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Abstract: It is well known that fibroblast growth factor receptor 2 (FGFR2) interacts with its ligand
of fibroblast growth factor (FGF) therefore exerting biological functions on cell proliferation and
differentiation. In this study, we first reported that the FGFR2 gene could generate a circular RNA
of circFGFR2, which regulates skeletal muscle development by sponging miRNA. In our previous
study of circular RNA sequencing, we found that circFGFR2, generated by exon 3–6 of FGFR2 gene,
differentially expressed during chicken embryo skeletal muscle development. The purpose of this
study was to reveal the real mechanism of how circFGFR2 affects skeletal muscle development
in chicken. In this study, cell proliferation was analyzed by both flow cytometry analysis of the
cell cycle and 5-ethynyl-2′-deoxyuridine (EdU) assays. Cell differentiation was determined by
analysis of the expression of the differentiation marker gene and Myosin heavy chain (MyHC)
immunofluorescence. The results of flow cytometry analysis of the cell cycle and EdU assays
showed that, overexpression of circFGFR2 accelerated the proliferation of myoblast and QM-7 cells,
whereas knockdown of circFGFR2 with siRNA reduced the proliferation of both cells. Meanwhile,
overexpression of circFGFR2 accelerated the expression of myogenic differentiation 1 (MYOD),
myogenin (MYOG) and the formation of myotubes, and knockdown of circFGFR2 showed contrary
effects in myoblasts. Results of luciferase reporter assay and biotin-coupled miRNA pull down
assay further showed that circFGFR2 could directly target two binding sites of miR-133a-5p and
one binding site of miR-29b-1-5p, and further inhibited the expression and activity of these two
miRNAs. In addition, we demonstrated that both miR-133a-5p and miR-29b-1-5p inhibited myoblast
proliferation and differentiation, while circFGFR2 could eliminate the inhibition effects of the two
miRNAs as indicated by rescue experiments. Altogether, our data revealed that a novel circular
RNA of circFGFR2 could promote skeletal muscle proliferation and differentiation by sponging
miR-133a-5p and miR-29b-1-5p.
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1. Introduction

Circular RNA is a large class of endogenous RNA with a covalently closed loop. It was actually
discovered in plants, mouse, and yeast twenty years ago [1–3]. However, it has been regarded as
unvalued mis-splicing product of mRNA in the last decades as a few kinds and a small quantity of
circular RNAs have been found [4]. In addition, circular RNA has no 5′ caps and 3′ tails, and it could be
easily abandoned by traditional sequencing technology [5]. Fortunately, with the rapid development
of high throughput sequencing technology, the mysterious veil of circular RNA was revealed step
by step [6]. Large amounts of circular RNAs were discovered in many species, including human [7],
monkey [8], and pig [9].

Nowadays, circular RNA is considered as an up-rising star in the small RNAs interaction
network with regulatory potency [10]. The diverse functions of circular RNA act as miRNA sponge,
participating in regulating the expression of its own linear RNA in different ways [10,11], sequestering
proteins [12,13], coding protein in vitro [14–16], and deriving pseudogenes [17]. Acting as miRNA
sponge is a well-studied function of circular RNA, also known as a competing endogenous RNA
mechanism (ceRNA). The CeRNA mechanism is that messenger RNAs, transcribed pseudogenes,
and long noncoding RNAs competitively combine with the same miRNA response elements (MREs),
and then eliminate the inhibition of miRNA on their target genes. Circular RNA interacted with
miRNA are ubiquitous in a variety of tissues. A well-known example is that ciRS-7 has more than 70
highly conserved target sites of miR-7 and can extremely repress the activity of miR-7 [18]. This is the
strongest evidence for a circRNA function as the miRNA sponge has thrust circRNAs into the spotlight
and spurred a multitude of studies searching for functional circRNA sponges [19–21].

In previous work [22], we used leg muscle tissues of two female XingHua chickens from each at
days E11, E16, and P1 for circRNA sequencing to comprehensively identify stably expressed circRNAs
during skeletal muscle development at the embryonic stage. As a result, 13,377 potential circRNAs
were identified and abundantly expressed among different development stages. Furthermore,
the differentially expressed genes (DEGs) analysis showed 462 of them were differentially expressed at
different development stages. CircFGFR2 was one of the DEcircRNAs with high expression during
skeletal muscle development. Through divergent reverse-transcription PCR and RNase R treatment,
in previous work [22], we confirmed that circFGFR2 was a stable exonic circular RNA formed by
3–6 exons of fibroblast growth factor receptor 2 (FGFR2), with a length of 636 bp. As a member of
FGFRs family, FGFR2 interacts with fibroblast growth factor (FGF) to exert biological effects on cell
proliferation and differentiation as well as skeletal development [23]. The different expression level of
circRNAs implied that they could potentially regulate skeletal muscle development. We previously
revealed that circRBFOX2 could interact with miR-206 to regulate skeletal muscle cell proliferation
and differentiation [22]. Considering all of that, we assumed that circFGFR2 was another candidate
circRNA that probably affects skeletal muscle development.

In comparison to circular RNA, miRNAs are extremely well studied non-coding RNAs that
suppress protein expression by targeting the 3′-UTR (Untranslated Region) of their mRNA with
Argonaute effector protein [24,25]. The MiR-133 family has two members of miR-133a and miR-133b,
which are found to specifically express in skeletal muscle and cardiac [26]. MiR-133a-5p belongs to
the miR-133a cluster. Many studies have shown that miR-133 families are involved in regulating the
proliferation and differentiation of various kinds of skeletal muscle cells [27,28]. However, the role
of miR-133a-5p on skeletal muscle development has not been reported in poultry. MiR-29b-1-5p is
a mature miRNA and belongs to the miR-29b cluster of the miR-29 family. This family has other
clusters of miR-29a and miR-29c [29]. In chicken, the gga-miR-29b cluster contains gga-miR-29b-1-5p,
gga-miR-29b-2-5p, and gga-miR-1701. MiR-29s are efficient regulators in the process of cell
proliferation [30], differentiation [31], apoptosis [32–34] as well as DNA methylation [35,36] in different
cell types. In skeletal muscle, miR-29s could participate in regulating skeletal myogenesis through
different pathways. In mouse C2C12 cells, they could down-regulate Rybp (Ring1 and YY1-binding
Protein) [37], AKT serine/threonine kinase 3 (AKT3) [38], and histone deacetylase 4 (HDAC4) [39]
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to regulate the differentiation of skeletal muscle cell. In addition, miR-29s were also related to some
muscle diseases, including muscle atrophy [40], dystrophic muscle pathogenesis [41], and Duchenne
muscular dystrophy [42]. Obviously, miR-29s play important roles in muscle development.

