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Abstract: Metformin has been shown to inhibit glutaminase (GLS) activity and ammonia
accumulation thereby reducing the risk of hepatic encephalopathy in type 2 diabetic patients. Since
tumour cells are addicted to glutamine and often show an overexpression of glutaminase, we
hypothesize that the antitumoral mechanism of metformin could be ascribed to inhibition of GLS and
reduction of ammonia and ammonia-induced autophagy. Our results show that, in different tumour
cell lines, micromolar doses of metformin prevent cell growth by reducing glutamate, ammonia
accumulation, autophagy markers such as MAP1LC3B-II and GABARAP as well as degradation of
long-lived proteins. Reduced autophagy is then accompanied by increased BECN1/BCL2 binding
and apoptotic cell death. Interestingly, GLS-silenced cells reproduce the effect of metformin treatment
showing reduced MAP1LC3B-II and GABARAP as well as ammonia accumulation. Since metformin
is used as adjuvant drug to increase the efficacy of cisplatin-based neoadjuvant chemotherapy,
we co-treated tumour cells with micromolar doses of metformin in the presence of cisplatin observing
a marked reduction of MAP1LC3B-II and an increase of caspase 3 cleavage. In conclusion, our work
demonstrates that the anti-tumoral action of metformin is due to the inhibition of glutaminase and
autophagy and could be used to improve the efficacy of chemotherapy:.
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1. Introduction

Autophagy is a multi-step recycling process that maintains cell and tissue homeostasis regulated
by molecular components encoded by autophagy-related genes (ATGs) [1]. Three principal forms
of autophagy have been identified: microautophagy, macroautophagy and chaperone-mediated
autophagy [2]. In macroautophagy, hereafter referred to as “autophagy,” cellular substrates or “cargo”
are packed into cytosolic vesicles (autophagosomes), which are delivered to lysosomes in order to
form double membrane vesicles (autolysosomes). In these structures, the autophagosomal content
is digested by lysosomal hydrolases and the products are re-cycled back to cytosol in order to build
up new molecules [3]. In mammals, basal autophagy removes damaged macromolecules or refills
intermediate metabolites [4].

Autophagy promotes cancer resistance to radiation and chemotherapic treatments [5-7] and
the abrogation of autophagic machinery renders cervical cancer cells more sensitive to cisplatin [8].
Moreover, a high basal autophagy gives a metabolic advantage to tumours sustaining their elevated
energetic demand that arises from rapid proliferation and inadequate blood supply [9].
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A link between autophagy and metabolism has been shown by the observation that autophagy
can be stimulated also by ammonia, a by-product of glutamine metabolism. Ammonia, in fact, can
act both as autocrine and paracrine modulator of autophagy [10]. Ammonia is generated by the
mitochondrial glutaminolysis in which glutamine is sequentially deaminated into glutamate and
then in «-ketoglutarate entering tricarboxylic acid (TCA) cycle [11]. Notably, it has been shown that
under glucose starvation, tumours can survive in vitro using glutamine instead of glucose to maintain
cellular ATP production [12]. Tumours show a high rate of glutaminolysis that results in high release
of free ammonia. Szeliga et al. [13] observed that glutaminase and glutamate dehydrogenase enzymes,
which catalyse glutamine deaminations, are often overexpressed in tumours. At the same time,
elevated ammonia favours nitrogen incorporation into amino acids through reductive deamination by
glutamate dehydrogenase [14]. In addition, glutaminase inhibition prevents ammonia accumulation
and reduces ammonia-induced autophagy, leading to a metabolic crisis that sensitizing tumour cells to
death [15].

Interestingly, a recent work has shown that metformin, the most widely prescribed drug for type 2
diabetes (T2D) therapy [16], is independently related to overt hepatic encephalopathy in patients with
type 2 diabetes mellitus and high risk of hepatic encephalopathy [17]. Moreover, the same work also
demonstrated that, in vitro, metformin inhibits glutaminase activity and ammonia accumulation [17].

This alternative mechanism of metformin could, as well, accompany the reduction of hepatic
gluconeogenesis through mitochondrial complex I inhibition. In this case, metformin affects
mitochondrial electron transport chain by modifying the AMP:ATP ratio leading to an energetic
imbalance [18] that activates protein kinase AMP-activated (PRKAA?2) [19]. Once activated, this
enzyme, which acts as an intracellular fuel gauge, restores cellular energy balance inhibiting anabolic
pathways and promoting glycolysis or fatty acid oxidation [20]. Moreover, activated PRKAA?2 is able
to inhibit the mechanistic target of rapamycin (MTOR) pathway which regulates cell autophagy [21].
Beyond of this glucose lowering effect, several epidemiological studies have shown that metformin
reduces cancer incidence and mortality both in diabetic [22] and in not diabetic subjects [23]. Moreover,
diabetic patients with breast cancer cotreated with metformin and neoadjuvant chemotherapy showed
a higher pathological complete response than people with T2D on other diabetic treatments [24].

This potential application of metformin in oncology has been evaluated also in in vitro studies
performed on a wide range of cancer cells [25-31]. However, cancer cells used in these studies have
been treated for short times (2-3 days) with high doses of metformin (up to 10 mM), far above plasma
metformin concentration of people with T2D where the drug achieves a bloody peak at 10-40 uM after
1 h of administration [32].

Starting from these considerations, we explored the effect of metformin on proliferation and
autophagy in breast and cervical cancer cell lines where we observed a reduction of cellular replication
rate correlated to an inhibition of glutamine metabolism, ammonia production and ammonia-induced
autophagy. Moreover, these effects increased when cancer cells were co-incubated with cisplatin.

2. Materials and Methods

2.1. Cell Culture

Breast cancer cell lines, MCF7 (ATCCHTB-22) and MDA-MB-231 (ATCCHTB-26) and cervical
cancer cell line Ca Ski (ATCCCRL-1550) (LGC Standards, Milan, Italy), were grown in RPMI 1640
medium (R0883; Sigma-Aldrich, Milan, Italy). Cervical cancer cell line HeLa was maintained in
Dulbecco’s Modified Eagle’s Medium (DMEM, D5648; Sigma-Aldrich). All media were supplemented
with 10% Foetal Bovine Serum (Sigma-Aldrich, F9665), 2 mM Glutamine (G7513; Sigma-Aldrich),
100 units/mL penicillin and 0.1 mg/mL streptomycin (P0781; Sigma-Aldrich). Adherent cells were
detached by Trypsin-EDTA solution (TA049; Sigma-Aldrich). All cell lines were maintained at 37 °C in
a humidified atmosphere of 5% CO; and 95% air.
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2.2. Treatments Protocols and Antibodies

1,1-Dimethylbiguanide hydrochloride (metformin, D150959; Sigma-Aldrich) was dissolved in
distilled water and added to cells at different concentrations (from 5 uM to 10 mM). When used
at micromolar doses, metformin was added every day up to 20 days to cells without changing
medium. In low-glucose and galactose medium experiments, 2 g/L sodium bicarbonate (E005761;
Sigma-Aldrich) and 10 mM galactose (G0705; Sigma-Aldrich) or glucose (G8270; Sigma-Aldrich) were
added to RPMI 1640 medium without glucose (R1383; Sigma-Aldrich).

Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulphide (BPTES, SML0601; Sigma-Aldrich)
was dissolved in dimethyl sulfoxide (DMSO, D2438; Sigma-Aldrich) and added to a final concentration
of 2 uM. Dimethyl-a-ketoglutarate was synthesized and provided by Prof. Mai (Sapienza University
of Rome, Italy) and added to a final concentration of 1 mM. Bafilomycin A1 (B1793; Sigma-Aldrich)
was dissolved in DMSO and added to a final concentration of 100 nM. NH4Cl1 (A9434; Sigma-Aldrich)
was dissolved in water and added to a final concentration of 20 mM. cis-Diamineplatinum (II)
dichloride (cisplatin, 479306; Sigma-Aldrich) was dissolved in N,N-dimethylformamide (DMF, D4551;
Sigma-Aldrich) and added to a final concentration of 0.2 pM.

The following primary antibodies were used for western blot analysis: GLS (GTX131263; Gene
Tex, Milan, Italy), PHB (NB600-1292; Novus Biologicals, Abingdon, UK), BAX (sc526; Santa Cruz,
Heidelberg, Germany), CYCS (Novus Biologicals, NB100-56503), BCL2 (BD, 610538), CASP3 cleaved
(9661S; Cell Signalling, Milan, Italy), MAPILC3B (NB600-1384; Novus Biologicals), GABARAP
(PMO037; MBL International Corporation, Heidelberg, Germany), BECN1 (9234S; Cell Signalling),
SQSTM1 (sc-48402; Santa Cruz Biotechnology), phospho-PRKAA2 (Thr!'72) (PA5-17831; Thermo
Scientific, Milan, Italy), PRKAA2 (Thermo Scientific (PA5-36045), ATG5 (MBL, PM050),Phospho-AKT1
(Ser?7®) (9271; Cell Signalling), AKT1 (9272S; Cell Signalling), phospho-RPS6KA1 (Thr*) (9234S; Cell
Signalling), RPS6KA1 (2708S; Cell Signalling), ACTB (A5316; Sigma-Aldrich), CDK4 (sc260; Santa
Cruz). Horseradish peroxidase-linked anti-mouse (NA931V) and anti-rabbit (NA934V) were purchased
from GE Healthcare (Chicago, IL, USA).

2.3. Generation of GLS-Silenced Cells

MDA-MB-231 cells were stably transfected with a pLKO.1 vector containing a shRNA insert to
target human GLS (SHCLND-NM 014905; Sigma-Aldrich). Briefly, 200 x 103 cells were plated in 35 mm
dishes 24 h before shRNA treatment. The following day the plasmid expressing shRNA GLS (1 pg) was
introduced into cells using FuGENE® transfection reagent (E2691; Promega, Milan, Italy) according
to manufacturer’s protocol. The day after puromycin dihydrochloride (P9620; Sigma-Aldrich,) was
added for selecting stably silenced clones at a final concentration of 1.6 pg/mL.

2.4. Viability Assays

Cell viability after prolonged metformin treatment was assessed with different protocols. In the
clonogenicity assay cells (2 x 10%) were plated in 100 mm dishes to allow clones formation. At the end
of metformin incubation, plates were washed twice with a phosphate buffered saline solution (PBS;
79382; Sigma-Aldrich) and fixed with 4% formaldehyde solution in PBS (F8775; Sigma-Aldrich) at
room temperature (rt). After 10 min, dishes were washed twice in PBS and stained for 5 min with 0.5%
crystal violet (C0775; Sigma-Aldrich). Finally, cells were washed with distilled water and air-dried.
The colonies were counted the following day. In trypan blue exclusion assay, cells were seeded on
6-well plates. Following treatments, cells were harvested and stained with 0.4% trypan blue (T8154;
Sigma-Aldrich). The cell suspension was applied to a haemocytometer and counted with a phase
contrast microscopy (NIKON EclipseTE2000U, Nikon Netherlands, Amsterdam, The Netherlands).
Finally, cell viability was checked also by CellTiter96® AQueous Solution Cell Proliferation Assay
(G3580; Promega). Cells were seeded in 96-well plates. Following metformin treatments, 20 pL of
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CellTiter 96® Aqueous Solution was added to 100 uL of culture medium. After 2 h of incubation at
37 °C, absorbance at 490 nm was measured with the GloMax®-Multi Detection System (Promega).

2.5. Biochemical Assays

Cellular ATP and ADP levels were measured through the ADP/ATP ratio assay kit (MAK135;
Sigma-Aldrich) accordingly to manufacturer’s protocol. The amount of glutamate and ammonia
produced by cells following metformin treatment was evaluated respectively with Glutamate Assay
Kit (MAKO004; Sigma-Aldrich) and Ammonia Assay Kit (AA0100; Sigma-Aldrich) as previously
reported [14]. Absorbance was read through GloMax®-Multi Detection System (Promega). All the
experiments were performed in triplicate and data are representative of 3-5 experiments.

2.6. Propidium lodide Staining

To evaluate cell death, cells were analysed by flow cytometry. Cells were seeded into 10 mm
dishes and treated with metformin for several days. Cells were next harvested with trypsin-EDTA,
washed twice with ice cold PBS and centrifuged at 800x g for 5 min at 4 °C. Samples were stained
with 50 pg/mL Propidium lodide (PI, P4864; Sigma-Aldrich) in PBS for 2 h at 4 °C cover light.
Fluorescence was read by BD FACS Calibur flow cytometer (Becton Dickinson, Milan, Italy). The sub-G;
fraction, which represents the total amount of apoptotic cells, was determined and analysed through
CellQuest™ software.

2.7. Autophagic Proteolysis Assessment

Click-iT metabolic labelling for proteins (C10428; Thermo Fisher Life Technologies, Milan, Italy)
was used to determine autophagic proteolysis of long-lived proteins as previously reported [15]. Cells
(70% confluence) were plated on glass coverslips for confocal microscopy and in 96-well plates for
fluorometric analysis. The day after, cells were washed twice with warm PBS and then incubated in
L-methionine-free medium containing 10% dialyzed foetal bovine serum (26400-036; GIBCO). After
2 h, cells were pulsed for 18 h with 50 uM Click-iT AHA (L-azidohomoalanine), in L-methionine-free
medium containing 10% dialyzed foetal bovine serum. At the end of this incubation, cells were washed
once with PBS + 3% BSA (A2153; Sigma Aldrich) and cultured for 2 h in complete medium to chase
out short-lived proteins. Cells were then treated as indicated in the figure legends. At the end of
the treatments, cells were washed twice with PBS, fixed for 10 min with 4% formaldehyde solution
in PBS and then washed with 3% albumin from bovine serum (BSA, A9418; Sigma-Aldrich) in PBS.
Cells were permeabilized by using 0.2% Triton® X-100 (X100; Sigma-Aldrich) and 0.1 M Tris pH 7.4
(T4661; Sigma-Aldrich) in PBS for 5 min rt. After two washes in 3 % BSA in PBS, alkaline alexafluor
488 (A10267; Thermo Fisher Life Technologies) was added using Click-iT® Reaction Buffer Kit (C10269;
Thermo Fisher Life Technologies). The reaction mix was finally removed and samples were washed
twice with 3% BSA in PBS before fluorescence detection by LSM 510 confocal microscopy (Zeiss, Milan,
Ttaly) or GloMax®-Multi Detection System.

