding
sites (TFBS) [5,6]. Such enhancer activity of human REs has greatly influenced complex molecular
processes such as innate immunity [7] and placentation [8], and RE-linked enhancers are currently
recognized as one of the major driving forces of human regulatory evolution [9–11].
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Deep sequencing-based technologies such as chromatin immunoprecipitation and sequencing
(ChIP-seq) enabled whole genome studies of functional enhancer elements [12]. Monomethylation of
H3 lysine 4 (H3K4me1) is major epigenetic mark of both active and dormant enhancers [13]. The whole
genome profiles of H3K4me1 mark were resolved [14] and are widely used in gene regulation
studies [15]. Investigating epigenomic data in an evolutionary context reveals a complex and constantly
changing enhancer landscape [16]. RE-driven enhancers could affect animal diversity [17] and give
birth to new genes [18] or even new tissues such as mammalian neocortex [19].

Recent studies of RE regulatory impact on the functioning of human molecular pathways [20,21]
provide a computational framework to estimate regulatory evolution of major molecular processes by
using RE-linked enhancer activity as the marker. The original analytic pipeline called RetroSpect [22]
is based on mapping of RE-linked regulatory sites such as transcription factor binding sites (TFBS) in a
close neighborhood of gene transcription start sites (TSSs) [20]. TSS-proximal regions are enriched in
major cis-acting regulatory elements, and 10-Kb interval proposed for the RetroSpect analysis covers a
significant portion of RE-linked enhancers of human genes [23,24]. Comparing the ChIP-seq signal
of RE-linked regulatory elements and of all regulatory elements in the 10-kb frame allows for the
calculation of absolute and relative gene enrichments by RE-linked regulatory elements, or GRE and
NGRE scores, respectively [21].

RetroSpect methodology enables calculation of relative and absolute RE-linked regulatory
enrichment scores for both individual genes and intracellular molecular pathways, i.e. gene ensembles
having a common molecular function [25]. After scoring individual genes according to the extent of their
RE-linked regulation, the differential genes are then functionally annotated [26]. This annotation can be
based on the calculation of molecular pathway activation scores as for gene expression studies [27], or
on pathway instability metrics as for DNA mutation data [28]. In the RetroSpect pipeline, absolute and
relative RE-linked regulatory enrichment scores for a given molecular pathway are calculated (PII and
NPII scores, accordingly), which measure the strength of RE regulation in this pathway [21]. Data on
topological structure of few thousands human molecular pathways are stored in public databases such
as KEGG [29] and Reactome [30].

Alternatively, the gene set enrichment analysis can be applied which provides an independent
way of biological annotation, e.g., based on Gene Ontology (GO) terms enrichment analysis as for
the previous application of RetroSpect [31]. Comparison of the results obtained using pathway
analysis and GO annotation enhances robustness of the RetroSpect analysis and allows for the reliable
identification of consensus molecular processes that are enriched or deficient in RE-linked regulation.
These processes, therefore, can be considered as those undergoing accelerated of delayed regulatory
evolution [21].

Recent application of RetroSpect to RE-linked regulation of human molecular pathways at
the level of TFBS for 13 human cell lines and 563 DNA-binding proteins showed that ~55.5% of
human TFBS were connected with REs [21]. Moreover, such molecular processes as gene regulation
by microRNAs, olfaction, color vision, fertilization, cellular immune response, and amino acids
and fatty acids metabolism and detoxication were found enriched by RE-linked TF regulation [21].
These observed patterns of RE-driven regulatory evolution delineate the most actively evolving—yet
different—biological processes [9]. For example, RE-directed evolution of cellular immune response is
connected with perpetual evolutionary arms-race between pathogens and hosts [32], whereas color
vision is a recent evolutionary innovation of primates [33].

Further examination also evidenced that genes enriched by RE-linked TFBS showed a statistically
higher proportion of miRNA and long non-coding RNA (lncRNA) genes than for the set of deficient
genes [21].

In this study, we used RetroSpect to investigate RE-linked regulation of human genes by histone
modification of H3K4me1, a well-known enhancer mark for the enclosing DNA. We extracted the
whole genome of H3K4me1 ChIP-seq profiles for five human cell lines (MCF-7, K562, HepG2, HeLaS3,
GM12878) from the ENCODE database. We found that only 27.8% of all H3K4me1 enhancer marks
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were associated with REs. This is twice lower compared to the previous figure of 55.5% of total
RE-linked TFBS [21], which may reflect genome-wide epigenetic repression of RE-linked enhancers.

RetroSpect was then applied to detect their functional impacts. The major molecular processes
enriched by RE-linked enhancer regulation were connected with DNA metabolism and maintenance of
chromatin structure, sensory perception, neurotransmission and lipids metabolism. The least impacted
processes, which may be considered the most conservatively regulated at the level of H3K4me1 [20],
dealt with different aspects of the immune response, cell adhesion, migration and interaction, cell death,
ion transport and various intracellular signaling pathways.

Moreover, among the top RE-linked regulation enriched genes we found statistically significantly
higher proportion of genes coding miRNAs and lncRNAs. At the same time, the proportion of
the lncRNA genes was significantly decreased in the bottom cohort of genes sorted by RE-linked
H3K4me1 regulation.