In this study, we aim to investigate the effects of circFGFR2 on skeletal muscle cell development,
and to reveal its regulatory mechanism by interacting miR-133a-5p and miR-29b-1-5p.

2. Materials and Methods

2.1. Ethics Statement

This study was carried out in accordance with the principles of the Basel Declaration and
recommendations of the Statute on the Administration of Laboratory Animals, the South China
Agriculture University Institutional Animal Care and Use Committee. The protocol was approved
by the South China Agriculture University Institutional Animal Care and Use Committee (approval,
19 November 2017, ID: 2017046).

2.2. Primers

All primers used in this study were designed by Premier Primer 5.0 software (Premier Bio-soft
International, Palo Alto, CA, USA) and synthesized by Sangon (Sangon Biotech, Shanghai, China).
The detailed information of all primers is listed in Table 1.

Table 1. Primers used in this study.

Name Nucleotide Sequences (5′→3′) Annealing
Temperature (◦C) Size Application

circFGFR2
F: ACATCGTATTGGCGGCTAT

60
267 qRT-PCR for

circFGFR2
R: ACCCCATCCTTAGTCCAAC

FGFR2-1
F: GTCCGCTGTATGTGATTGTAG

56
129 qRT-PCR for FGFR2

gene
R: TGAATGTCATCTGCTCCTCT

FGFR2-2 F: AGCCGCCAACCAAATACCAAATR:
CGACAACATCGAGATGGTAAGT 56 636

Amplification of the
whole linear sequence

of circFGFR2

MYOD
F: GCTACTACACGGAATCACCAAAT

58
200 qRT-PCR

R: CTGGGCTCCACTGTCACTCA

MYOG
F: CGGAGGCTGAAGAAGGTGAA

60
320 qRT-PCR

R: CGGTCCTCTGCCTGGTCAT

β-actin
F: ACCACAGGACTCCATACCCAAGAAAG

52–60
146 qRT-PCR

R: GCCGAGAGAGAAATTGTGCGTGAC

2.3. RNA Extraction, cDNA Synthesis and Quantitative Real-Time PCR

The total RNA was extracted from cells by using RNAiso reagent (TaKaRa, Otsu, Japan).
The quality and concentration of all obtained RNA samples were determined by 1.5% agarose gel
electrophoresis and evaluated for optical density 260/280 ratio by Nanodrop 2000 spectrophotometer
(Thermo, Waltham, MA, USA). For mRNA and circFGFR2 expression analysis, cDNA synthesis for
mRNA was performed using a PrimeScript RT Reagent Kit (Perfect Real Time) (TaKaRa, Otsu, Japan).
The β-actin gene was used as an internal control for quantitative real-time PCR (qRT-PCR) analysis.
The reverse transcription reaction for miRNA was performed using ReverTra Ace qPCR RT Kit (Toyobo,
Osaka, Japan). The specific Bulge-loop miRNA qRT-PCR Primer for miR-133a-5p, miR-29b-1-5p and
U6 were designed by RiboBio (RiboBio, Guangzhou, China). qRT-PCR was performed on a Bio-Rad
CFX96 Real-Time Detection System (Bio-Rad, Hercules, CA, USA) using iTaq™ Universal SYBR®

Green Supermix Kit (Bio-Rad, Hercules, CA, USA). Each sample was assayed in triplicate, following
the manufacturer’s instructions. The specificity of the product was evaluated by the melting curve,
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and the quantitative values were obtained from the threshold PCR cycle number (Ct) at which the
increase in signal is associated with an exponential growth at which the PCR product starts to be
detected. The relative mRNA level in each sample was indicated by 2−∆∆Ct.

2.4. RNA Oligonucleotides and Plasmids Construction

The gga-miR-133a-5p mimic, gga-miR-29b-1-5p mimic and mimic control duplexes, the 3′ end
biotinylated gga-miR-133a-5p, gga-miR-29b-1-5p and mimic control duplexes, siRNA target against
circFGFR2 (si-circFGFR2, 5′-CGATGTTGTCGAGCCGCCA-3′) and non-specific siRNA negative
control were synthesized by RiboBio (Guangzhou, China). For circFGFR2 overexpression plasmids
construction, the linear sequences of circFGFR2 was amplified by PCR with primer FGFR2-2, and the
cDNA template was synthesized from the RNA of chicken primary myoblast by RT-PCR. Then,
the obtained linear sequences were cloned into KpnI and BamHI restriction sites of a circular expression
vector-the pCD2.1-ciR vector (Geneseed Biotech, Guangzhou, China) according to the manufacturer’s
protocol, so as to generate the pCD2.1-circFGFR2 overexpression vector. For pmirGLO dual-luciferase
reporter construction: the whole linear sequences of circFGFR2 were cloned into XhoI and SalI
restriction sites of pmirGLO vector to generate the wild reporter vector (PGLO-WT reporter vector),
which includes the predicted binding sites of miR-133a-5p and miR-29b-1-5p. PGLO-MT1 and
PGLO-MT2 were two mutational reporter vectors of miR-133a-5p which were cloned into XhoI and SalI
restriction sites of pmirGLO vector by PCR mutagenesis. We changed one of miR-133a-5p binding
seed sequences from “CCAG” to “TTGA” in PGLO-MT1, while in PGLO-MT2 we changed another
miR-133a-5p binding seed sequence (which included the binding site of miR-29b-1-5p) from “CCAG”
to “GTTG”. All luciferase reporters were constructed by Hongxun Biotech (Suzhou, China).