2.8. Electron Microscopy

MDA-MB-231 wt and GLS shRNA cells were cultured in 10 mm dishes and treated with metformin
30 uM up to 20 days. In addition, in order to reduce autophagic flux, some samples were treated with
NH4CI 10 mM for the last 17 h in the presence or absence of metformin. Cells were washed with
warm PBS and fixed with 2% glutaraldehyde (G7651; Sigma-Aldrich) in 0.1 M sodium cacodylate
buffer pH 7.3 (C0250; Sigma-Aldrich) at 4 °C overnight. The following day, samples were collected,
washed three times with cacodylate buffer and fixed for 2 h rt with 2% osmium tetroxide (75632;
Sigma-Aldrich) in the same buffer. After three washes in distilled water, cells were stained for 15 min
at room temperature with 1% uranyl acetate. Samples were then incubated at 45 °C with 3% agarose.
After solidification, agarose blocks were dehydrated with ascending acetone concentration. Blocks
were embedded in Spurr medium and polymerized overnight at 65 °C. Samples were finally cut in
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80-nm sections by a Reighert-Jung Ultra cut E ultramicrotome (Leica Microsystems, Wetzlar, Germany)
and picked up on copper grids. The tiny pieces were post-stained in uranyl acetate and bismuth
subnitrate and observed in a Philips CM-10 TEM (Fei Italia, Milan, Italy) and micrographs on Kodak
4489 sheet films (Sigma-Aldrich).

2.9. Lysosomes Labelling

Lysotracker® red DND-99 (L7528; Thermo Fisher Life Technologies) was used to track lysosomes
in cells. Briefly, 300 x 103 cells were cultured on coverslips placed inside 35 mm dishes. After 20 days
of incubation with 30 uM metformin, cells were washed twice with PBS ad incubated for 30 min in
pre-warmed medium containing 50 nM of Lysotracker. Afterwards, fresh medium was replaced and
fluorescence was observed by LSM 510 confocal microscopy (Zeiss).

2.10. JC-1 Staining

5,5',6,6'-tetrachloro-1,1,3,3'-tetrathylbenzimidazolyl-carbocyanine iodide (JC-1) dye was used
as indicator of mitochondrial health (T3168; Thermo Fisher Life Technologies). In mitochondria
this cationic probe can exist in a monomeric or in an aggregated form depending on mitochondrial
membrane potential (AY ). In healthy cells, AYr, is high and JC-1 polymerizes to form J-aggregates
which show a red fluorescence emission. On the contrary, in unhealthy or apoptotic cells where
mitochondrial integrity is compromised, AYr, assumes a lower value. In this condition, JC-1 remains
in a monomeric form showing a green florescence emission. The fluorescence shift from red to green
is an indicator of mitochondrial depolarization. Briefly, cells were grown on glass coverslips (for
confocal analysis) and in 96-well plate for fluorimeter. At the end of metformin treatment, medium
was discarded and 10 ug/mL of JC-1 were added to cells in pre-warmed medium. After 20 min of
incubation, cells were washed in PBS and fluorescence was observed by LSM 510 confocal microscopy
(Zeiss) or quantified by Epics XL-MCL flow cytometer (Beckman Coulter, Pasadena, CA, USA).

2.11. Protein Extraction and Immunoblotting

Cells (2 x 10°) for whole cell lysate were centrifuged at 800x g for 10 min at 4 °C and pellet
were resuspended in 100 uL of a solution containing 50 mM Tris-Cl (93352; Sigma-Aldrich), 250 mM
sodium chloride (NaCl, S7653; Sigma-Aldrich), 5 mM ethylenediaminetetraacetic acid (EDTA; E6758;
Sigma-Aldrich), 0.1% Triton® X-100 and 0.1 mM Dithiothreitol (DTT, D9163; Sigma-Aldrich) plus
1 mM phenylmethylsulfonyl fluoride (PMSF, 93482; Sigma-Aldrich), Protease inhibitor cocktail (PI;
Sigma-Aldrich, P8340), 1 mM sodium orthovanadate (NA3VOy, S6508; Sigma-Aldrich) and 10 mM
sodium fluoride (NaF, 201154; Sigma-Aldrich) (lysis buffer). After 10 min on ice, samples were
centrifuged at 14,000 g for 10 min at 4 °C and the supernatants were collected. Protein concentration
was determined by the Bradford assay (Bio-Rad, Milan, Italy500-0205). Clarified protein lysates (40 pg)
were boiled for 5 min, electrophoresed onto denaturatingSDS-PAGE gel and transferred onto a 0.45 uM
nitrocellulose membrane (162-0115, Bio-Rad). The blotting membranes were blocked with 5% non-fat
dry milk (1706404, Bio-Rad) for 1 h rt and then incubated with primary antibody overnight at 4°C.
The follow day, membranes were washed three-times with 0.1% Tween® 20 (P9416; Sigma-Aldrich) in
PBS (PBST) for 30 min rt and incubated with the appropriate secondary antibody for 1 h rt. After other
3 washes in PBST, the detection of the relevant protein was assessed by enhanced chemiluminescence
(Lite Ablot® TURBO, EMP012001; Euro Clone, Milan, Italy). Densitometric analysis of the bands,
relative to ACTB, CDK4 or prohibitin (PHB,) was performed using Image J Software v1.51 (NIH,
Bethesda, MD, USA).

2.12. Mitochondrial Isolation

Cells (2 x 10%) were grown in 100 mm dishes. Following metformin treatment, cells were
harvested and centrifuged at 700x g at 4 °C for 5 min. Pellet was resuspended on ice in 200 uL of
a solution containing 2 mM magnesium chloride (MgCl,, M8266; Sigma-Aldrich), 10 mM potassium
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chloride (KCl, P9333; Sigma-Aldrich) and 10 mM Tris pH 7.4. After 10 min, each samples were mixed
with 200 uL of a solution containing 400 mM sucrose (S5390; Sigma-Aldrich), 10 mM Tris pH 7.4,
2 mM EDTA, 2 mM ethylene glycol-bis(2-aminoethylether)-N, N, N’,N’-tetraacetic acid (EGTA, E3889;
Sigma-Aldrich), 2 mM PMSF, 20 mM NaF, 2 mM Na3 VO, and PI. Cells were broken with 50 Dounce
strokes on ice. Homogenates were transferred into 1.5 mL tubes and centrifuged at 900 x g for 10 min
at 4 °C. Pellet were discarded and supernatant fractions were transferred in new 1.5 mL tubes and
centrifuged at 17,000 x g for 30 min at 4 °C. Pellet (mitochondrial fractions) were lysed in 20 uL of lysis
buffer and protein concentration determined by the Bradford assay.

2.13. Immunoprecipitation

Proteins were extracted as described above. Protein suspensions (500 ug) were pre-cleared
with 20 pg of protein A/G PLUS-agarose (sc-2003; Santa Cruz) and kept in slow rotation for 1 h
at 4 °C. Samples were centrifuged at 500x g for 1 min at 4 °C. Supernatants were collected and
agarose pre-cleared resins were discarded. Cleared cell lysates were next incubated with 2 pg of
Beclinl antibody and kept in slow rotation overnight at 4 °C. The following day, 20 ug of protein
A /G PLUS-agarose were added to each tube and kept in rotation for 4 h at 4 °C. Samples were then
centrifuged at 500 g for 5 min at 4 °C. Pellet fractions, containing the protein-antibody complex, were
washed 5 times with a solution containing 50 mM Tris pH 7.4, 0.5% Triton® X-100 and 150 mM NaCl
and 2 times with 5 mM Tris pH 7.4. At the end of washing, pellet was mixed with 20 pL of Laemmli
buffer (NP0007; Invitrogen, Milan, Italy) and heated for 5 min at 95 °C. Samples were electrophoresed
on a SDS-polyacrylamide gel and immunoblotted.