2. Materials and Methods

2.1. Identification of RE-Linked H3K4me1 Modification Tags

Whole genome H3K4me1 ChIP-seq profiles for were extracted from the ENCODE database [34]
for five human cell lines (K562, HepG2, GM12878, MCF-7, HeLa-S3) according to the standard ENCODE
histone ChIP-seq protocol [35]. The reference human genome assembly 2009 (hg19) was indexed via
Burrows–Wheeler algorithm using BWA software (version 0.7.10) [36]. Concatenation of fastq files
with single-end or pairwise reads, alignment to the reference genome and filtering were done using
BWA, Samtools (Sanger Institute, Hinxton, Cambridgeshire, UK, version 1.0), Picard (Broad Institute,
Cambridge, MA, USA, version 1.92), Bedtools (Quinlan laboratory, University of Utah, UT, USA
version 2.17.0), Phantompeakqualtools (Department of Genetics, Department of Computer Science,
Stanford University, Stanford, CA, USA, version 1.1) and SPP (Department of Genetics, Department of
Computer Science, Stanford University, Stanford, CA, USA, version 1.14) software [36]. Peak calling
and signal generation were done using Macs (Harvard University, Cambridge, MA, USA, version 2.1.0)
and Bedtools software [37] based on the alignment data. Aligned, filtered and normalized over control
ChIP-seq reads for each cell line were mapped on the RE sequences annotated by RepeatMasker
(Institute for Systems Biology, Seattle, WA, USA, version 3.2.7) [38] and downloaded from the UCSC
Browser (RefGene table) [39]. The list of cell lines investigated here and raw ENCODE data files for
each cell line is given in Supplementary Table S1.

2.2. Gene Expression Data

From the ENCODE database [34] we obtained RNA sequencing gene expression profiles for human
cell lines using the following set of filters: “transcription”, “total RNA-Seq” and “gene quantifications”.
For three out of five cell lines of interest, we found 19 experiments containing gene expression data in
two technical replicates: 11 experiments for K562 cell line, 5 for HepG2 and 3 for GM12878. Accession
numbers are shown in Supplementary Table S1.

2.3. Measuring Gene Enrichment by RE–Linked H3K4me1 Histone Modification Tags

The coordinates of human genes were downloaded from the USCS Browser (RefGenes table,
genome assembly hg19) [39]. For each gene and cell line, all individual REs overlapping with the 10-kb
neighborhood of its reference TSS were selected for further analysis. The 10-kb neighborhood covered
an interval starting 5 kb upstream and ending 5 kb downstream the TSS. For every known gene in
every cell line, we calculated total numbers of H3K4me1 histone modification tags mapped on either
RE or RE-free loci in 10-kb neighborhood. We then calculated absolute (GRE) and relative (NGRE)
RE-linked regulatory enrichment scores according to the formulas given in Supplementary Dataset 2
for 24,070 human genes.
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2.4. Measuring Molecular Pathway Enrichment by RE– H3K4me1 Tags

Gene architecture data of the molecular pathways were extracted from the databases BioCarta [40],
KEGG [41], NCI [42], Reactome [43] and Pathway Central [44]. Pathways structure data were
downloaded in .xml and. biopax formats from these databases and implemented in a computational
algorithm Oncobox [21,27,45]. In every cell line, absolute (PII) and relative (NPII) RE-linked regulatory
enrichment scores were calculated for 3095 molecular pathways according to the formulas given in
Supplementary Dataset 2.

2.5. Measuring Enrichment of Gene Sets by Non-Coding RNA Genes

Significance of enrichment or deficiency of proportions of non-coding RNA genes in selected
gene sets was evaluated using hyperbolic distribution separately for two classes of non-coding RNA:
miRNA and lncRNA. For each gene set we used the following formula of hypergeometric probability
mass function to calculate the probability values of numbers higher or lower than observed for miRNA
or lncRNA classes:

p(k, M, n, N) =

(
n
k

)(
M− n
N − k

)
(

M
N

) , (1)

where M is the total number of genes, N is the number of non-coding RNA genes in a gene set, n is the
number of genes in a gene set (e.g., top genes enriched or deficient in RE-linked regulation), k is the
number of non-coding RNA genes in a sample and p(k, M, n, N) is the probability of observation of
gene numbers k, M, n, N. Brackets denote binomial coefficients.

For each number of non-coding RNA genes k we calculated probability P(k, M, n, N) to observe a
higher number of non-coding RNA according to the formula:

P(k, M, n, N) =
n∑

i=k+1

p(i, M, n, N), (2)

where p(i, M, n, N) is the hypergeometric probability mass function defined above.
We used p < 0.05 as a significance threshold value for the hypothesis that non-coding RNA genes

are overrepresented in a given gene set and p > 0.95 for the hypothesis that non-coding RNA genes are
not overrepresented.

Analogously, for each number of non-coding RNA genes k we calculated probability P’(k, M, n, N)
to observe a not higher number of non-coding RNA according to the formula:

P′(k, M, n, N) =
k∑

i=1

p(i, M, n, N), (3)

where p(i, M, n, N) is the hypergeometric probability mass function defined above.
We used p < 0.05 as a significance threshold value for the hypothesis that non-coding RNA genes

are underrepresented in a given gene set and p >0.95 for the hypothesis that non-coding RNA genes
are not underrepresented.

2.6. Gene Ontology Enrichment Analysis

Gene Ontology (GO) analysis of genes that are enriched or deficient in RE-linked H3K4me1
histone modification tags (RRE-enriched or RRE-deficient genes, respectively) was performed using
DAVID (version 6.8) software [46] using human gene IDs extracted from USCS Genome Browser [47].
The p-values specifying the significance of observed GO-terms enrichment were calculated using a
modified Fisher’s exact test [48]. The cut-off for p-values significance was set as 0.05. The enrichment
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values of GO-terms and Annotation Clusters were calculated as fold changes of their occurrences in
the sample and in the human genome [48].

