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Abstract: Parkinson’s disease, like other neurodegenerative diseases, exhibits two common
features: Proteinopathy and oxidative stress, leading to protein aggregation and mitochondrial
damage respectively. Because both protein aggregates and dysfunctional mitochondria are
eliminated by autophagy, we suggest that inadequate clearance may couple the two phenomena.
If a neuron’s autophagy machinery is overwhelmed, whether by excessive oxidative stress or
by excessive protein aggregation, protein aggregates and dysfunctional mitochondria will both
accumulate. Parkinson’s disease may provide a unique window into this because there is
evidence that both sides contribute. Mutations amplifying the aggregation of α-synuclein are
associated with Parkinson’s disease. Likewise, mutations in Parkin and PINK1, proteins involved
in mitophagy, suggest that impaired mitochondrial clearance is also a contributing factor.
Many have suggested that dopamine oxidation products lead to oxidative stress accounting for
the dopaminergic selectivity of the disease. We have presented evidence for the specific involvement
of hypochlorite-oxidized cysteinyl-dopamine (HOCD), a redox-cycling benzothiazine derivative.
While toxins like 6-hydroxydopamine and 1-methyl-4-phenyl pyridinium (MPP+) have been used to
study mitochondrial involvement in Parkinson’s disease, HOCD may provide a more physiologically
relevant approach. Understanding the role of mitochondrial dysfunction and oxidative stress in
Parkinson’s disease and their relation to α-synuclein proteinopathy is important to gain a full picture
of the cause, especially for the great majority of cases which are idiopathic.

Keywords: autophagy; cysteinyl-dopamine; hypochlorite; oxidative stress; Parkinson’s disease;
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1. Introduction

Neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic
lateral sclerosis (ALS), are commonly associated with both protein aggregation and oxidative stress.
The protein deposits are clearly visible and have attracted considerable attention. Oxidative stress
has been much more elusive, and cellular processes contributing to it have been vaguely defined.
The dopaminergic neurons that die in Parkinson’s disease are unusually prone to mutations in
mitochondrial quality-control factors, such as Parkin and PINK1 [1,2], to mitochondrial toxins like
rotenone [3], and to dopamine oxidation products [4–11]. As a consequence, Parkinson’s disease may
offer a unique window into the role of oxidative stress in neurodegenerative diseases generally.

While oxidative stress and proteinopathy are usually studied separately, an integrated perspective
may help synthesize what we know about neurodegenerative diseases. Oxidative stress and
proteinopathy are linked by autophagy, which is a normal cellular mechanism for clearing both
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dysfunctional mitochondria and aggregated proteins (Figure 1). This implies that a problem with
autophagy will result in accumulation of both protein aggregates and dysfunctional mitochondria,
consistent with the coincident occurrence of proteinopathy and oxidative stress. A further implication
is that autophagy overload may be caused by either excessive protein aggregation or extreme oxidative
stress. In neurodegenerative diseases, what might cause the normal cycling of material by autophagy
to spiral out of control leading to the death of neurons?

Figure 1. Autophagy (specifically macroautophagy) couples proteinopathy and oxidative stress.

In the context of Parkinson’s disease (PD), the unique vulnerability of dopamine neurons
to oxidative stress has received considerable attention. Much of that has focused on
dopamine, the defining component of dopaminergic neurons, and on potentially toxic products
formed by its oxidation [6–11]. Although candidate toxins have been elusive, we recently
described hypochlorite-oxidized cysteinyl-dopamine (HOCD), a cytotoxin formed by exposing
cysteinyl-dopamine to hypochlorite [4]. Hypochlorite is itself a contributor to oxidative stress, and the
enzyme that produces it, myeloperoxidase, is induced by low concentrations of rotenone and by HOCD
itself. HOCD is a potent redox cycler and may increase oxidative stress and accelerate the formation of
dysfunctional mitochondria. Therefore, HOCD along with α-synuclein aggregation may contribute
to an excessive and unsustainable demand for autophagy, ultimately triggering regulated cell death.
To put this in a broader context, we will begin with brief discussions of autophagy/proteinopathy and
mitophagy/oxidative stress and then consider how HOCD may contribute to the selective death of
dopaminergic neurons.