2.14. Immunofluorescence Microscopy

Cells (2 x 10%) were seeded onto coverslips inside 35 mm dishes and incubated for 20 days
with metformin. Cells were fixed for 10 min with 4% formaldehyde in PBS, washed twice in PBS
and permeabilized for 5 min in 0.1 M Tris pH 7.4 and 0.2% Triton® X-100. After two washes in PBS,
samples were blocking for 1 h rt with 0.2 mg/mL BSA and incubated for 2 h rt with anti-Glutaminase C
antibody at 1:1000 dilution. Cells were then washed twice with 0.05% Tween® 20 in PBS and incubated
for 1 h with the secondary antibody goat anti-rabbit IgG Alexa Fluor® 555 at 1:1000 dilution (A21429;
Invitrogen). Finally, samples were washed twice with PBS and mounted using ProLong® Diamond
Antifade Mountant (P36961; Thermo Fisher Life Technologies). Fluorescence was observed by LSM
510 confocal microscopy (Zeiss).

2.15. Statistical Analysis

The results are expressed as means =+ standard deviations (s.d.) and 95% confidence intervals
(95% CI) of three independent experiments. Before using parametric tests, the assumption of normality
was verified using the Shapiro-Wilk W-test. The Student paired f-test was used to determine any
significant differences before and after treatment. Significance was set at p < 0.05. Statistical software
package SPSS v13.0.1. (SPSS Inc., Chicago, IL, USA) was used for all statistical calculations.

3. Results

3.1. Metformin Inhibits Cancer Cell Proliferation

Metformin has demonstrated an anti-tumoral effect mainly due to the inhibition of mitochondrial
function. However, the doses used in the experimental settings are in the order of mM far above the
5-30 uM measured in tissues of patients taking this drug. For this reason we aimed to unravel if and
how metformin, used at micromolar concentration, still has anti-tumoral activity.

To this effect, breast cancer cell lines MDA-MB-231 and MCF7 as well as cervical cancer cell line Ca
Ski were treated with 5 and 30 pM metformin for up to 20 days. Clonogenic assay showed a reduction
in the number of colonies after metformin treatment (Figure 1A). Moreover, 20 days treatment with



Cells 2019, 8, 49 7 of 22

30 uM metformin reduced cell vitality to 55% in MDA-MB-231, 58% in MCF7 and 63% in Ca Ski cells
(Figure 1B). Similarly, cell titre assay showed a reduction of cell proliferation in the three cell lines used
(Figure 1C). Interestingly, reducing glucose concentration below 10 mM reduced cell proliferation in
both untreated and metformin treated MDA-MB-231 cells (Figure 1D).

A
(4] 5 30 uM Metformin
100 2.0 ;M Mettonmin
® 8 M Metfarmin
MDA-MB-231 30 M Metionmin
80 *
8 w0
g P
- -
E 40
MCFT 2
20
2. Tagi=
— -
MOAMB.231 MCFT Ca Sk
| Ca Ski
B
120, WO 5M Metformin
W5 M Metionmin
30 3sM Mettormin
100
a0
-
8 " v
&2 80 L4 i
a |
=
=
&£ 4
20
0 MaDA-ME-231 MCF7 Sk
c D
e 129 « untreated
SMOA-MD-231 = 30 ;M Matformin
mMCFT &
g 1.2 LS =
g - #Ca Ski é ae
- + ]
2 : " a
£ o : - §
- 2
= + —
I3 B 2 wid —
) y 3 .
e i —
2 s .
| os = -~
x 2
£
* *
o
o 5 15 30 25 10 1
1M Metiormin mM Glucose

Figure 1. Low doses of metformin reduce colony formation and cell viability in tumour cell lines;
(A) MDA-MB-231, MCF7 and Ca Ski cells were seeded at low density (2 x 10%) in the presence or
absence of micromolar doses of metformin. After 20 days dishes were washed in PBS and cells fixed
and stained. Number of colonies were counted the following day and the results graphed in the
right side of the figure; (B) MDA-MB-231, MCF7 and Ca Ski cells were either left untreated or treated
with different doses of metformin. Cell viability was measured by trypan blue exclusion as indicated
under Material and Methods; (C) MDA-MB-231, MCF7 and Ca Ski cells were either left untreated
or treated with different doses of metformin. cell growth was measured by CellTiter 96® aqueous
solution cell proliferation assay as indicated under Material and Methods; (D) MDA-MB-231 cells were
grown in growth medium containing different glucose concentration in the presence or absence of
30 uM metformin. Cell growth was measured by CellTiter 96® aqueous solution cell proliferation assay
as indicated under Material and Methods. All experiments in this figure were repeated three times.
* Significantly different from control untreated cells.

3.2. Metformin Impairs Mitochondrial Function and Induces Cell Death

Metformin has been shown to have a direct impact on mitochondrial activity [33]. To test if
metformin has different cellular effects if used at milli- or micromolar concentrations, we treated
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MDA-MB-231 cells with high doses of metformin (mM) for 48 h and low doses (uM) up to 20 days
and then we measured ATP levels. As expected, 0.1-5 mM metformin caused a 36% reduction of
ATP with an increase of ADP:ATP ratio. Surprisingly, we observed an opposite effect when cells
were treated with low doses of metformin for longer times (Figure 2A, lower right). Indeed, in this
condition metformin led to a dose dependent increase of intracellular ATP. However, the ADP:ATP
ratio did not show any change (Figure 2A, lower left). One possibility is that an energetic unbalance
may alter mitochondrial membrane potential (AY ). Therefore, MDA-MB-231 cells were stained with
JC-1 [34]. As shown in Figure 2B, 15 days of metformin treatment induced an increase of depolarized
mitochondria. In fact, flow cytometry analysis measured a decrease in red fluorescence in 18% of cells
treated with metformin compared to the 5% of untreated cells (Figure 2B). Since AYm reduction is
critical for apoptosis, we analysed mitochondrial apoptotic markers such as BAX and cytochrome c
(CYCS). BAX, a pro-apoptotic member of BCL-2 family, under an apoptotic stimulus oligomerizes
to form mitochondprial pores with CYCS release from mitochondria to cytosol, followed by caspase
activation and cell death [35,36]. Our results show a mitochondrial accumulation of BAX at 5 and
10 days of treatment and a decrease of mitochondrial CYCS after 10 day of metformin treatment
without changes in total amount of BAX or CYCS. Similar results were obtained using MCF-7 cells
where, again, 10 days of metformin treatment caused an accumulation of BAX and a release of CYCS
from the mitochondria (Figure 2C, right side). The decrease in Bax observed in the mitochondrial
fraction after 15 and 20 days in cells treated with 30 uM metformin, could be due to the removal of
damaged mitochondria and/or cells after such a long treatment period. In fact, the accumulation of Bax
in the mitochondrial membrane is a rather quick process that is followed by mitochondrial damage.
Furthermore, damaged mitochondria could then be removed by mitophagy thereby diminishing
Bax level. The statistical analysis of Figure 2C is reported in Supplementary Figure S1 showing
a statistically significant accumulation of Bax in the mitochondrial after 5 and 10 days of metformin
treatment accompanied by a decrease of cytochrome c from 10 to 20 days. The purity of mitochondrial
fractions was assessed by using PHB as positive and CDK4 as negative controls as shown in Figure 2C.