2.7. Significance of Correlations

The statistical significance of correlations was calculated as a Pearson correlation coefficient with a
p-value using the python Seaborn (Michael Waskom, Center for Neural Science, NY, USA, version 0.9.0)
package [49]. All calculations were carried out using Sklearn (French Institute for Research in Computer
Science and Automation, Rocquencourt, France, version 0.21.2) module [50].

2.8. Significance of Correlations

To assess the confidence of the observed patterns for RE-impacted functional processes,
we generated 500 sets of randomly permutated GRE and NGRE scores across the cell lines tested
by randomly rearranging gene names. For each perturbation, we extracted a set of GRE-NGRE
distribution-based 1204 top and bottom genes. These gene sets were profiled by DAVID (Laboratory
of Human Retrovirology and Immunoinformatics, Applied/Developmental Research Directorate,
Frederick National Laboratory for Cancer Research, MD, USA, version 6.8) software [46] and top-100
GO terms were selected for each set by the lowest p-value for each random permutation. Finally,
we compared the distributions of p-values for the top-100 GO terms for the permuted and real gene
sets: real RRE-enriched and RRE-deficient genes were respectively compared with the distributions of
RRE-enriched and RRE-deficient genes in random permutations.

The overall RetroSpect data analysis pipeline is shown schematically in Supplementary File 3.
All computational codes used here are freely available upon request to the authors.

3. Results

3.1. Genes and Molecular Pathways Impacted by RE-Linked Histone Modification Marks

In order to measure the impact of REs on gene regulation by H3K4me1 histone modifications we
calculated GRE and NGRE scores for 24,070 human genes (Supplementary Table S4). These metrics
were calculated separately for five cell lines MCF-7, K562, HepG2, HeLaS3 and GM12878 representing
four different human tissues. Totally, 2,841,853 H3K4me1 histone modification tags were extracted from
the ENCODE project repository including 482,894, 1,075,569, 705,632, 339,874 and 237,884, respectively,
for the above human cell lines.

We then correlated these H3K4me1 histone modification profiles with the gene expression data
obtained for the same cell lines (Figure 1). In this study, we considered RNA sequencing profiles
because they are thought to represent the gold standard data in high throughput transcriptomic
research [25]. In the ENCODE project repository, six profiles were available for cell line GM12878, 10 for
cell line HepG2 and 22 for cell line K562. For the MCF-7 and HeLa-s3 cell lines, no RNA sequencing
data were available. We observed a trend that H3K4me1 histone modification profiles positively
correlated with the gene expression data (Figure 1). The highest correlations were observed for the long
non-coding RNA genes (Figure 1D), the lowest was observed for microRNA genes (Figure 1C) and the
intermediate pattern was observed for protein coding genes (Figure 1B). The highest correlations were
detected between gene expression and histone modification profiles of the same cell lines (Figure 1).
This confirmed that the H3K4me1 histone modification tags from the ENCODE database were related
to their expected molecular functions.

We then tested whether gene-wise scores of RE-linked regulatory enrichments (GRE and NGRE)
are comparable among the cell lines. We calculated pairwise gene-by-gene Pearson correlation
coefficients between five cell lines investigated here for GRE (Figure 2A) or NGRE (Figure 2B) scores.
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Figure 1. Correlations of H3K4me1 histone modification profiles with the RNA sequencing gene 
expression data. The histone modification profiles (vertical axis) were compared with normalized 
gene expressions (abscissa) for 6 GM12878, 10 HepG2 and 22 K562 cell line RNA sequencing 
experiments. Pearson correlations were measured for (A) set of all known genes; (B) set of protein 
coding genes; (C) set of microRNA genes and (D) set of long non-coding RNA genes. 

We then tested whether gene-wise scores of RE-linked regulatory enrichments (GRE and NGRE) 
are comparable among the cell lines. We calculated pairwise gene-by-gene Pearson correlation 
coefficients between five cell lines investigated here for GRE (Figure 2A) or NGRE (Figure 2B) scores.  

 

Figure 2. Comparison of RE-linked regulatory enrichment scores between five cell lines investigated. 
Each panel represents Pearson correlation plot for corresponding score, labels denote cell lines 
investigated. (A) GRE score; (B) NGRE score; (C) PII score and (D) NPII score. Color scale represents 
Pearson correlation. 

Gene-based scores showed a high degree of similarity between the cell lines: pairwise Pearson 
correlation coefficients were between 0.53 and 0.74 for GRE and between 0.68 and 0.83 for NGRE. 

Figure 1. Correlations of H3K4me1 histone modification profiles with the RNA sequencing gene
expression data. The histone modification profiles (vertical axis) were compared with normalized gene
expressions (abscissa) for 6 GM12878, 10 HepG2 and 22 K562 cell line RNA sequencing experiments.
Pearson correlations were measured for (A) set of all known genes; (B) set of protein coding genes;
(C) set of microRNA genes and (D) set of long non-coding RNA genes.
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Figure 2. Comparison of RE-linked regulatory enrichment scores between five cell lines investigated.
Each panel represents Pearson correlation plot for corresponding score, labels denote cell lines
investigated. (A) GRE score; (B) NGRE score; (C) PII score and (D) NPII score. Color scale represents
Pearson correlation.
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Gene-based scores showed a high degree of similarity between the cell lines: pairwise Pearson
correlation coefficients were between 0.53 and 0.74 for GRE and between 0.68 and 0.83 for NGRE.
Similarly, the PII and NPII scores also showed high similarities between the five different cell lines
investigated (Figure 2C,D). We therefore concluded that gene-based scores were congruent among the
cell lines tested and, for the next steps of the RetroSpect analysis, they were arithmetically averaged
gene-by-gene across the cell lines.