2.5. Cell Culture

Chicken embryo fibroblast cell line (DF-1) cells were cultured in high-glucose Dulbecco’s
modified Eagle’s medium (Gibico, Grand Island, NY, USA) with 10% (v/v) fetal bovine serum
(FBS) (Gibco, Grand Island, NY, USA) and 0.2% penicillin/streptomycin (Invitrogen, Carlsbad, CA,
USA). Quail muscle cell line (QM-7) cells were cultured in high-glucose M199 medium (Gibco, USA)
with 10% (v/v) FBS, 10% tryptose phosphate broth solution (Sigma, Louis, MO, USA) and 0.2%
penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA). Chicken primary myoblasts were isolated
from the leg muscles of 11-day embryo age (E11) chickens. Leg tissues were collected from E11 chickens
by completely removing skin and bones. Leg muscle was minced into sections of approximately 1 mm
with scissors and then digested with 0.25% trypsin (Gibco, Grand Island, NY, USA) at 37 ◦C in a
shaking water bath (90 oscillations/min) for 20 min. Digestions were terminated by adding equal
values of complete medium-(RPMI)1640 medium with 20% FBS, 1% nonessential amino acids and
0.2% penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA). The mixture was filtered through a
nylon mesh with 70 mm pores (BD Falcon, Greiner, Germany). The filtered cells were centrifuged at
500× g for 5 min, and maintained in complete medium at 37 ◦C in a 5% CO2, humidified atmosphere.
Serial plating was performed to enrich myoblasts and to remove fibroblasts.

2.6. Transfections

Transfections were performed with Lipofectamine 3000 reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instruction. Nucleic acids were diluted in OPTI-MEM Medium (Gibco,
Grand Island, NY, USA).

2.7. 5-Ethynyl-2′-Deoxyuridine (EdU) Assays

After cells were transfected for 48 h, myoblasts were exposed to 50 µM 5-ethynyl-2′-deoxyuridine
(EdU) (RiboBio, Guangzhou, China) for 2 h at 37 ◦C. Next, the cells were fixed in 4% paraformaldehyde
(PFA) for 30 min and 2 mg/mL glycine solution was used to neutralize the 4% PFA. Cells were, then,
permeabilized with 0.5% Triton X-100. Subsequently, 1×Apollo reaction cocktail (RiboBio, Guangzhou,
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China) was added to the cells and incubated for 30 min. The cells were stained with Hoechst 33342 for
30 min for DNA content analysis. Finally, the EdU-stained cells were visualized under a fluorescence
microscope (Nikon, Tokyo, Japan or Leica, Wetzlar, Germany). The analysis of myoblast proliferation
(ratio of EdU+ to all myoblasts) was performed using images of randomly selected fields obtained on
the fluorescence microscope.

2.8. Flow Cytometry Analysis of the Cell Cycle

Myoblast cultures in growth medium (GM) were collected after a 48 h or 36 h-transfection and
then fixed in 70% ethanol overnight at −20 ◦C. After incubation in 50 µg/mL propidium iodide (PI)
(Sigma, Louis, MO, USA) containing 10 µg/mL RNase A (TaKaRa, Otsu, Japan) and 0.2% (v/v) Triton
X-100 (Sigma, Louis, MO, USA) for 30 min at 4 ◦C, the cells were analyzed by using a BD AccuriC6
flow cytometer (BD Biosciences, San Jose, CA, USA) and FlowJo7.6 software (Treestar Incorporated,
Ashland, OR, USA).

2.9. Immunofluorescence

For immunofluorescence, cells were seeded in 24-well plates. After transfection for 48 h, cells were
fixed in 4% formaldehyde for 20 min then washed three times with PBS for 5 min. Subsequently,
the cells were permeabilized by adding 0.1% Triton X-100 for 5 min and blocked with goat serum for
30 min. After incubation with MyHC (B103; DSHB, Iowa City, IA, USA; 0.5 µg/mL) at 37 ◦C for 2 h,
the Fluorescein (FITC)-conjugated AffiniPure Goat Anti-Mouse IgG (H + L) (Bioworld, Minneapolis,
MN, USA; 1:200) or FITC (Bioworld, Minneapolis, MN, USA; 1:50) was added and the cells were
incubated at room temperature for 1 h. The cell nuclei were stained with 4′,6-diamidino-2-phenylindole
(DAPI, Beyotime, Shanghai, China; 1:50) for 5 min. Images were obtained with a fluorescence
microscope (Leica, Wetzlar, Germany). The area of cells labeled with anti-MyHC was measured
by using ImageJ software (National Institutes of Health, Bethesda, MD, USA), and the total myotube
area was calculated as a percentage of the total image area covered by myotubes.

2.10. Luciferase Reporter Assay

To investigate the binding sites of circFGFR2 with miR-133a-5p/miR-29b-1-5p, DF-1 cells were
seeded in 96-well plates and then co-transfected with 100 ng of PGLO-WT reporter vector or mutant
vectors PGLO-MT1 or PGLO-MT2, and 50 nM of miR-133a-5p/miR-29b-1-5p mimics or mimic control
duplexes by using Lipofectamine 3000 reagent (Invitrogen, Carlsbad, CA, USA). To investigate
whether circFGFR2 could inhibit the activity of miR-133a-5p/miR-29b-1-5p, DF-1 cells were seeded
in 96-well plates and then co-transfected with 100 ng of PGLO-WT reporter vector or circFGFR2
overexpression vector, and 50 nM of miR-133a-5p/miR-29b-1-5p mimics or mimic control duplexes
by using Lipofectamine 3000 reagent (Invitrogen, Carlsbad, CA, USA). After 48 h post transfection,
luciferase activity analysis was performed using a Fluorescence/Multi-Detection Microplate Reader
(BioTek, Winooski, VT, USA) and a Dual-GLO® Luciferase Assay System Kit (Promega, Madison, WI,
USA). Firefly luciferase activities were normalized to Renilla luminescence in each well.