Finally, we measured the percentage of MDA-MB-231 cells with sub-G; DNA content after 15 days
of 30 uM metformin treatment. Figure 2D shows an increase of cell death from 10% of control untreated
cells to 40% of metformin treated cells.

3.3. Metformin Inhibits Glutaminase Activity

Next, we measured the amount of ammonia released by MDA-MB-231 cells. As shown in
Figure 3A, differences in ammonia release started after 15 days of metformin treatment and became
more sustained after 20 days. Figure 3B shows that metformin strongly reduced ammonia levels in
a dose-dependent manner also in MCF7 and Ca Ski cells but not in HeLa cells. Indeed, Xiao et al. [37]
observed that metformin reduces proliferation of Ca Ski and Mel80 but not of HeLa cells. These
results suggest that metformin can, directly or indirectly, alter ammonia production in breast and
cervical cancer cells. Since ammonia is generated not only by glutamine deamination but also from
aminoacidic catabolism [38], we used MDA-MB-231 GLS shRNA to demonstrate that ammonia
reduction depends mostly on GLS. We observed that 30 tM metformin inhibited ammonia release in
wild type MDA-MB-231 cells but not in MDA-MB-231 GLS shRNA (Figure 3B). Moreover, the basal
level of ammonia in untreated MDA-MB-231 GLS shRNA cells was lower than in wild type (Figure 3B).
Similar results were obtained in MDA-MB-231 cells co-treated for 15 days with metformin and BPTES,
a potent and selective GLS inhibitor (Figure 3C). To further evaluate the effect of metformin on GLS
activity, we analysed L-glutamate concentration. Our results showed that prolonged metformin
treatments reduced L-glutamate accumulation in MDA-MB-231 cells, an effect that was not observed
in GLS shRNA cells (Figure 3D). Finally, we did not observe any difference in GLS expression between
control and metformin treated cells (Figure 3E). There results were confirmed by immunofluorescence
assay (Figure 3F).
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Figure 2. Metformin activates apoptotic cell death; (A) MDA-MB-231 cells were plated in 96 well
plate and then either left untreated or treated with millimolar (upper graphs) or micromolar (lower
graphs) doses of metformin. ADP/ATP ratio was determined as indicated in Material and Methods;
(B) MDA-MB-231 cells were seeded on glass coverslip and then left untreated or treated with 30 uM
metformin. At the end of the treatment, cells were stained with 10 pg/mL JC-1 as indicated under
Material and Methods. Mitochondria fluorescence was observed by confocal microscopy. First row:
Red fluorescence representing JC1 aggregates. Second row: Green fluorescence representing JC1
monomers. Third row: Merging of the first two rows. Alternatively, cells were treated with 30 uM
metformin and stained with JC-1 as above. Red (FL2H) and green (FL1H) fluorescence intensity was
quantified by Flow Cytometry; (C)upper panel: MDA-MB-231 cells were kept in the presence or
absence of metformin for the time indicated and then processed to obtain mitochondprial fractions.
BAX and CYCS expression levels were determined by Western blot as indicated under Material and
Methods. Densitometric analysis of the gels was performed as indicated under Material and Methods.
PHB and CDK4 were used as loading and purity control, respectively. Lower panel: MDA-MB-231 cells
were kept in the presence or absence of metformin for the time indicated and then processed to obtain
whole cellular extracts. BAX and CYCS expression levels were determined by Western blot as indicated
under Material and Methods. Densitometric analysis of the gels was performed as indicated under
Material and Methods. CDK4 and PHB were used as loading control. Right panel: MCF-7 cells were
kept in the presence or absence of metformin for 20 days and then processed to obtain mitochondrial or
whole cellular extracts. BAX and CYCS expression levels were determined by Western blot as indicated
under Material and Methods. Densitometric analysis of the gels was performed as indicated under
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Material and Methods. PHB and CDK4 were used as purity and loading controls; (D) MDA-MB-231
cells were kept in the presence or absence of metformin for 20 days. At the end of the treatment cells
were harvested and percentage of sub-G; (M1) cells was determined by propidium iodide staining
as described in the Material and Methods section. All experiments in this figure were repeated three
times. * Significantly different from control untreated cells.
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Figure 3. Metformin reduces ammonia and glutamate accumulation by inhibiting glutaminase;
(A) MDA-MB-231 cells were either left untreated or treated with 5 or 30 uM metformin for the time
indicated. Ammonia level in the culture medium was measured as indicated in the Material and
Methods section; (B) MDA-MB-231, MDA-MB-231 GLS shRNA, MCF7, HeLa and Ca Ski cells were
either left untreated or treated with 5 or 30 uM metformin for 20 days. Ammonia level in the culture
medium was measured as indicated in the Material and Methods section. # Significantly different
from untreated MDA-MB-231 wt cells; (C) MDA-MB-231 cells were either left untreated or treated
with 30 pM metformin in the presence or absence of GLS inhibitor 2mM BPTES. Ammonia level in
the culture medium was measured as indicated in the Material and Methods section. # Significantly
different from untreated wt MDA-MB-231 cells; (D) MDA-MB-231 and MDA-MB-231 GLS shRNA
cells were either left untreated or treated with metformin for 20 days. Glutamate level in the culture
medium was measured as indicated in the Material and Methods section. * Significantly different
from 5 pM treatment. § Significantly different from the corresponding treatment in MDA-MB-231 wt
cells; (E) MDA-MB-231 and MDA-MB-231 GLS shRNA cells were either left untreated or treated with
metformin for 20 days. At the end of the treatment cells were harvested to obtain mitochondria and GLS
expression measured by Western blot. Data are representative of at least three separate experiments.
Densitometric analysis of the gels was performed as described under Materials and Methods. PHB
was used as loading control. * Significantly different from similar treatment in MDA-MB-231 wt cells;
(F) MDA-MB-231 and MDA-MB-231 GLS shRNA cells were either left untreated or treated with 30 uM
metformin for 20 days. At the end of the treatment cells were fixed and GLS expression determined by
immunofluorescence. Data are representative of at least three separate experiments. GLS in red. All
experiments in this figure were repeated three times. * Significantly different from control untreated cells.
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3.4. Metformin alters Autophagic Flux

The effects of metformin treatment on autophagic flux were evaluated by treating wt and
MDA-MB-231 GLS shRNA cells with 5-30 uM metformin for 20 days. Figure 4A shows that in
wt cells, metformin reduced MAP1LC3B-1I, GABARAP, BECN1 and ATG12/ATGS5 expression whereas,
in glutaminase-silenced cells there was a reduction of only MAP1LC3B-II. However, in GLS-silenced
cells, MAP1LC3-I expression was higher than in wt cells suggesting an inhibition of autophagy.
Statistical analysis of blots in Figure 4A is reported in Supplementary Figure S2. In addition, we did
not observe an increase in PRKAA2 phosphorylation both in wt and silenced cells (Figure 4A). This is
in accordance with the observation that low doses of metformin did not alter cellular ATP production
(Figure 2A). Afterwards, we checked if the interaction between BCL2 and BECN1 could be altered after
metformin treatment. The BCL2/BECN1 complex represents a molecular bridge linking autophagy to
apoptosis [39,40]. Therefore, we treated MDA-MB-231 cells with 30 pM metformin for 15 days and
then we measured BECN1 and BCL2 binding by immunoprecipitating BECN1 and staining for BCL2
or, on the contrary, by immunoprecipitating BCL2 and staining for BECN1. In both cases, we found
that metformin increased BCL2 and BECN1 binding (Figure 4B and Figure S3).