2. Proteinopathy and Autophagy

It is well known that proteinopathies or formation of protein deposits are a common feature
of neurodegenerative diseases. The plaques and tangles formed by deposits of amyloid β and
tau proteins are hallmarks of Alzheimer’s disease. The cytoplasmic inclusion bodies called Lewy
bodies containing aggregates of α-synuclein are characteristic of Parkinson’s disease. Aggregation of
polyglutamate variants of huntingtin is a cause of Huntington’s disease. And aggregation of TDP-43
and/or superoxide dismutase 1 is observed in ALS. Mutations in these proteins are associated with
familial forms of these diseases arguing that the protein aggregates can contribute to neurodegeneration.
Accordingly, much work has focused on the toxicity of specific protein aggregates.

In all proteinopathies, it can be debated whether lethality is attributable to intrinsic toxicity
of the protein or to the aggregated state itself. In either case, however, the problem lies in the
accumulation of the protein. Evidence supports the view that protein aggregates are removed by
autophagy [12–20]. Moreover, there is good evidence that enhancing autophagy is beneficial for
treating neurodegenerative diseases [13–15,17,21]. Therefore, we can imagine that protein aggregation
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leads to autophagy, and problems arise when the capacity of the neuron to clear these deposits by
autophagy is exceeded.

Following common practice, we will use the term autophagy to refer specifically to
macroautophagy. Autophagy is a highly selective process in which damaged/aggregated proteins
or damaged organelles are marked by ubiquitin for elimination. When mitochondria are the
target, the process is commonly called mitophagy. In either case, the process begins with
the formation of a double-membrane structure called the isolation membrane or phagophore.
It wraps around the material to be eliminated forming a closed structure called the autophagosome.
Finally, lysosomes fuse with the autophagosome creating an autolysosome, and lysosomal hydrolases
then degrade the material inside. During the process, a cytosolic protein, microtubule-associated
protein 1A/1B light chain 3B (LC3-I) is recruited to the autophagosomal membrane where it is
lipidated with phosphatidylethanolamine to form LC3-phosphatidylethanolamine conjugate (LC3-II).
LC3-II, therefore, is useful as a marker for autophagosomes. For reviews of autophagy see
References [22,23].

Autophagy/mitophagy is a receptor-mediated process; specific receptors including p62
and optineurin simultaneously interact with the cargo and LC3-II on the isolation membrane,
thus recruiting the damaged protein/organelle to the autophagosome. These receptors have an
LC3-interacting region (LIR) and a ubiquitin-binding domain (UBD) that binds to ubiquitin chains
on the target protein/organelle. Ubiquitin and p62 seem to be more commonly associated with
protein deposits. For example, p62 has been reported in α-synuclein deposits in neuron-specific
autophagy-deficient mice [24]. On the other hand, in mitophagy, optineurin seems to be the favored
receptor [25,26].

With specific relevance to Parkinson’s disease, both glucocerebrosidase and leucine-rich repeat
kinase 2 seem to be needed for proper functioning of the autophagy/lysosome pathway [27–29].
Mutations in genes for both proteins (GBA1 and LRRK2) are associated with familial cases of
Parkinson’s disease.

What happens when a cell cannot keep pace with the accumulation of cellular debris?
An emerging view is that autophagy is just the normal first response. If a cell is so dysfunctional
that its autophagic machinery cannot keep up, that cell is eliminated by regulated cell death as
a last resort [22,23]. Historically, regulated cell death was more or less synonymous with apoptosis.
As new pathways of regulated cell death were discovered, however, new nomenclature was required.
The Nomenclature Committee on Cell Death 2018 has defined twelve major cell death subroutines [30].
Two, intrinsic apoptosis and parthanatos, are of interest here.