2.11. Biotin-Coupled miRNA Pull Down Assay

Transfection procedure: the 100 nM of 3′ end biotinylated miR-133a-5p, miR-29b-1-5p or mimic
NC (RiboBio, Guangzhou, China) were transfected into QM-7 cells along with 30 µg circFGFR2
expression vector in T75 cell culture bottle. At 24 h after transfection, the cells were harvested and
washed in PBS, then lysed in lysis buffer. A total of 100 µL washed streptavidin magnetic beads were
blocked for 2 h and then added to each reaction tube to pull down the biotin-coupled RNA complex.
All the tubes were incubated for 4 h on a rotator at a low speed (10 r/min). The beads were washed
with lysis buffer five times and RNAiso reagent (TaKaRa, Otsu, Japan) was used to recover RNAs
specifically interacting with miRNA. The abundance of circFGFR2 in bound fractions was evaluated
by qRT-PCR analysis.
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2.12. Statistical Analysis

In all panels, results are expressed as the mean± S.E.M. of three independent experiments. For two
group comparison analysis, statistical significance of differences between means was analyzed by
unpaired Student’s t-test. For multiple comparison analysis, data were analyzed by one-way ANOVA
followed by both least significant difference (LSD) and Duncan test through Statistical Package for
the Social Sciences software (SPSS 17.0, Chicago, IL, USA). We considered p < 0.05 to be statistically
significant. * p < 0.05; ** p < 0.01. NC, negative control.

3. Results

3.1. CircFGFR2 Promotes Myoblast Proliferation

To investigate the role of circFGFR2 in skeletal muscle cell proliferation, we conducted
overexpression and knocked down experiments by transfecting circFGFR2 overexpression vector
and siRNAs (pCD2.1-circFGFR2 and si-circFGFR2) into chicken primary myoblast and QM-7
cell. The relative expression of circFGFR2 was detected after 48 h post transfection by qRT-PCR.
Result showed that both the effect of overexpression and knockdown had reached a significant
level in both myoblast and QM-7 cell (Figure 1A–D), and si-circFGFR2 specifically downregulated
the expression of circFGFR2 but not linear mRNA of FGFR2 (Figure 2B). Furthermore, we detected
the proliferation process of both chicken primary myoblast and QM-7 cell by flow cytometry for
cell cycle analysis and 5-ethynyl-2′-deoxyuridine (EdU) incorporation assays after transfecting
with pCD2.1-circFGFR2/pCD2.1-ciR, or si-circFGFR2/control. Cell cycle analysis showed that
overexpression of circFGFR2 increased the cell population in S phase and decreased the cell
population in G1/0 and G2/M phases (Figure 1E) while knockdown of circFGFR2 decreased
the cell population in S phase and increased the cell population in G1/0 phase, as observed in
chicken primary myoblast (Figure 1F). Meanwhile, the result of EdU strain assay showed that there
were significantly more cells in the pCD2.1-circFGFR2 transfected group than in the control group
(Figure 1G,H), whereas knockdown of circFGFR2 significantly decreased the numbers of EdU strained
cells (Figure 1G,I). These results indicated that circFGFR2 could promote the proliferation rate of
chicken primary myoblast. As expected, we obtained similar results in QM-7 cell (Figure 1J–N).
These results suggested that circFGFR2 could significantly promote the proliferation of myoblast and
QM-7 cell.

3.2. CircFGFR2 Promotes Myoblast Differentiation

Myogenesis is a complex process including myoblast proliferation, differentiation and myotube
formation and is controlled by myogenic regulatory factors (MRFs), MYOD, MYOG, myogenic
factor 5 (Myf5), and myogenic factor 6 (Myf6, also known as myogenic regulatory factor 4, MRF4).
These factors activate muscle-specific genes to coordinate myoblasts to terminally withdraw from
the cell cycle and subsequently fuse into multinucleated myotubes [43]. Following proliferation,
the initiation of terminal differentiation and fusion begins with the expression of myogenin,
which together with MYOD, activates the muscle specific structural and contractile genes to stimulate
myoblast differentiation [44]. To address the potential role of circFGFR2 in primary myoblast
differentiation, the expression of differentiation marker genes, including MYOG and MYOD were
analyzed by qRT-PCR after transfecting with pCD2.1-circFGFR2/pCD2.1-ciR, or si-circFGFR2/control.
Result showed that overexpression of circFGFR2 significantly promoted the expression of MYOD and
MYOG while knockdown of circFGFR2 significantly inhibited the expression of MYOD and MYOG
(Figure 2A,B). It indicated that circFGFR2 may promote chicken primary myoblast differentiation.
Subsequently, we induced chicken primary myoblast differentiation in vitro, as soon as the muscle
cells started to differentiate into myotubes (the first day of differentiation, DM1), we transfected them
with pCD2.1-circFGFR2/pCD2.1-ciR. MyHC immunofluorescence staining was carried out on the
differentiated myoblasts after 36 h post transfection (DM3). According to the immunofluorescence
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staining, we found that the areas of myotubes of pCD2.1-circFGFR2 transfected group were
prominently greater than that of the control group (Figure 2C,D). Conversely, the areas of myotubes in
the si-circFGFR2 transfected group were lower than that of the control group (Figure 2E,F). The result
showed that circFGFR2 could promote the formation of myotubes and promote the early differentiation
of chicken primary myoblast.Cells 2018, 7, x FOR PEER REVIEW  7 of 20 
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Figure 1. CircFGFR2 promotes myoblast proliferation. (A,B) The relative expression of circFGFR2 after
transfected chicken primary myoblasts with 1 µg pCD2.1-circFGFR2 or 50 nM si-circFGFR2 for 48 h.
(C,D) The relative expression of circFGFR2 after transfected QM-7 cells with 1 µg pCD2.1-circFGFR2 or
50nM si-circFGFR2 for 48 h. (E,F) Cell cycle analysis of chicken primary myoblasts transfected with
1 µg circFGFR2 pCD2.1-circFGFR2 or 50 nM si-circFGFR2 for 36 h. (G) 5-ethynyl-2′-deoxyuridine
(EdU) assays for chicken primary myoblasts transfected with 1 µg circFGFR2 pCD2.1-circFGFR2 or
50 nM si-circFGFR2 for 36 h. (H,I) The percentage of EdU-stained chicken primary myoblasts after
overexpression or knockdown of circFGFR2 for 36 h. (J,K) Cell cycle analysis of QM-7 cells transfected
with 1 µg circFGFR2 pCD2.1-circFGFR2 or 50 nM si-circFGFR2 for 48 h. (L) EdU assays for QM-7
cells transfected with 1 µg circFGFR2 pCD2.1-circFGFR2 or 50 nM si-circFGFR2 for 48 h. (M,N) The
percentage of EdU-stained chicken primary myoblasts after overexpression or knockdown of circFGFR2
for 48 h. In all panels, the results are shown as mean ± S.E.M., and the data are represented by three
independent assays. Statistical significance of differences between means was assessed using an
unpaired Student’s t-test (* p < 0.05; ** p < 0.01).
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Figure 2. CircFGFR2 promotes myoblast differentiation. (A) Overexpression of circFGFR2 promotes
mRNA expression of MYOD and MYOG. (B) Knockdown of circFGFR2 inhibits the mRNA expression
of MYOD and MYOG. (C,D) Overexpression of circFGFR2 facilitates the formation of myotubes.
(E,F) Down-regulation of circFGFR2 suppresses the formation of myotubes. In all panels, data are
presented as mean ± S.E.M. of three biological replicates. Statistical significance of differences between
means was assessed using an unpaired Student’s t-test (* p < 0.05; ** p < 0.01).