We next inhibited GLS by co-treating cells with metformin and BPTES (Figure S4A) or with
metformin and dimethyl «-ketoglutarate (DMKGB) (Figure S4B). In both cases we observed an almost
complete inhibition of MAP1LC3B-II. To confirm that the reduction of autophagic markers induced
by metformin was due to an inhibition and not to an increase of the autophagic flux, we added
bafilomycin Al (BafAl), which inhibits autophagic vacuoles maturation causing autophagy markers
accumulation [41]. As shown in Figure 4C, MAP1LC3B-II levels in MDA-MB-231 cells cotreated with
30 uM metformin and BafAl were lower compared to BafAl alone. Similar results were obtained in
MCEF7 cells (Figure S5). On the contrary, in MDA-MB-231 GLS shRNA cells we observed a weaker
MAPILC3B-II accumulation in the presence of BafA1l (Figure 4C and Figure S3).

To further prove this result, we either left untreated or treated daily MDA-MB-231 cells for 20 days
with different metformin concentrations without medium replacement (CAM, cell-aged medium).
At the end of treatments, we applied medium from CAM-cells to a secondary fresh-plated untreated
MDA-MB-231 cultures for 48 h (CCM, cell-conditioned medium). Afterward, we monitored the
autophagic markers in CAM and CCM-cells. As control we used cells where metformin containing
medium was changed every two days for 20 days (fresh CAM). Again, medium from fresh CAM cells
was applied to fresh seeded MDA-MB-231 cells for 48 h (fresh CCM cells). As shown in Figure 4D,
untreated CAM cells presented a higher basal level of autophagy than untreated fresh CAM cells,
an effect that was reduced upon metformin treatment. Interestingly, in CCM cells autophagy induction
followed the trend seen in CAM cells (Figure 4D). In fact, autophagy markers were increased when
using conditioned medium (CM) from control cells and decreased when using CM from metformin-
treated cells (Figure 4D). Statistical analysis is reported in Supplementary Figure S3. Metformin
inhibition of autophagy was MTOR independent as shown in Figure 56 where we did not observe any
significant increase in RPS6KA1TM38 or AKT15¢7473 phosphorylation neither in CAM nor in CCM cells.
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Figure 4. Metformin alters autophagy response; (A) MDA-MB-231 and MDA-MB-231 GLS shRNA
cells were either left untreated or treated with metformin for 20 days. At the end of the treatment, cells
were processed to obtain whole cellular extracts. Expression level of autophagy markers MAP1LC3B,
GABARAP, BECN1, SQSTM1, pPRKAA2, PRKAA2 and ATG12/ATG5 was determined by Western
blot. ACTB was used as loading control; (B) MDA-MB-231 cells were either left untreated or treated
with 30 uM metformin for 20 days. At the end of the treatment, cells were processed. Cellular extracts
were immunoprecipitated with an anti-BECN1 antibody, electrophoresed on a SDS-polyacrylamide gel
and immunoblotted with and anti-BCL2 or anti-BECN1 antibody as described under Materials and
Methods (upper panel). Alternatively, cellular extracts were immunoprecipitated with an anti-BLC2
and immunoblotted with an anti-BECNT1 or anti-BCL2 antibody (lower panel). Densitometric analysis
of the gels was performed as described under Materials and Methods. Data are representative of three
separate experiments. ACTB and IgG heavy chains were used as loading controls; (C) MDA-MB-231
and MDA-MB-231 GLS shRNA cells were either left untreated or treated with metformin for 20 days.
Where indicated in the figure, bafilomycin 100 nM was added for 17 h to the cells. At the end of
the treatment cells were processed to obtain whole cellular extracts. MAP1LC3B expression was
determined by Western blot. CDK4 was used as loading control. densitometric analysis of the gels
was performed as described under Materials and Methods. Data are representative of three separate
experiments; (D) left side: MDA-MB-231 cells were either left untreated or treated with metformin for
20 days (CAM cells). At the end of the treatment, medium from CAM cells was applied to fresh-seeded
MDA-MB-231 cells (CCM cells) for 48 h. Both CAM and CCM cells were processed to obtain whole
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cellular extracts. MAP1LC3B expression was determined by Western blot. CDK4 was used as loading
control. densitometric analysis of the gels was performed as described under Materials and Methods;
right side: MDA-MB-231 cells were either left untreated or treated with metformin for 20 days changing
medium every 2 days (fresh CAM cells). At the end of the treatment, medium from fresh CAM cells
was added to fresh plated cell (fresh CCM cells). CAM cells was applied to fresh-seeded MDA-MB-231
cells (fresh CCM cells) for 48 h. Both fresh CAM and fresh CCM cells were processed to obtain whole
cellular extracts. MAP1LC3B expression was determined by Western blot. CDK4 was used as loading
control. Densitometric analysis of the gels was performed as described under Materials and Methods.
All experiments in this figure were repeated three times.

Autophagy inhibition induced by metformin was also quantified by measuring degradation of
long-lived protein through the Click-it AHA technique [42]. Again, we made use of CCM cells, that is,
MDA-MB-231 cells incubated with 20-days old conditioned medium from the same cell line kept in
the presence or absence of 30 uM metformin. After 2 days, CCM cells were plated in L-methionine
free medium in the presence of L-azidohomoalanine (AHA). After 2 h we measured the changes of
AHA fluorescence intensity, which is representative of autophagy-mediated proteolysis. We observed
a decrease of AHA fluorescence in cells incubated with CCM compared to CCM plus metformin
(Figure 5A, left side). Quantification of AHA fluorescence revealed a decrease of about 30% in CCM
cells compared to control cells in fresh medium (Figure 5A, right side). Metformin treatment maintained
AHA fluorescence to levels similar to that of Ctrl cells (Figure 5A, right side). To further confirm these
data, we investigated metformin-mediated autophagy reduction by Transmission Electron Microscopy
(TEM). Figure 5B shows that MDA-MB-231 cells treated with metformin had a lower number of
autophagosomes than untreated cells. This reduction of autophagosomes and autophagolysosomes
was clearer following ammonium chloride treatment, as evidenced in the right panels of Figure 5B.
Importantly, glutaminase-silenced cells showed a reduced basal accumulation of autophagosomes and
autophagolysosomes than wt cells, reproducing results obtained upon metformin treatment. These
results were quantified in the graph on the right side of Figure 5B showing the reduction of autophagy
due to either metformin treatment or glutaminase silencing.

Autophagy was also monitored by labelling MDA-MB-231 wt and GLS-silenced cells with
lysotracker red. At first we observed a reduction of autophagy-associated lysosomes in wt cells
after metformin treatment (Figure 5C, upper right). On the contrary, in GLS-silenced cells we observed
a lower basal level of red fluorescence than wt cells (Figure 5C, lower left) that was not affected by
metformin treatment (Figure 5C, lower right).

We also investigated the effects of high doses of metformin on MDA-MB-231 cells. In fact, when
used at millimolar doses, metformin has been shown to trigger autophagy through PRKAA2/MTOR axis
modulation [21]. For this reason, we analysed PRKAA2™172 phosphorylation which is representative
of its activation status, the phosphorylation of RPS6KA1, which is a marker of MTOR complex I activity
(mTORC1), negatively regulated by PRKAA2 [43] as well as MAP1LC3B-II accumulation. Upon 48 h of
metformin treatment, MAP1LC3B and PRKAA2™172 increased in a dose-dependent manner (Figure 5D).
Statistical analysis of the blots in Figure 5D is reported in Supplementary Figure S7. Importantly, we did
not observe a reduction of ammonia in the medium of MDA-MB-231 cells treated with millimolar
concentration of metformin (Figure 5E). These findings are in line with the present literature data [44]
and confirm our ATP assay results (Figure 2A). Together, these results suggest that, millimolar doses
of metformin induce an energetic unbalance with ATP reduction leading to PRKAA2 activation and
autophagy without altering ammonia levels.