Intrinsic apoptosis has been studied extensively. It involves mitochondrial outer membrane
permeabilization (MOMP), followed by release of cytochrome c and other factors into the cytosol.
This activates a caspase cascade ultimately resulting in cell death. A multitude of regulatory
proteins are also involved. Given the detail with which intrinsic apoptosis is understood, it is
apparent that it and autophagy are mutually inhibitory [22,23]. Autophagy inhibits apoptosis by
eliminating dysfunctional mitochondria that might otherwise trigger the intrinsic apoptotic pathway.
Autophagy also degrades components of the apoptosis cascade including caspases and the BH3-only
protein NOXA. Apoptosis, on the other hand, inhibits autophagy because apoptotic caspases degrade
Beclin-1, a protein involved in expansion of the isolation membrane in autophagy [31]. Thus, the two
processes are coordinated so they do not occur concurrently. Autophagy is the normal response to
clear unwanted material; if that fails, death by apoptosis may occur.

Parthanatos is a mode of regulated cell death involving hyperactivation of
poly(ADP-ribose)polymerase 1 (PARP1) and occurs in response to DNA damage and oxidative
stress [30]. Hyperactivation of PARP1 results in the production of poly(ADP-ribose) which binds to
apoptosis inducing factor (AIF), causing its release from mitochondria and translocation to the nucleus
where it promotes DNA fragmentation. Significantly, protein aggregates, including α-synuclein [32]
and amyloid β [33] seem to trigger hyperactivation of PARP1. The dopaminergic neurotoxins MPTP
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and 6-hydroxydopamine also affect PARP1 [34,35], and we have found that HOCD causes cleavage of
PARP1 in PC12 cells [36]. All of this marks parthanatos as a prime contender for the cause of neuronal
death in neurodegenerative disease. The interplay between autophagy and parthanatos is not yet clear.
One would presume, as with intrinsic apoptosis, that parthanatos is the last resort after autophagy and
other protective mechanisms fail. How parthanatos interacts with autophagy and its role in neuronal
death are clearly significant questions.

3. Mitochondrial Dysfunction and Mitophagy

Several lines of evidence show that mitochondrial dysfunction plays a pivotal role in the
pathogenesis of Parkinson’s disease and other neurodegenerative disorders [37–40]. Disruption of
electron flow through the respiratory chain as well as other metabolic reactions in the mitochondrion
can produce reactive oxygen (ROS) and reactive nitrogen species (RNS), thus contributing to oxidative
stress [41]. This ROS/RNS generation can cause irreversible damage to DNA, lipids, and proteins.
This is especially significant in mitochondria, which lack many of the repair mechanisms available
in the cytosol and nucleus and which are prone to oxidation because of the relatively high pH in
the matrix. Mitochondrial damage, especially inhibition of complex I and other enzymes involved
in the respiratory chain, has been suggested as one of the fundamental causes of Parkinson’s
disease [42,43]. In this connection, Complex I inhibition by rotenone increases ROS production [44],
and low concentrations of rotenone selectively kill dopaminergic neurons [3].

To prevent the accumulation of damaged, ROS-producing mitochondria, elimination of
dysfunctional mitochondria is essential. Mitophagy uses the machinery of autophagy for this
selective degradation of senescent and damaged mitochondria, in order to maintain a healthy
mitochondrial pool. Several types of mitophagy have been described differing in the mechanism
by which mitochondria are engulfed by the autophagosome prior to degradation in the lysosomes.
The most well characterized is mitophagy mediated by two proteins—PTEN-induced kinase 1 or
PINK1 (a serine/threonine kinase) and Parkin (an E3-ubiquitin ligase). In healthy and polarized
mitochondria, PINK1 is imported to the inner membrane where it is cleaved by mitochondrial proteases
such as mitochondrial processing peptidase (MPP) and presenilin-associated rhomboid-like protein
(PARL) [45–47]. However, mitochondrial inner membrane depolarization, a sign of a damaged
mitochondrion, stabilizes PINK1 [48], which then phosphorylates serine 65 of ubiquitin and the
N-terminal ubiquitin-like domain of Parkin [49–51]. Phosphorylation of parkin activates its E3
ubiquitin ligase activity, resulting in ubiquitination of mitochondrial proteins, targeting them for
degradation by autophagy.