We applied simple linear regression to identify genes that were relatively enriched of deficient
by RE-linked H3K4me1 tags. To identify RE-linked regulation (RRE) enriched and deficient genes,
we built a trend line using the least-square method in the coordinates of gene GRE and NGRE scores.
Intercept of linear model was set to zero (Figure 3). The genes having greater relative (NGRE) compared
to absolute (GRE) RE-regulation metric were considered RRE-enriched, and vice versa.
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Figure 3. Comparison of GRE (abscissa axis) and NGRE (axis of ordinates) scores for human
genes. Color indicates different gene groups (red—RRE-enriched genes, blue—intermediate genes,
green—RRE-deficient genes). Each dot represents single gene. Pearson correlation coefficient (r) and
Pearson p-value (p) are shown separately.

For the above linear model, we sampled 5% of genes having biggest distances from the NGRE-GRE
trend line. The above and below 5% gene sets were considered, respectively, RRE-enriched and
RRE-deficient (listed in Supplementary Table S5).

The same approach was also used for the molecular pathway data (Figures 2C,D and 4).
We calculated absolute (PII) and normalized (NPII) pathway involvement scores for 3095 molecular
pathways separately for five human cell lines (Supplementary Table S6). We then deduced pairwise
Pearson correlation coefficients between the cell lines (Figure 2C,D respectively, for PII and NPII).
Correlation coefficients for PII varied from 0.53 till 0.66, for NPII they varied from 0.44 till 0.69.
Therefore, PII and NPII values were highly congruent between the cell lines investigated and for
further analysis we used their averaged values across the five cell lines.

Similar to the gene-based analysis, we built a linear model and sampled the top and bottom 5%
molecular pathways with the biggest distances from the trend line and that were also considered
RRE-enriched and RRE-deficient molecular pathways, accordingly (listed in Supplementary Table S7).
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pathways. Color indicates different pathway groups (red—RRE-enriched molecular pathways,
blue—intermediate pathways, green—RRE-deficient molecular pathways). Each dot represents
single pathway. Pearson correlation coefficient (r) and Pearson p-value (p) are shown separately.

3.2. Functional Characteristics of Top RRE-Enriched and Deficient Genes

In order to functionally characterize RRE-enriched and deficient genes, we performed gene
ontology analysis of the corresponding gene sets using DAVID software. We extracted all GO terms
corresponding to molecular function, biological process and cellular component [51] and manually
sorted them according to their biological roles.

3.2.1. RRE-Enriched Genes

For the RRE-enriched set of human genes (Supplementary Table S5) we defined nine major groups
of the corresponding GO terms obtained using DAVID software (Supplementary Table S8). In toal,
there were 32 GO terms with a p-value less than 0.05. Among them, six terms were connected with
RNA synthesis and degradation, four were connected with DNA- and chromatin-linked processes,
three were connected with translation, three were connected with metabolism of lipids, three were
connected with metals metabolism and ion transport, two were connected with immune system,
two were connected with sensory perception and neurotransmission, and two were connected with
the cell cycle regulation. Finally, the last group called “Other and General terms” contained seven
terms which solely represented particular biological functions.

3.2.2. RRE-Deficient Genes

For the RRE-deficient genes (Supplementary Table S5), we identified 16 groups of GO terms
that passed the statistical threshold (Supplementary Table S8). This reflected a bigger number of
p-value-filtered GO terms identified (169). Among them, 45 terms were connected with morphogenesis,
23 were connected with RNA synthesis and degradation, 15 were connected with different types
of molecular signaling, four were connected with hormone signaling pathways, 11 were connected
with programmed cell death, eight were connected with immunity, two were connected with protein
ubiquitination and degradation, seven were connected with protein aggregation and import, 12 were
connected with cell adhesion, migration and interaction, six were connected with cell cycle and
mitosis regulation, four were connected with transport of ions, three were connected with DNA- and
chromatin-linked processes, two were connected with response to stress, and two were connected with
intracellular processes of response to viruses. Finally, the “Other and general terms” group contained
eighteen different terms (Table 2).
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3.2.3. Alternative GO Annotation Analysis

Alternatively, we also did functional annotation of RRE-enriched (Supplementary File S9) and
deficient (Supplementary File S10) gene sets using Gorilla software and “Gene Ontology Biological
Process” database [52]. The only major biological process identified by Gorilla software analysis for
the RRE-enriched gene set was gene silencing by microRNA and RNA catabolism; in turn, for the
RRE-deficient gene set, (i) protein ubiquitination and (ii) negative regulation of TORC1 signaling
processes were identified.

3.2.4. Enrichment by Non-Coding RNA Genes

MicroRNAs and lncRNAs are regulatory non-coding RNA molecules that can specifically modulate
gene expression. We evaluated the contents of microRNA and lncRNA genes among the RRE-enriched
and deficient genes. We used hypergeometric sampling model to calculate the degree of improbability
to obtain the observed numbers of miRNA and lncRNA genes in the top and bottom gene sets by
random sampling, summarized on Table 1.

Our findings suggested that both microRNA and lncRNA genes were strongly overrepresented in
the group of RRE-enriched genes (p-values 2.22e-08 and 3.49e-08, respectively). Moreover, lncRNA
genes were also underrepresented in the RRE-deficient cohort (p-value 0.0049), which was not the case
for the microRNA genes (p-value 0.33).