3.3. CircFGFR2 Interacts with miR-133a-5p and miR-29b-1-5p, and Inhibits the Expression of miR-133a-5p
and miR-29b-1-5p in Myoblast

Circular RNA has been shown to act as miRNA sponge and circFGFR2 could promote myoblast
proliferation and differentiation. We hypothesized that circFGFR2 exerts function by acting as
miRNA sponge as well as regulating the expression of miRNA. To screen potential miRNAs
that bind to circFGFR2, we used RNAhybrid to conduct the putative combination site between
circFGFR2 and miR-133a-5p/miR-29b-1-5p. Interestingly, we found that circFGFR2 has two potential
miR-133a-5p binding sites (binding site 1and binding site 2) and one potential miR-29b-1-5p binding
site. The potential miR-29b-1-5p binding site shares six of seven nucleotides with the binding site 2 of
miR-133a-5p. The mature sequence of miR-133a-5p/miR-29b-1-5p and the predicted binding sites of
these two miRNAs are shown in Figure 3A–D.
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Figure 3. CircFGFR2 sponges with miR-133a-5p and miR-29b-1-5p, and inhibits the expression
of miR-133a-5p and miR-29b-1-5p in myoblast. (A–C) The potential binding sites of miR-133a-5p
and miR-29b-1-5p in circFGFR2. The mutant sequences in binding sites are highlighted in red.
(D) A schematic drawing showing the putative binding sites of miR-133a-5p/miR-29b-1-5p associated
with circFGFR2. (E,F) Luciferase assay was conducted by co-transfecting wild type or mutant
linear sequence of circFGFR2 with miR-133a-5p/miR-29b-1-5p mimic or mimic-NC in DF-1 cells.
(G,H) Luciferase assay was conducted by co-transfecting wild type circFGFR2 linear sequence
and miR-133a-5p/miR-29b-1-5p mimic or mimic-NC and with circFGFR2 overexpression vector
(pCD2.1-circFGFR2) or empty vector (pCD2.1-ciR). (I) Biotin-coupled miRNA pull down assay from the
myoblast lysates after transfection with 3′ end biotinylated miR-133a-5p, miR-29b-1-5p or mimic NC.
The expression level of circFGFR2 was quantified by qRT–PCR, and fold enrichment in the streptavidin
captured fractions are plotted. (J,K) qRT–PCR analysis of the relative expression of miR-133a-5p and
miR-29b-1-5p after overexpression or inhibition of circFGFR2. In all panels, results are expressed as
the mean ± S.E.M. of three independent experiments. For two group comparison analysis, statistical
significance of differences between means was analyzed by unpaired Student’s t-test. For multiple
comparison analysis, data were analyzed by one-way ANOVA followed by both least significant
difference (LSD) and Duncan test through SPSS software. We considered p < 0.05 to be statistically
significant. * p < 0.05; ** p < 0.01. NC, negative control.

To investigate the binding site of circFGFR2 with miR-133a-5p/miR-29b-1-5p, we constructed
a dual-luciferase reporter by inserting the wild type (WT) or mutant (MT) linear sequence of
circFGFR2 into the 3′ end of firefly luciferase of pmirGLO (PGLO) luciferase vector to generate a
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wild type reporter (PGLO-WT) and two mutant reporters (PGLO-MT1 and PGLO-MT2). PGLO-MT1
vector contains the mutated seed sequences for the binding site 1 of mir-133a-5p, and PGLO-MT2
contains the mutated seed sequence for miR-133a-5p binding site 2 and miR-29b-1-5p binding site.
The mutant sequences are shown in Figure 3A–C. Then DF-1 cells were co-transfected with PGLO-WT,
PGLO-MT1/PGLO-MT2/PGLO luciferase vector and co-transfected with miR-133a-5p/miR-29b-1-5p
mimic/control duplexes, respectively. The relative luciferase activity in DF-1 cell line was significantly
decreased when miR-133a-5p/miR-29b-1-5p mimic were co-transfected with PGLO-WT reporter
(Figure 3E,F) compared with the miR-133a-5p/miR-29b-1-5p mimic and their correspondent mutant
reporter co-transfected group. This result demonstrated that miR-133a-5p and miR-29b-1-5p could
really combine with the predicted binding sites and miR-133a-5p could combine with both binding
site 1 and site 2.