Genetic studies have revealed that mutation in the genes PRKN and PARK6, which encode for
Parkin and PINK1 respectively, are linked to autosomal recessive cases of early-onset or juvenile
forms of PD [1,2]. In addition, the PARK7 gene, also linked to autosomal recessive early-onset cases
of PD, encodes for the protein deglycase DJ-1, which also promotes autophagy and maintenance
of mitochondrial function [52]. The identification of these mutations in familial forms of PD
clearly suggests that impaired mitochondrial turnover is a key feature in the pathogenesis of
PD. Moreover, mitophagy is not only impaired in PD, but accumulating evidence suggests that
dysfunctional autophagy/mitophagy is also manifested in other neurodegenerative disorders such as
Alzheimer’s disease [53,54], Huntington’s disease [14,55], and ALS [25,56,57].

As Parkin/PINK1-mediated mitophagy depends on the loss of mitochondrial inner membrane
potential, it is not surprising that mitophagy is initiated by a variety of mitochondrial toxins.
These include the protonophore FCCP, the respiratory chain inhibitor antimycin, and the ATP
synthase inhibitor oligomycin. Others include the dopaminergic toxins 6-hydroxydopamine and
1-methyl-4-phenylpyridinium (MPP+) and the pesticide rotenone [58].

Pioneering work by the Greenamyre group established that chronic, systemic exposure to
rotenone can produce two major hallmarks of Parkinson’s disease: Selective dopaminergic neuron
degeneration and α-synuclein accumulation in cytoplasmic inclusions resembling Lewy bodies [3].
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Because rotenone is an inhibitor of Complex I of the mitochondrial respiratory chain, this has been
considered evidence for the involvement of mitochondrial dysfunction in PD. Rotenone treatment has
other effects as well, however. Especially interesting is a link between rotenone and myeloperoxidase
expression. Chang et al. [59] demonstrated that rotenone-induced neurotoxicity can be mitigated
by modulating myeloperoxidase levels. Moreover, we have reported that rotenone increases the
expression of myeloperoxidase in PC12 cells which, by forming hypochlorite, leads to the formation
of a toxic redox cycler, HOCD [4]. HOCD formation is exclusive to dopaminergic neurons since it is
formed by hypochlorite-mediated oxidation of cysteinyl-dopamine, a product of dopamine oxidation.
Interestingly, myeloperoxidase is a lysosomal enzyme, and this may account for its upregulation by
agents such as rotenone that promote autophagy/mitophagy.

4. Dopamine Oxidation and HOCD

Following the discovery that Parkinson’s disease is associated with the extensive loss of dopamine
neurons in the substantia nigra, there has been considerable speculation that dopamine oxidation
leads to the formation of toxic products. Some of this has focused on normal products of dopamine
metabolism, in particular 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is the immediate
product of the enzyme monoamine oxidase (Figure 2). The aldehyde is normally converted to
3,4-dihydroxyphenylacetic acid (DOPAC) by aldehyde dehydrogenase. The aldehyde, however,
can conjugate with amines in proteins altering the activity of those proteins [60], and inhibition of
aldehyde dehydrogenase does lead to increased toxicity of dopamine [61].

Figure 2. Products of dopamine oxidation.
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Most attention, however, has focused on the non-enzymatic oxidation of dopamine. Using induced
pluripotent stem cells from genetic and sporadic PD patients, Burbulla et al. [9] found that elevated
mitochondrial oxidative stress levels can trigger accumulation of dopamine oxidation adducts which,
together with mutation in DJ-1, initiates a toxic cascade resulting in α-synuclein accumulation.
Dopamine undergoes spontaneous auto-oxidation to form the dopamine quinone. This is accelerated
in the presence of metal ions such as iron or copper, so these would be expected to exacerbate
effects of dopamine oxidation. The dopamine quinone itself has been cited as a toxin [10], but it is
unstable and either cyclizes to form aminochrome or conjugates with thiols to form products such as
5-S-cysteinyl-dopamine (Figure 2). Aminochrome continues to receive attention [11], but it is neither
a very potent neurotoxin nor the main product of dopamine oxidation in vivo. The predominant
product in vivo, given the pervasive presence of cysteine, is cysteinyl-dopamine. Carlsson and his
colleagues [62] detected cysteinyl-dopamine in the cerebrospinal fluid of PD patients, in dopamine-rich
regions of the brain such as the caudate nucleus, putamen, globus pallidus, and substantia nigra,
and in neuromelanin. Cysteinyl-dopamine has been reported to kill neuronal cells [6,8], but it is
uncertain whether it is cytotoxic itself or metabolizes to toxic products. Dryhurst and colleagues [63]
identified many products formed by the oxidation of dopamine in the presence of cysteine. They found
that DHBT-1 (7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid) is
the principal product formed by air oxidation of cysteinyl-dopamine. It inhibits mitochondrial
Complex I but is only weakly cytotoxic requiring millimolar concentrations. Treatment of cells
with cysteinyl-dopamine can result in oxidative damage, a rise in intracellular calcium, and ultimately
apoptosis. Recently, Vauzour et al. [8] attributed its toxicity to combined effects of cysteinyl-dopamine
itself and DHBT-1.