3.2.5. Significance of RRE-Based Functional Gene Annotations

In order to evaluate the significance of the observed annotations obtained using RRE characteristics,
we generated 500 random permutations of gene names and corresponding GRE or NGRE scores.
For each permutation, 1204 top and 1204 bottom genes were randomly taken and used as described
above for the real RRE-top and bottom genes. These randomly generated gene sets were then analyzed
using DAVID software, and top-100 GO terms were selected by the lowest p-value for each random
permutation. Finally, we compared the distributions of p-values for the real and random gene sets
(Figure 5A,B for RRE-enriched and deficient genes, respectively). This type of analysis showed that the
RRE-deficient molecular processes identified here were mostly statistically significant, because the peak
value of real distribution (mode) was lower than the mode of random distribution (Figure 5B). However,
most of all RRE-enriched GO terms overlapped with the random distribution (Figure 5A), although
there were few GO terms with significantly lower p-values than for the random permutations. Since
none of the 500 random permutations generated GO-terms with p-values lower than those observed
for the real RRE-enriched or RRE-deficient genes, the overall q-values of confidence for both groups
were smaller than 0.002, thus indicating a high confidence level of the biological processes identified.

3.3. Functional Analysis of Top RRE-Enriched and Deficient Molecular Pathways

In order to functionally characterize top RRE-enriched and deficient molecular pathways,
we manually classified them into groups according to their biological functions.

3.3.1. RRE-Enriched Pathways

For the top 5% (155 pathways) we totally identified 14 functional groups (Supplementary Table S7).
Thirty-three pathways were classified as general signaling pathways, 22 were connected with cell
cycle and mitosis, seven were connected with cell death, 16 were connected with morphogenesis,
12 were connected with lipid metabolism, 13 were connected with cell adhesion, migration and cell-cell
interactions, 11 were connected with the immune system, seven were connected with DNA metabolism
and chromatin structure, seven were connected with cytoskeleton formation, five were connected with
endocytosis, three were connected with RNA synthesis and degradation, two were connected with the
metabolism of amino acids and three were connected with sensory perception and neurotransmission.
Finally, the group “Other pathways” included 14 stand-alone pathways.
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Table 1. Analysis of human non-coding RNA RE-linked regulation.

Group Non-Coding
RNA Class

Number of
Non-Coding RNA

Genes in the Sample

Expected Number of
Non-Coding RNA

Genes in the Sample,
Random

Distribution Model

Hypergeometric p-Value
for Hypothesis That

Non-Coding RNA Genes
are Overrepresented in

the Respective Gene Set

Hypergeometric p-Value
for Hypothesis That

Non-Coding RNA Genes
are Underrepresented in
the Respective Gene Set

Conclusion

RRE-enriched lncRNA 145 74 2.22 × 10−8 0.99999998 lncRNAs are
overrepresented

RRE-deficient lncRNA 54 74 0.9951 0.0049 lncRNAs are
underrepresented

RRE-enriched microRNA 145 90 3.49 × 10−8 0.99999997 microRNAs are
overrepresented

RRE-deficient microRNA 94 90 0.33 0.67
microRNAs are neither

overrepresented nor
underrepresented
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3.3.2. RRE-Deficient Pathways

For the 5% bottom human pathways we identified 17 functional groups (Supplementary Table S7).
Thirty-eight pathways were referred as general signaling pathways, 22 pathways were connected
with the immune system, 13 were connected with apoptotic processes, three were connected with the
cell cycle, 15 were connected with cell adhesion, migration and intercellular interactions, five were
connected with protein aggregation and import, three were connected with translation, protein export
and folding, eight were connected with lipids metabolism, eight were connected with the detoxication of
xenobiotics, eight were connected with morphogenesis, six were connected with DNA metabolism and
chromatin structure, four were connected with the metabolism of amino acids, three were connected
with hormone-mediated signaling, three were connected with the metabolism and transport of metal
ions, four were connected with endocytosis, and two were connected with formation of the cytoskeleton.
Ten pathways were included in the group “Other pathways”.

3.4. Comparison of Gene- and Pathway-Based RRE Data

We then compared groups of functional processes found to be RRE-enriched or deficient using
two types of analyses: based on GO and on molecular pathways (Table 2).

Among the groups that were annotated during both pathway and GO analysis, there were
three RRE-enriched groups, seven RRE-deficient groups and five groups with ambiguous trends
(four were RRE-enriched according to pathway analysis and RRE-deficient according to GO annotation;
contrarily, one group was RRE-enriched by GO annotation and deficient by pathway analysis). Overall,
Matthews correlation coefficient for these two analyses was 0.342, thus indicating their moderate
convergence. The consensus groups of molecular processes contained the following pathways and
regulatory networks.

3.4.1. RRE-Enriched Processes

(1) The “Posttranscriptional silencing by small RNAs” group was identified using Gorilla functional
annotation of RRE-enriched genes and included microRNA-mediated gene silencing.

(2) The “DNA Metabolism and Chromatin Structure” group included double strand break
DNA repair, transcription-coupled DNA repair, DNA strand displacement and chromatin
remodeling processes.

(3) The “Sensory Perception and Neurotransmission” group consisted of olfactory receptors activity
(more specifically, class C3 metabotropic glutamate pheromonic receptors activity) and retinoid
cycle in cones, which is responsible for color vision in primates.

(4) The “Lipids Metabolism” group contained fatty acid biosynthesis, beta-oxidation and desaturation
of fatty acids as well as phospholipase A2 activity and modification of sterols via cytochrome P450.
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Table 2. RRE enrichment of the molecular processes according to GO and pathway analyses.