Finally, some studies have shown that in MDA-MB-231 cells metformin is able to impair the
activity of hexokinase HK1 and HK2 [45]. Therefore, we replaced high glucose medium with galactose
medium before adding metformin. In this case, we treated MDA-MB-231 cells up to 10 days because the
removal of glucose in association with metformin treatment strongly influenced cell proliferation, as
shown in clonogenicity assay in Figure S8A. Again, we observed that metformin inhibited autophagy
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as evidenced by MAP1LC3B, GABARAP and ATG5/ATG12 reduction (Figure S8B) without altering
PRKAAZ2 phosphorylation.
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Figure 5. Metformin or GLS silencing reduces autophagosomes formation; (A) MDA-MB-231 cells
(CCM) were plated in conditioned medium from CAM cells as described in Figure 4D for 48 h to
stimulate autophagy in the presence or absence of metformin. At the same time MDA-MB-231 control
cells (Ctrl) were plated in fresh medium for 48 h. At the end of the treatments, both Ctrl and CCM
cells were labelled with AHA as described under Material and Methods. Cells were then fixed,
permeabilized and stained for 2 h with alkine-Alexa Fluor 488. Fluorescence from long-lived proteins
was observed using aLSM 510 confocal microscopy (Zeiss). MDA-MB-231 cells were placed in a 96 well
plate, treated and labelled as described above. Right side: Fluorescence from long-lived protein was
measured using a GloMax®-Multi Detection System (Promega). # Significantly different from CCM
treated cells.; (B) MDA-MB-231 cells were either left untreated or treated with metformin 30 uM, NH4Cl
10 mM or a combination of the two. Alternatively, MDA-MB-231 GLS shRNA cells were left untreated
or treated with NH4Cl1 10 mM. The cells were then processed for electron microscopy as described
under Materials and Methods. Upper left: WT cells showing autophagosomes, (Magnification 15,500 ).
Upper middle: WT + metformin cells showing a lower number of autophagosomes (magnification
11,500x). Upper right: WT + NH,Cl cells showing an increase in autophagosomes (magnification
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11,500%). Lower left: WT + metformin + NH4Cl cells showing a reduction in autophagosomes
(magnification 11,500 x ). Lower middle: GLS shRNA cells showing a low number of autophagosomes
(magnification 15,000 x). Lower right: GLS shRNA + NH4Cl cells showing a large autophagosome
(magnification 11,500 x). Black arrows point to autophagosomes and autophagolysosomes. Results
were quantified on the graph reported on the right side showing reduction of autophagosomes
following metformin treatment or GLS silencing. Number of autophagosomes were obtained by
counting three different fields for each image from two separate experiments; (C) MDA-MB-231
WT and GLS shRNA cells were either left untreated or treated with metformin 30 uM for 20 days.
At the end of the treatment, 50 nM Lysotracker red was added to the cells for 30 min followed
by a wash in PBS before confocal analysis of lysosome staining as described under materials and
methods. Upper left: WT untreated cells showing lysosomes accumulation. Upper right: reduced
lysosomes in metformin treated cells. Lower left: GLS shRNA cells showing reduced lysosome
staining. Lower right: Metformin treatment did not reduce lysosomes accumulation in GLS shRNA
cells; (D) MDA-MB-231 cells were treated with high doses of metformin from 1 to 10 mM for 48 h.
At the end of the treatment, cells were processed to obtain whole cell lysates. MAP1LC3B, GABARAP,
pPRKAAZThr172, PRKAA2, pRPS6KA1 and RPS6KA1 expression was determined by Western blot.
ACTB was used as loading control. Densitometric analysis of the gels was performed as described
under Materials and Methods; (E) MDA-MB-231 cells were treated with high doses of metformin from
1 to 10 mM for 48 h. Ammonia level in the culture medium was measured as indicated in the Material
and Methods section. All experiments in this figure were repeated three times. * Significantly different
from control untreated cells.

3.5. Effects of a Combined Metformin and Cisplatin Treatment

Metformin is often used in gynaecological oncology as adjuvant drug to increase the efficacy
of cisplatin-based neoadjuvant (NACT) chemotherapy [24], in neck and cervix cancer [46] and
earlier-stage operable breast cancer [47]. For this reason, we treated cervical and breast cancer cell
lines with low doses of metformin and cisplatin for 15 days. Figure 6A shows that, in MDA-MB-231
cells, the combined metformin/cisplatin treatment did not alter PRKAA2T172 phosphorylation. On
the contrary MAP1LC3B-II accumulation was strongly reduced as also evidenced in Supplementary
Figure S9. This trend was less relevant in Ca Ski cell line probably because breast cancer cells are more
sensitive to metformin action than cervical cancer cell lines (Figure 3B). In addition, we observed that
reduction of ammonia levels induced by metformin was intensified when cells were co-treated with
a nontoxic concentration of cisplatin. Once again, this reduction was clearer in MDA-MB-231 cells
than in Ca Ski (Figure 6B). Metformin increased the level of cleaved-CASP3 in both cell lines, an effect
that was also present in cisplatin-treated cells and that was enhanced by the combined metformin
and cisplatin treatment (Figure 6A). This is probably due to the reduced ammonia accumulation and
inhibition of autophagy by metformin as shown in Figure 6B.
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Figure 6. Metformin treatment increases cisplatin effects; (A) MDA-MB-231 and Ca Ski cells were either
left untreated or treated with metformin or cisplatin alone or metformin in combination with cisplatin
for 15 days. At the end of the treatment, cells were processed to obtain whole cell lysates. MAP1LC3B,
pPRKAA2™"172 PRKAA2 and CASP3 (cleaved) expression was determined by Western blot. ACTB
was used as loading control. Densitometric analysis of the gels was performed as described under
Materials and Methods; (B) MDA-MB-231 and Ca Ski cells were either left untreated or treated with
metformin or cisplatin alone or metformin in combination with cisplatin for 15 days. Ammonia level in
the culture medium was measured as indicated in the Material and Methods section. # Significantly
different from treatment with metformin alone. All experiments in this figure were repeated three
times. * Significantly different from control untreated cells.

4. Discussion

Metformin, a biguanide commonly used for T2D therapy, can reduce the risk of cancer in diabetic
patients compared to other anti-diabetic treatments [48]. Therefore, we aimed to investigate the
molecular mechanism behind the anti-tumoral action of metformin. Our results demonstrate that low
doses (5-30 uM) of metformin have two major effects: i) autophagy inhibition by decreasing glutamine
metabolism and ammonia accumulation, ii) apoptosis induction by altering mitochondrial energization.
Moreover, we also demonstrate that, along this pathway, mitochondrial GLS, involved in the first step
of glutamine metabolism and often overexpressed in tumour cells, is a target of metformin.