To study the effect of circFGFR2 on the activity of miR-133a-5p/miR-29b-1-5p, we conducted
another luciferase reporter assay by co-transfected pCD2.1-circFGFR2 (circFGFR2 overexpression
vector)/pCD2.1-ciR (the empty overexpression vector), miR-133a-5p/miR-29b-1-5p/mimic NC with
PGLO-WT reporter vector. Luciferase reporter assay showed that the relative luciferase activity
was significantly decreased when cells were co-transfected miR-133a-5p/miR-29b-1-5p mimic with
PGLO-WT reporter, while the relative luciferase activity was significantly increased when cells
were co-transfected the miR-133a-5p/miR-29b-1-5p mimic with pCD2.1-circFGFR2 (Figure 3G,H).
It suggested that circFGFR2 could combine with exogenetic miR-133a-5p and miR-29b-1-5p and
eliminate the activity of both miRNAs.

Subsequently, we also conducted biotin-coupled miRNA pull down assay to further confirm the
interaction between circFGFR2 and miR-133a-5p/miR-29b-1-5p by using biotin-coupled miR-133a-5p
and miR-29b-1-5p mimics. Compared with the negative control, we observed more than 8-fold
enrichment of circFGFR2 in miR-133a-5p-captured fraction and more than 5-fold enrichment of
circFGFR2 in miR-29b-1-5p-captured fraction (Figure 3I), which demonstrated that circFGFR2
could directly sponge miR-133a-5p and miR-29b-1-5p. The greater enrichment observed in
miR-133a-5p-captured fraction is probably due to the fact that circFGFR2 contained two binding
sites for miR-133a-5p but only one for miR-29b-1-5p.

In addition, the qRT-PCR result showed that overexpression of circFGFR2 could significantly
decrease the expression of miR-133a-5p and miR-29b-1-5p (Figure 3J), while knockdown of circFGFR2
could up-regulate the expression of miR-133a-5p and miR-29b-1-5p in chicken primary myoblast
(Figure 3K).

3.4. MiR-133a-5p and miR-29b-1-5p Inhibit Myoblast Proliferation

As circFGFR2 had an effect on myoblast proliferation, we also confirmed that circFGFR2
could inhibit the expression and activity of miR-133a-5p and miR-29b-1-5p. We speculated that
miR-133a-5p and miR-29b-1-5p had a potential effect on myoblast proliferation. To confirm our
hypothesis, we synthesized miR-133a-5p and miR-29b-1-5p mimic. In chicken primary myoblast,
we detected the expression of miR-133a-5p and miR-29b-1-5p after transfected chicken primary
myoblast with 50 nM miR-133a-5p or miR-29b-1-5p mimic for 48 h. The expression of miR-133a-5p or
miR-29b-1-5p was significantly increased by mimic (Figure 4A,B). Subsequently, in chicken primary
myoblast, flow cytometry analysis showed that overexpression of miR-133a-5p or miR-29b-1-5p could
prominently increase the numbers of cells that progressed to G0/G1 and reduced the numbers of S
phase cells (Figure 4C,D). Meanwhile, we found similar results in QM-7 cells as indicated by cycle
analysis. MiR-133a-5p or miR-29b-1-5p overexpression significantly increased the number of QM-7
cells that progressed to G0/G1 and reduced the number of S phase cells (Figure 4E,F). Furthermore,
the EdU assay demonstrated that overexpression of miR-133a-5p and miR-29b-1-5p dramatically
decreased the numbers of EdU strained cells (Figure 4G–J) in both chicken primary myoblast and
QM-7 cell, which indicated that miR-133a-5p and miR-29b-1-5p could inhibit the proliferation rate
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of skeletal muscle cells. These results revealed that miR-133a-5p and miR-29b-1-5p could suppress
myoblast proliferation.
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Figure 4. miR-133a-5p and miR-29b-1-5p inhibit myoblast proliferation. (A,B) The relative expression
of miR-133a-5p and miR-29b-1-5p after transfected chicken primary myoblast with 50 nM miR-133a-5p
and miR-29b-1-5p mimic for 48 h. (C,D) Cell cycle analysis of chicken primary myoblasts transfected
with 50 nM miR-133a-5p and miR-29b-1-5p mimic for 36 h. (E,F) Cell cycle analysis of QM-7 cell
transfected with 50 nM miR-133a-5p and miR-29b-1-5p mimic for 48 h. (G,H) EdU assay of chicken
primary myoblasts transfected with 50 nM miR-133a-5p or miR-29b-1-5p mimic for 36 h. (I,J) EdU
assay of QM-7 cell transfected with 50 nM miR-133a-5p or miR-29b-1-5p mimic for 48 h. In all panels,
results are expressed as the mean± S.E.M. of three independent experiments, and statistical significance
of differences between means was assessed using an unpaired Student’s t-test (* p < 0.05; ** p < 0.01).
NC, negative control.