Group of Processes Pathway Analysis GO Analysis
Overall Status

Enriched Deficient Enriched Deficient

Posttranscriptional silencing by small RNAs 1 0 1 0 enriched

DNA Metabolism and Chromatin Structure 7 6 4 3 enriched

Sensory Perception and Neurotransmission 3 0 2 0 enriched

Lipids Metabolism 12 8 3 0 enriched

Endocytosis 5 4 0 0 enriched

Immune System 11 21 2 8 deficient

Protein Ubiquitination and Degradation 0 5 0 2 deficient

Cell Adhesion, Migration and Interaction 13 15 0 12 deficient

Metals Metabolism and Ion Transport 0 3 3 4 deficient

Cell Death 7 13 0 11 deficient

General Signaling Pathways 33 38 0 15 deficient

Hormones Signaling Pathways 0 3 0 4 deficient

Stress Response 0 0 0 2 deficient

Response to Viruses 0 0 0 2 deficient

Amino Acids Metabolism 2 4 0 0 deficient

Detoxication of Xenobiotics 0 8 0 0 deficient

Protein Aggregation and Import 0 0 0 7 deficient

Morphogenesis 16 9 0 45 ambiguous

Cytoskeleton 7 2 0 7 ambiguous

RNA Synthesis and Degradation 3 0 6 23 ambiguous

Translation, Protein Export and Folding 0 3 3 0 ambiguous

Cell Cycle and Mitosis 22 3 2 6 ambiguous

Other Processes 14 10 7 18 ambiguous
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3.4.2. RRE-Deficient Processes

(1) “Immune System” was a heterogenous group of molecular processes such as dendritic cell
chemotaxis and cytokine production, IL-1, IL-3, IL-4, TLR and PD-1 signaling, asthma-related
signaling and activation of RAS GTPase in B-cells.

(2) The “Protein Ubiquitination and Degradation” group included ubiquitin-ligase activity, K63
polyubiquitin binding (non-degradative signal), protein degradation in proteasomes and
autodegradation of E3 ubiquitin-ligase.

(3) The “Cell Adhesion, Migration and Interaction” group included tight junction formation,
E-cadherin binding, cell interaction with extracellular matrix (hyaluronanglucosaminidase activity,
laminin binding and inhibition of matrix metalloproteinases), MMIF-mediated angiogenesis and
platelet aggregation processes.

(4) The “Metals Metabolism and Ion Transport” group consisted of zinc and calcium ion binding,
chloride and potassium channels activity.

(5) The “Cell Death” group contained various signaling pathways responsible for activation of
apoptosis (p53, MEF2D-mediated apoptosis in T cells and BAD translocation to mitochondria),
PTEN-mediated cell cycle arrest leading to apoptosis, caspase cascade and permeabilization of
mitochondrial outer membrane.

(6) The “General Signaling Pathways” group included wide variety of signaling pathways such as
NK-κB, VEGF, EGF, IGF and mTOR signaling.

(7) The “Hormone Signaling Pathways” group included steroid hormone mediated signaling
pathways mediating response to estrogen and testosterone and PELP1 modulation of estrogen
receptor activity.

4. Discussion

In this study we analyzed the whole genome enrichment profiles of histone mark H3K4me1
in order to identify the extent of RE-linked enhancer regulation of human genes and molecular
pathways. The data for five human cell lines of different tissue origin (MCF-7, K562, HepG2, HeLaS3,
GM12878) were extracted from the ENCODE repository and analyzed according to the RetroSpect
methodology [21,22]. We could only work with the cell lines instead of normal tissues due to public
availability of high throughput epigenomic data. The cell lines selected represented four different
tissues of human body. However, we found that the histone tags highly correlated between the different
cell lines, thus suggesting only minor impact of a tissue-specific component on the data.

Enhancers are long distance-acting cis-regulatory elements that play a central role in mediation
of cell type- and cell state- specific variation in gene expression patterns [13]. There are more than
1,000,000 enhancers in the human genome [14]. The chromatin landscape of enhancers is complex
and includes a variety of epigenetic signatures such as histone modifications [53], TFBS [54], DNaseI
hypersensitivity sites [55] and short non-coding eRNA expression [56].

Molecular functions of enhancers are primarily dependent on TFs that cooperatively bind to
multiple clustered TFBS. This includes lineage specific TFs and sequence-dependent effectors of
signaling pathways, which allows for the integration of intrinsic and external signals in gene expression
regulation [57]. Previously, we utilized RetroSpect to investigate RE-linked TFBS impact on human
gene expression and found a group of conservative molecular processes that were enriched or deficient
in RE-linked TFBS regulation [21].

Nevertheless, TFBS is not an enhancer-specific epigenetic feature [57]. Though H3K4me1 is a mark
of both active and dormant enhancers [58,59], it is a broad enhancer-specific “window of opportunities”
that defines active enhancers as well as those primed to activation and deactivated ones [13]. All other
enhancer chromatin markers, such as H3K27ac, appear in the context of pre-existing H3K4me1 [13,59]
and disappear after downregulation of enhancer activity [58]. We therefore used H3K4me1 as the
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enhancer hallmark to identify genes and molecular pathways whose regulation is enriched or deficient
in RE-linked enhancers—which reflects their regulatory evolution.

Here, we found very high number of non-coding RNAs (microRNA and lncRNA) among the
genes enriched in RE-linked enhancer regulation. Moreover, “gene silencing by microRNA and RNA
degradation” was the most significant RRE-enriched GO term according to Gorilla software annotation.
The same pattern was already observed in the previous study of human genes enriched in RE-linked
TFBS regulation [21]. This finding confirms the concept of non-coding RNAs as primary mediators of
RE-driven regulatory evolution. Indeed, the non-coding RNAs and REs are tightly interconnected
“planets” in the human genome “universe” since RE insertions sometimes generate new non-coding
RNA genes that have an evolutionary chance of gaining biological function [60]. Moreover, the
non-coding RNA is a source of evolutionary regulatory innovations that dates back to the origin
of major Metazoan clades, such as Piwi-interacting RNAs that appeared during the emergence of
metazoan multicellularity [61]. Additionally, the evolution of epigenetic repression mediated by small
non-coding RNAs (RNA interference) and some other nucleic acids based immune mechanisms were
driven by REs and retroviruses as an example of host-pathogen evolutionary arms-race [62]. Therefore,
our finding of high RE regulatory load on human non-coding RNAs (detected both at the levels of TFBS
and H3K4me1) highlights the vision of non-coding RNAs as the major way of RE-driven regulatory
evolution and innovation.