We are aware that several groups showed that millimolar doses of metformin can inhibit
Mitochondrial Complex 1, ATP production and tumour cell growth [49]. However, these in vitro
concentrations are far above those measured in tissues from T2D patients assuming metformin.
In fact, this drug rapidly reaches its peak (2 h) with a tissue concentration around 5-30 uM [50].
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Therefore, we decided to incubate cancer cells with micromolar doses of metformin for a longer
time. Surprisingly, we discovered that these doses of metformin still showed an antitumoral effect
(Figure 1) increasing cell death in different tumour cell lines. Moreover, also in our hands, high
doses of metformin reduce ATP levels and activate autophagy, an effect that, then, increases cell
death [49]. In fact, a drop in ATP was observed when treating tumour cells with a dose of 5 mM
metformin (Figure 1A) similarly to what reported using 10 mM metformin [49]. As expected this
drop in ATP was accompanied by AMPK activation (Figure 5D) and autophagy induction with LC3-II
and GABARAP-II accumulation (Figure 5D). By contrast, using low doses of metformin we inhibited
autophagy increasing mitochondrial depolarization and apoptosis (Figure 2). At present, we do not
know the precise mechanisms underneath such divergent effects of low and high metformin dosage
on autophagy. We can speculate that they may be due to off-target effects obtained when using high
doses, that is, above 30 uM, of metformin. Moreover, it is important to consider that these divergent
effects are not a peculiarity of metformin. In fact, many anti-oxidant compounds becomes pro-oxidant
if used at high concentration such as, for example, resveratrol and vitamin C [51,52] depending on
the presence of transition metals or on the fact that they can be oxidized. However, in the case of
metformin, it is interesting to consider that both low and high doses causes cell death by de-regulating
a basic survival process such as autophagy.

However, in light of our observations, herewith, we suggest that low doses of metformin (5-30 uM)
and long times of treatment (up to 20 days) may be the best in vitroconditions necessary to investigate
the molecular mechanism behind the anti-tumoral effect of this drug.

A large number of cancer cells are addicted to glutamine [53] showing a high rate of glutaminolysis.
Glutamine is sequentially deaminated in glutamate and then in x-ketoglutarate, an intermediate
of TCA cycle. Supporting and extending the work by Ampuero et al. [17], we observed that
metformin drastically reduces GLS activity in breast and cervical cancer cells without altering its
cellular expression (Figure 3).

The biological relevancies of the GLS impairment induced by metformin are mainly two. On one
hand, it reduces the support of x-ketoglutarate to TCA cycle leading to a deregulation of tumour cell
metabolism. On the other hand, GLS inhibition reduces cellular ammonia amount. This molecule
normally stimulates cellular catabolism through autophagy activation. Moreover, it can also act in
a paracrine way diffusing in the intercellular space where it triggers autophagy also in neighbouring
cancer cells [10]. GLS is overexpressed in cancer cells [54] and consequently ammonia levels are
higher in tumours than normal tissue [55]. Our study shows that metformin can reduce cellular
ammonia accumulation leading to an impairment of autophagy. In fact, when we daily added
metformin to MDA-MB-231 cells for 20 days, we observed a strong reduction of some autophagic
markers such as MAP1LC3B-II, GABARAP, SQSTM1 (Figure 4). Such a reduction was not due to
an accelerated autophagic flux because blocking autophagosome degradation with BafA1l did not
increase MAP1LC3B-II levels in metformin treated cells (Figure 4C). In fact, metformin treatment,
is accompanied by the reduction of both cellular accumulation of autophagosomes and autophagic
proteolysis of long-lived proteins (Figure 5A,B). to demonstrate the central role of glsin the autophagy
impairment induced by metformin, we silenced the expression of this enzyme through shRNA.
We documented that, compared to wild type cells, GLS silenced cells show reduced ammonia levels
and reduced autophagy. Moreover, to confirm the involvement of the ammonia-induced autophagy
in metformin action, we transferred cellular media of MDA-MB-231 cells treated for 20 days with
metformin (CAM cells) to a secondary culture (CCM cells). Again, in CCM cells we observed the same
autophagy reduction seen in CAM cells treated with metformin. We suppose that this is due to the
reduction of ammonia accumulation impairing autophagy induction. This result is similar to the one
obtained by Eng et al. [10] demonstrating that ammonia accumulating in a conditioned medium of
a culture cell line induces autophagy in a secondary culture [56]. Moreover, such ammonia-induced
autophagy is MTOR-independent [10]. Indeed, RPS6KA1, a marker of MTORC1 activity [57], or AKT,
a marker of MTORC2 activity, [58] were not phosphorylated in CCM cells (Figure S6). Instead, in CAM
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cells we observed that metformin did not induce a phosphorylation of RPS6KA1 but surprisingly
AKT1 seems to be progressively dephosphorylated at Ser 473. AKT1 activity is often increased in
breast cancer and its activation is essential to protect cells against death insults [59]. We supposed that
such AKT1 dephosphorylation is due to the activation of the apoptotic cascade that we observed after
10 days of metformin treatment (Figure 3). In fact, autophagy inhibition observed with low doses of
metformin is accompanied by an increase of apoptosis. In particular, we demonstrated an increase
in BECN1/BCL2 complex formation (Figure 4B) that frees BAX to bind to mitochondria membrane
to induce depolarization and CYCS release (Figure 2). However, we still do not know if the effect of
metformin on BECN1/BCL2 complex are direct or indirect. This is due to the fact that metformin
interferes with both the apoptotic and autophagic mechanisms by impinging on mitochondria function
and ammonia production, respectively. Interestingly, when we added cisplatin to metformin treatment
we observed an additive decrease of ammonia accumulation and autophagy and increase of CASP3
cleavage (Figure 6A). Cisplatin is an anti-neoplastic agent used together with other drugs during the
platinum-based neoadjuvant chemotherapy (NACT) to reduce gynaecological tumours [60]. However,
NACT efficacy is limited by its high toxicity due to serious effects such as renal and liver dysfunctions.
To this effect, metformin could be used in these patients in association with NACT therapy, to lower
the dosage of anti-neoplastic drugs in NACT cocktail without altering its efficacy.

In conclusion, our results suggest that the documented anti-tumoral effect of metformin is due to its
effect on GLS with inhibition of glutamine metabolism and reduction of ammonia-induced autophagy.
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Blots of Figure 6A.

Author Contributions: Conceptualization: S.S., M.T.; Methodology: S.S., M.A., EB.; Investigation: EM., L.S.;
Writing-original draft preparation: M.T., S.S., M.A.R.; Supervision: M.T.

Funding: This research was funded by the Sapienza University, Ricerca Scientifica Ateneo 2017.

Acknowledgments: We would like to thank Antonello Mai for providing a-ketoglutarate and for the scientific
support and Claudia Marchetti for the helpful discussion about the use of metformin in NACT therapy.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

Abbreviations

ACTB Actin, b

AHA L-azidohomoalanine

AKT1 Thymoma viral proto-oncogene homolog 1
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CDK4 Cyclin dependent kinase 4
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MAP1LC3B Microtubule-associated protein 1 light chain 3 b
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IGF Insulin growth factor

JC-1 5,5',6,6'-tetrachloro-1,1'3,3'-tetrathylbenzimidazolyl-carbocyanine iodide

mTOR Mechanistic target of rapamycin

mTORC mTOR complex

PHB Prohibitin

PI3K Phosphatidylinositol 3-kinase;

NACT Neoadjuvant chemotherapy

PRKAA2 Protein kinase AMP-activated

RPS6KA1 Ribosomal protein S6 kinase Al

SQSTM1 Sequestosome 1
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TCA Tricarboxylic acid cycle
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