Oxidized dopamine and cysteinyl-dopamine also polymerize to form neuromelanin.
Neuromelanin is a stable substance, and it may confer protection by acting as a sink for oxidized
dopamine products and by chelating iron [64]. However, neuromelanin may also contribute to
increased susceptibility of melanized neurons due to accumulation of increased loads of iron and toxic
metabolites. Moreover, microglia activation by neuromelanin released from degenerating neurons can
further contribute to neurodegeneration.

Rather than examine toxicity of specific products, we chose to approach the problem by looking
for an activity: Redox cycling. The process of redox cycling involves alternating reduction and
oxidation reactions continuing until either molecular oxygen or reducing equivalents are exhausted.
This leads to the proliferation of a variety of reactive oxygen species including superoxide and
hydrogen peroxide, so redox cycling agents can induce oxidative stress and mitochondrial dysfunction.
Because cysteinyl-dopamine is the primary product of dopamine oxidation in vivo, we chose to
seek redox cycling products formed from cysteinyl-dopamine. We [4] discovered that treatment of
cysteinyl-dopamine with hypochlorite yields a product with very high redox cycling activity (Figure 3),
and we refer to this product as HOCD (hypochlorite-oxidized cysteinyl-dopamine).

Using PC12 cells, we confirmed that cysteinyl-dopamine is toxic. However, HOCD is toxic at
lower concentrations. Moreover, two lines of evidence suggest that the toxicity of cysteinyl-dopamine
depends on its conversion to HOCD. First, including taurine in the medium protects PC12 cells
against cysteinyl-dopamine but not against HOCD. Taurine scavenges hypochlorite and blocks the
hypochlorite-dependent conversion of cysteinyl-dopamine into HOCD in vitro. Thus, it is likely that
taurine also prevents this conversion in vivo, thereby protecting cells against cysteinyl-dopamine but
not against HOCD.

The second line of evidence is that rotenone potentiates the toxicity of cysteinyl-dopamine but not
of HOCD. Consistent with reports of others, we found that low concentrations of rotenone increase
myeloperoxidase expression in PC12 cells. The resulting increase in hypochlorite due to increased
myeloperoxidase activity would be expected to yield more effective conversion of cysteinyl-dopamine
to HOCD, thereby increasing toxicity of cysteinyl-dopamine but not of HOCD. In this connection,
Gellhaar et al. [65] found that brain regions affected in PD patients show significant increases in
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myeloperoxidase immunoreactivity, providing further evidence that myeloperoxidase may mediate
the selective vulnerability of dopaminergic neurons to oxidative stress.

Figure 3. Hypochlorite-oxidized cysteinyl-dopamine (HOCD) undergoes extremely rapid redox cycling.
(A) Oxygen consumption mediated by 1 µM concentrations of the indicated redox cyclers following
addition of 2.5 mM ascorbic acid (arrow). Oxygen consumption was measured in aqueous solution
(0.2 M potassium phosphate, 1 µM EDTA, pH 7.4) at 37 ◦C. (B) Comparison of redox cycling rates
(initial slopes of plots shown in 3A) by 1 µM concentrations of redox cyclers (red bars) or 50 µM
concentrations (blue bars). Averages (± standard deviation) of three replicate samples are shown
(authors’ unpublished data).