Using RetroSpect functional annotation procedure, we extracted consensus groups of molecular
processes that are enriched or deficient in RE-linked enhancer regulation. The set of RRE-enriched
processes (three groups) was relatively short compared to the figure of eight groups previously
identified by TFBS ¬RetroSpect analysis [21]. This lower number of groups can be explained by the
lower number of independent data profiles from ENCODE experimental studies that were included
in RetroSpect protocol (one profile for each cell line here and 4260 profiles for different cell lines
in [21]). Moreover, the different number of groups of processes can be due to a biological difference of
the functional marks investigated: REs can impact gene regulation not only via long-distance acting
enhancers, but also via TFBS acting proximal to transcription start site [9]. Therefore, RE-linked TFBS
regulatory impact could be broader than the enhancer-only impact.

However, the pattern of molecular processes impacted by RE-linked enhancers agrees well with
the previous findings. For example, the high RE-linked enhancer enrichment of the “Sensory perception
and neurotransmission” group is in accord with the previously reported enrichment of this group by
RE-linked TFBS [21]. This conservative high RRE pattern underlines the fast regulatory evolution of
sensory perception and nervous system in the mammalian clade. Indeed, most parts of the mammalian
forebrain are linked with the sensory system and have been evolving quickly [63]. Lipids metabolism
is another enriched group that also showed quick regulatory evolution in RE-linked TFBS study [21].
The accelerated evolution of human lipidome was shown in several independent lipidomic assays,
which was connected with accelerated brain evolution in primate lineage, since lipid composition is
crucial for proper functioning of CNS [64]. Moreover, positive selection and coevolution of different
lipid metabolism enzymes in primates was detected previously [65] in the context of adaptation of
energetic balance and endothermic metabolism [66]. The third RRE-enriched group, DNA metabolism
and chromatin structure, primarily contained various processes of DNA repair, which is in agreement
with the results of the previous TFBS RetroSpect analysis [21]. This can be explained by redundancy
and catalytic promiscuity of DNA repair systems [67].

On the other hand, the conservative (RRE-deficient) molecular processes identified here are also
in some aspects congruent with those identified previously by TFBS analysis [21] and with some
general evolutionary trends established by other methods. For example, the “Protein ubiquitination
and degradation” group is one of the most conservative core intracellular processes [68]. Similarly, the
“General signaling pathways” group was found as a group with relatively low regulatory evolution,
also in the RetroSpect TFBS analysis [21]. The conservative state of this group is most likely due to an
enormous complexity and interdependence of core intracellular signaling in mammals. Deregulation
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of these signaling networks can lead to severe proliferative and developmental disorders in complex
long-living organisms such as primates [69]. There are however other means of signaling pathway
regulatory evolution such as point mutations and duplications/deletions/translocations of pre-existing
regulatory elements [70] that can lead to signaling networks complexity growth [71].

The “Immune system” group was identified here as mostly conservative in contrast to contradictory
pattern (RRE-enriched cellular immune response versus RRE-deficient cellular mechanisms of antiviral
response) detected previously for the RE-linked TFBS [21]. This difference can be a consequence of
lower resolution of RetroSpect methodology for H3K4me1 enhancer mark compared to the larger TFBS
datasets (moreTFBS data profiles investigated). Interestingly, in this study, we found three conservative
groups important for multicellular organisms, “Cell Adhesion, Migration and Interaction”, “Cell Death”
and “Hormone Signaling Pathways” are groups that were not found in the TFBS analysis [21]. In the
previous RE-linked TFBS study, the impact of these groups was neither RRE-enriched nor deficient.
The last group, “Hormone Signaling Pathways”, was previously identified as RRE-enriched only in
the pathway analysis [21]. We speculate that RE-linked regulation for these groups of processes can be
rather promoter-proximal than long distance-acting. Though further correct statistical validation of
this hypothesis is required, the underlying biological reason for this asymmetry can be the fact that
enhancers are long distance acting elements that require additional cis-acting sequences (insulators and
anchor elements) and trans-acting factors (coactivators, CTCF protein, etc.) for the correct looping and
activation of the cognate promoter [72,73]. Therefore, emergence of a new RE-linked enhancer could
introduce more noise and perturbation into authentic gene regulatory networks than the emergence
of a RE-linked TFBS near a pre-existing promoter. Since the above three groups of processes need to
be tightly regulated in order to orchestrate development of multicellular organism, the “noisiest” RE
insertions could be selectively eliminated or silenced [74]. Intriguingly, the same pattern was seen for
the group “Metals Metabolism and Ion Transport” as well.

Despite the marked convergence between current results and TFBS-based analysis [21], as much
as 10 groups of molecular processes that were established in the TFBS analysis have not been observed
here, and three new groups (“Endocytosis”, “Morphogenesis” and “Cytoskeleton”) were observed
only in the current study. Among groups annotated in both studies, six groups have the same status
based on consensus molecular pathways and GO annotation in both studies, five groups have the same
status based on single annotation type (at least in one study) and eight groups have different statuses
in these two studies. Overall statistics for the two studies are shown in Table 3.