3.5. CircFGFR2 Eliminates the Inhibition Effect of miR-133a-5p and miR-29b-1-5p on Myoblast Proliferation

Considering the interaction between circFGFR2 and miR-133a-5p/miR-29b-1-5p,
rescue experiments were conducted by co-transfecting circFGFR2 with miR-133a-5p/miR-29b-1-5p
mimics to assess whether the inhibition on proliferation of two miRNAs could be blocked by circFGFR2
overexpression. As expected, flow cytometry analysis and EdU assay confirmed that circFGFR2
could eliminate the inhibition from overexpressed miR-133a-5p (Figure 5A–F) or miR-29b-1-5p on the
proliferation of both chicken primary myoblast and QM-7 cell (Figure 5G–L).
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Figure 5. CircFGFR2 eliminates the inhibition effect of miR-133a-5p and miR-29b-1-5p on myoblast
proliferation. (A) Cell cycle analysis of chicken primary myoblasts after co-transfection with the listed
nucleic acids (miR-133a-5p, circFGFR2 overexpression vector and miR-133a-5p, empty overexpression
vector and mimic NC, respectively) for 36 h. (B,C) EdU assays of chicken primary myoblasts after
co-transfection with the listed nucleic acids (miR-133a-5p, circFGFR2 overexpression vector and
miR-133a-5p, empty overexpression vector and mimic NC, respectively) for 36 h. (D) Cell cycle analysis
of QM-7 cells after co-transfection with the listed nucleic acids (miR-133a-5p, circFGFR2 overexpression
vector and miR-133a-5p, empty overexpression vector and mimic NC, respectively) for 48 h. (E,F)
EdU assays of QM-7 cells after co-transfection with the listed nucleic acids (miR-133a-5p, circFGFR2
overexpression vector and miR-133a-5p, empty overexpression vector and mimic NC, respectively)
for 48 h. (G) Cell cycle analysis of chicken primary myoblasts after co-transfection with the listed
nucleic acids (miR-29b-1-5p, circFGFR2 overexpression vector and miR-29b-1-5p, empty overexpression
vector and mimic NC, respectively) for 36 h. (H,I) EdU assays of chicken primary myoblasts after
co-transfection with the listed nucleic acids (miR-29b-1-5p, circFGFR2 overexpression vector and
miR-29b-1-5p, empty overexpression vector and mimic NC, respectively) for 36 h. (J) Cell cycle analysis
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of QM-7 cells after co-transfection with the listed nucleic acids (miR-29b-1-5p, circFGFR2 overexpression
vector and miR-29b-1-5p, empty overexpression vector and mimic NC, respectively) for 48 h. (K,L)
EdU assays of QM-7 cells after co-transfection with the listed nucleic acids (miR-29b-1-5p, circFGFR2
overexpression vector and miR-29b-1-5p, empty overexpression vector and mimic NC, respectively)
for 48 h. In all panels, results are expressed as the mean ± S.E.M. of three independent experiments.
For two group comparison analysis, statistical significance of differences between means was analyzed
by unpaired Student’s t-test. For multiple comparison analysis, data were analyzed by one-way
ANOVA followed by both least significant difference (LSD) and Duncan test through SPSS software.
We considered p < 0.05 to be statistically significant. * p < 0.05; ** p < 0.01. NC, negative control.

3.6. miR-133a-5p and miR-29b-1-5p Repress Myoblast Differentiation

To unveil the potential roles of miR-133a-5p and miR-29b-1-5p in chicken primary
myoblast differentiation, the expression of the myoblast differentiation marker genes including
MYOG and MYOD were evaluated by qRT-PCR in myoblast transfected with miR-133a-5p or
miR-29b-1-5p. Overexpression of miR-133a-5p notably inhibited the expression of MYOD and
MYOG, and overexpression of miR-29b-1-5p could also inhibit the expression of MYOD and
MYOG (Figure 6A,B). Furthermore, we synthesized miR-133a-5p and miR-29b-1-5p inhibitor to
down-regulate the expression of miR-133a-5p or miR-29b-1-5p, and we found that down-regulation
of miR-133a-5p or miR-29b-1-5p accelerated the expression of MYOD and MYOG (Figure 6C,D).
Subsequently, we induced chicken primary myoblast differentiation in vitro, and we transfected them
with miR-133a-5p or miR-29b-1-5p mimic/inhibitor at DM1. MyHC immunofluorescence staining was
carried out on the transfected differentiated myoblasts at DM3. According to immunofluorescence
staining, we found that the total areas of myotubes of miR-133a-5p or miR-29b-1-5p mimic transfected
group were prominently less than that of the control group (Figure 6E,F). On the contrary, the areas of
myotubes in miR-133a-5p or miR-29b-1-5p (Figure 6G,H) inhibitor transfected group were more than
that of the control group. The results demonstrated that miR-133a-5p and miR-29b-1-5p could repress
chicken primary myoblast differentiation.

3.7. CircFGFR2 Eliminates the Inhibition Effect of miR-133a-5p and miR-29b-1-5p on Myoblast Differentiation

We further performed a rescue experiment to investigate whether the suppressing effects
of miR-133a-5p and miR-29b-1-5p on myoblast differentiation could be eliminated by circFGFR2
overexpression. As shown in Figure 7A, the expressions of MYOD and MYOG in miR-133a-5p
and circFGFR2 co-transfected group were dramatically elevated compared with the miR-133a-5p
transfected group. For miR-29b-1-5p, circFGFR2 also eliminated its repression effect on MYOD and
MYOG (Figure 7B). Further MyHC immunofluorescence showed that overexpression of circFGFR2
eliminated the inhibition on myotube formation at DM3 caused by either miR-133a-5p or miR-29b-1-5p
(Figure 7C–F). Taken together, these results demonstrated that circFGFR2 could eliminate the inhibition
effect of miR-133a-5p and miR-29b-1-5p on myoblast differentiation.
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Figure 6. miR-133a-5p and miR-29b-1-5p repress myoblast differentiation. (A,B) Overexpression
of miR-133a-5p and miR-29b-1-5p reduced the expression of MYOD and MYOG. (C,D) Inhibition
of miR-133a-5p and miR-29b-1-5p accelerated the expression of MYOD and MYOG.
(E,F) Immunofluorescence analysis of MyHC-staining cells after overexpression miR-133a-5p
or miR-29b-1-5p. (G,H) Immunofluorescence analysis of MyHC-staining cells after down-regulation
of miR-133a-5p or miR-29b-1-5p. In all panels, results are expressed as the mean ± S.E.M. of three
independent experiments, and statistical significance of differences between means was assessed using
an unpaired Student’s t-test (* p < 0.05; ** p < 0.01). NC, negative control.
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Figure 7. CircFGFR2 eliminates the inhibition effect of miR-133a-5p and miR-29b-1-5p on myoblast
differentiation. (A) The mRNA expression of MYOD and MYOG of chicken primary myoblasts
after co-transfection with the listed nucleic acids (miR-133a-5p, circFGFR2 overexpression vector and
miR-133a-5p, empty overexpression vector and mimic NC, respectively). (B) The mRNA expression
of MYOD and MYOG of chicken primary myoblasts after co-transfection with the listed nucleic
acids (miR-29b-1-5p, circFGFR2 overexpression vector and miR-29b-1-5p, empty overexpression
vector and mimic NC, respectively). (C,D) The myotube area of chicken primary myoblasts after
co-transfection with the listed nucleic acids (miR-133a-5p, circFGFR2 overexpression vector and
miR-133a-5p, empty overexpression vector and mimic NC, respectively). (E,F) The myotubes area
of chicken primary myoblasts after co-transfection with the listed nucleic acids (miR-29b-1-5p,
circFGFR2 overexpression vector, and miR-29b-1-5p, empty overexpression vector and mimic NC,
respectively). In all panels, results are expressed as the mean± S.E.M. of three independent experiments,
and statistical significance of differences between means were analyzed by one-way ANOVA followed
by both least significant difference (LSD) and Duncan test through SPSS software. We considered
p < 0.05 to be statistically significant. * p < 0.05; * p < 0.01. NC, negative control.
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4. Discussion