We have succeeded in scaling up the synthesis of HOCD and have purified the redox cycling
product by chromatography through Dowex 50Wx8. It appears to be a 1,4-benzothiazine with the
dopamine oxygens on the 7 and 8 carbons. This puts an O para to the N and allows the compound
to undergo facile oxidation/reduction. In fact, HOCD redox cycles faster than any compound we
have tested using our standard redox cycling assay (measured as rate of oxygen consumption in
0.2 M potassium phosphate, 1 µM EDTA, pH 7.4 in the presence of 2.5 mM ascorbic acid at 37 ◦C).
HOCD is two orders of magnitude faster than menadione and three orders of magnitude faster than
aminochrome (Figure 3).

Because of this fast redox-cycling, we suspect that HOCD contributes to oxidative stress and
damage to mitochondria. This is suggested by the fact that other redox active compounds, such as
6-hydroxydopamine and aminochrome, do the same. Moreover, HOCD causes a rapid increase
in superoxide levels in PC12 cells as observed using the fluorescent mitochondrial superoxide
indicator MitoSOX Red [4]. Finally, HOCD causes an increase in expression and activity of the
lysosomal enzyme myeloperoxidase, perhaps by increasing mitophagy. A consequence of the
upregulation of myeloperoxidase is increased hypochlorite production, which should increase HOCD
formation. This self-reinforcing feedback should cause oxidative stress to spiral out of control
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(Figure 4). For neurodegenerative diseases, this self-reinforcing feedback is especially significant.
Something must change a manageable situation into one that accelerates uncontrollably. Our results
with PC12 cells indicate that neuronal myeloperoxidase may produce enough hypochlorite to convert
cysteinyl-dopamine to HOCD, but it is also possible that microglial myeloperoxidase plays a significant
or even dominant role in vivo. Thus, inflammation stimulated by α-synuclein deposits may also
promote HOCD formation.

Figure 4. Formation of hypochlorite-oxidized cysteinyl-dopamine from dopamine and its
self-enhancement by increasing myeloperoxidase expression.

A question that is important but difficult to answer now is whether HOCD reaches toxic
concentrations under physiological conditions. In most cases, the answer is clearly no, because most
people do not suffer from Parkinson’s disease. But toxicity depends on context. How robust or how
compromised are cellular protective mechanisms including autophagy/mitophagy? To what extent
are neurons under assault by other factors such as protein aggregation or other sources of oxidative
stress? And do these factors interact amplifying the total stress on the neuron? Then, HOCD may be
the extra burden that makes dopaminergic neurons uniquely vulnerable in Parkinson’s disease.

5. Conclusions

In summary, we view Parkinson’s disease as a problem of autophagy overload caused by the
combined accumulation of dysfunctional mitochondria and aggregated α-synuclein. Under normal
circumstances, mitochondrial degeneration and protein aggregation occur at rates slow enough for
autophagy to maintain homeostasis. Under pathological conditions, however, something causes
these to accelerate out of control. The two factors may contribute differently in different patients.
In familial cases involving mutations in α-synuclein or duplication or triplication of the SNCA gene,
excessive protein aggregation is likely the dominant contributor. In cases involving mutations in
Parkin or PINK1, inadequate mitophagy is the obvious culprit. In the great majority of idiopathic
cases, environmental toxins or dopamine oxidation products such as HOCD may make a significant
contribution. Protein aggregation and oxidative stress may also interact. Oxidative stress-induced
damage of α-synuclein can enhance its oligomerization and aggregation [66,67]. Moreover, α-synuclein
aggregation may exacerbate oxidative stress. Therefore, proteinopathy and oxidative stress may be
synergistic, not simply additive, mutually escalating the rates at which they occur. This kind of
positive feedback is essential to push the normal clearance of material by autophagy out of control.
Then, if overwhelming autophagy is the signal for regulated cell death in Parkinson’s and other
neurodegenerative diseases, proteinopathy and oxidative stress must be considered as a whole;
they are two sides of the same coin.
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