Again, the possible reason for such differences is a lower resolution of RetroSpect for
H3K4me1 mark compared to the TFBS datasets. Another possibility is the prevalence of RE-linked
promoter-proximal regulation for groups identified in the TFBS study only [21], whereas RE-linked
regulation of genes connected with “Endocytosis”, “Morphogenesis” and “Cytoskeleton” groups could
be long-distance acting rather than promoter-proximal.

Additionally, the possible explanation for the existence of eight groups with different
RRE-enrichment statuses is multiple opposite trends in RE-driven regulatory evolution for each
of these groups. For example, the “Cell Cycle and Mitosis” group could contain some regulatory
networks (such as regulation of cell cycle by certain growth factors) that undergo accelerated regulatory
evolution (RRE-enriched), whereas other processes of cell division (such as mitotic spindle formation)
could be conservative. Though this scenario is speculative, eukaryotic cell cycle machinery contains
both conservative and quickly evolving parts [75]. Further studies are needed to clarify the molecular
evolution of processes in groups such as “Immunity”, “Metals Metabolism and Ion Transport”,
“Hormones Signaling Pathways”, “Amino Acids Metabolism”, “Detoxication of Xenobiotics”, “RNA
Synthesis and Degradation”, “Translation”, “Protein Export and Folding”, “Cell Cycle” and “Mitosis”.
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Table 3. Comparison of isolated groups of processes in current study and in TFBS study [21].

Group of Processes

Current Study TFBS Study

CommentOverall Status
Type of Analysis

Status
Type of Analysis

(Pathways/GO/Consensus) (Pathways/GO/Consensus)

Consensus Match

Sensory Perception and Neurotransmission enriched consensus enriched consensus

Lipids Metabolism enriched consensus enriched consensus

Protein Ubiquitination and Degradation deficient consensus deficient consensus Corresponds to “Translation and Protein
Quality Control” in the TFBS study

Posttranscriptional silencing by small RNAs enriched consensus enriched consensus
Identified by Gorilla software and
validated using hypergeometric

enrichment in both studies

DNA Metabolism and Chromatin Structure enriched consensus enriched consensus Corresponds to “DNA repair” in the
TFBS study

General Signaling Pathways deficient consensus deficient consensus

Match by Overall Status

Stress Response deficient GO deficient GO

Cell Adhesion, Migration and Interaction deficient consensus deficient GO

Cell Death deficient consensus deficient GO

Protein Aggregation and Import deficient GO deficient GO Corresponds to “Protein Localization
and Modification” in the TFBS study

Response to Viruses deficient GO deficient consensus

Does not Match

Immune System deficient consensus ambiguous -

Metals Metabolism and Ion Transport deficient consensus enriched GO

Hormones Signaling Pathways deficient consensus enriched pathways Corresponds to “Hormones” in the
TFBS study

Amino Acids Metabolism deficient pathways enriched consensus
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Table 3. Cont.

Group of Processes

Current Study TFBS Study

CommentOverall Status
Type of Analysis

Status
Type of Analysis

(Pathways/GO/Consensus) (Pathways/GO/Consensus)

Does not Match

Detoxication of Xenobiotics deficient pathways enriched consensus

RNA Synthesis and Degradation ambiguous - deficient GO

Translation, Protein Export and Folding ambiguous - deficient consensus Corresponds to “Translation and Protein
Quality Control” in the TFBS study

Cell Cycle and Mitosis ambiguous - deficient GO

Group Appears Only in one of the Studies

Endocytosis enriched pathways -

Morphogenesis ambiguous - - -

Cytoskeleton ambiguous - - -

Cellular immune response (T cells and NK
cells) - - enriched consensus

Fertilization - - enriched consensus

Vitamin metabolism - - enriched pathways

Molecular transport - - enriched pathways

Sulfur metabolism and linked redox
reactions - - enriched pathways

Response to phorbol acetate - - deficient GO

Electron transfer reactions - - deficient GO

Mitochondria - - deficient GO

Nucleic Base, Nucleosides and Nucleotides
metabolism - - deficient consensus

Carbohydrates metabolism - - ambiguous -
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In this study, we worked with the human cell line data instead of data for the normal tissues
due to public availability of high-throughput profiles for target histone marks and RNA sequencing
data for the former. The five cell lines selected for our analysis represented different tissues of human
body. However, we found that the histone tags highly correlated between the different cell lines,
thus suggesting only minor impact of a tissue-specific component on the data. Availability of novel
epigenetic datasets corresponding to normal human tissues would be extremely desirable for further
re-analysis of data using RetroSpect pipeline.

Here, we used RetroSpect methodology to analyze a histone mark H3K4me1 in the context
of RE-linked transcriptional regulation and RE-linked regulatory evolution. This evidences that
RetroSpect is applicable to the different types of functional genome landmarks. We hope that
examination of new functional genomic markers using RetroSpect methodology will help building an
integrated model of human genome regulatory evolution. We also suggest that the new directions for
RetroSpect applications could be non-human organisms such as the model species mouse, zebrafish
and drosophila.

5. Conclusions

In this study we investigated the regulatory influence of RE-linked enhancer elements on human
molecular processes using the previously developed RetroSpect analytic pipeline. We found that the
most quickly evolving molecular processes under the regulatory impact of RE-linked enhancers were
connected with posttranscriptional silencing by small RNAs, DNA metabolism and chromatin structure,
sensory perception/neurotransmission and lipids metabolism. The most conservative processes were
dealing with immunity, protein ubiquitination and degradation, cell adhesion, migration and interaction,
metals metabolism/ion transport, cell death, general and hormones signaling pathways. There was a
significant enrichment of non-coding RNA groups among the genes enriched in RE-linked enhancer
regulation. Our findings open an avenue towards building an integral picture of RE-driven regulatory
evolution and understanding the origin of regulatory complexity and innovation in humans.
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