In recent years, circular RNAs have been successfully identified in various cell types across
different species [7,9]. They have shown features of dynamic and tissue-specific expression,
which indicate a distinct function in diverse tissues [45,46]. CircFGFR2 is a highly expressed
DGcircRNA among millions of circRNAs during embryonic muscle development according to our
previous circRNA sequencing results [22], which indicates that it has a potential effect in regulating
skeletal muscle development. Here we primarily confirmed that circFGFR2 has a crucial function on
skeletal muscle development. In both chicken primary myoblast and QM-7 cell, cell cycle analysis
demonstrated that overexpression of circFGFR2 could significantly increase the cell numbers in S
phase and reduce the cell numbers in G0/G1 phase, while downregulation of circFGFR2 showed the
opposite effects. In addition, EdU incorporation assay confirmed that circFGFR2 elevated the cell
proliferation rate as shown by overexpression and knockdown of circFGFR2. The results strongly
supported that circFGFR2 could promote skeletal muscle cell proliferation. Skeletal myogenesis
comes after cell cycle termination, which is coordinated by various regulatory transcription factors,
including MYOD, MYOG, myogenic factor 5 (Mrf5), the muscle regulatory factor 4 (Mrf4), and myocyte
enhancer factor-2 (Mef2) families [47,48]. MYOD and MYOG can regulate most myogenesis-related
genes thus facilitating myoblast differentiation into myotubes [49,50]. MyHC is a differentiation
marker gene of muscle and forms the backbone of the sarcomere thick filaments [51]. The circFGFR2
exerts a function in skeletal muscle cell proliferation, we detected whether circFGFR2 was also
involved in skeletal muscle cell differentiation by monitoring the impact of circFGFR2 on the
expression of MYOD and MYOG. As expected, circFGFR2 could promote the expression of MYOD and
MYOG. MyHC immunofluorescence suggested that circFGFR2 accelerated the formation of myotubes,
which confirmed another important role of circFGFR2 in skeletal muscle cell, i.e., it can facilitate
myoblast differentiation.

Circular RNA is known to be a functional molecule transcribed from protein-encoding genes
which contain MREs like other mRNAs or lncRNAs [52]. However, circular RNA was capable of
escaping from degradation as it has no poly A tail could not be recognized by exonuclease compared
with mRNAs or lncRNAs [5]. In addition, the expression level of some circular RNAs were not lower
than their linear mRNAs [53]. Based on that advantage, they are efficient to act as ceRNA, which are
enriched for stable miRNA binding sites and regulate the activity of miRNA. Bioinformatics technology
is universally applicable for the analysis of the binding relationship of ceRNA and miRNA [54].
In this study, using the bioinformatics program RNAhybrid, we found that circFGFR2 had two
possible binding sites for miR-133a-5p and one site for miR-29b-1-5p. Subsequently, we confirmed
that miR-133a-5p and miR-29b-1-5p were actually combined with the predicated sites of circFGFR2
but not with FGFR2 mRNA as indicated by two dual-luciferase reporter assays. Biotin-coupled
miRNA pull down is an efficient method to verify the combined relationship between circular RNA
and miRNA [18,19,55]. In this study, biotin-miR-133a-5p and biotin-miR-29b-1-5p were efficient
in enriching circFGFR2, and overexpression of circFGFR2 significantly inhibits the expression of
miR-133a-5p and miR-29b-1-5p which confirm the interacted relationship between circFGFR2 and
miR-133a-5p/miR-29b-1-5p.

miR-133a-5p and miR-29b-1-5p belong to two miRNA families, miR-133 and miR-29, respectively.
These two families have been well-studied miRNAs, and found to be involved in skeletal muscle cell
proliferation and differentiation [27,38,56]. In mouse C2C12 cell line, miR-133 which contain a seed
sequence of “UUGGUCC” could promote myoblast differentiation and inhibit cell proliferation,
and miR-29 which contains a seed sequence of “AGCACCA” could reduce proliferation and
facilitate differentiation [28,56]. The roles of miR-133a-5p and miR-29b-1-5p in avian skeletal muscle
development still remain unclear. Here we first reported that miR-133a-5p and miR-29b-1-5p could
repress the proliferation and differentiation of skeletal muscle cell. The roles of these two miRNAs were
different from the studied miR-133 and miR-29 in mouse. We compared the sequence of miR-133a-5p
and miR-29b-1-5p with other miR-133s and miR-29s in both chicken and mouse, and found that the



Cells 2018, 7, 199 17 of 20

mature sequences of gga-miR-133a-5p and gga-miR-29b-1-5p were different from the studied miR-133
and miR-29. Since the seed sequence was different, and miRNA exerts function by targeting the 3′-UTR
of their target genes, it is possibly that the function of gga-miR-133a-5p and gga-miR-29b-1-5p was
different from the miR-133 and miR-29 which have been studied in mouse. On the other hand, the roles
of gga-miR-133a-5p or gga-miR-29b-1-5p were opposite to the effect of circFGFR2 in myoblast. It is
therefore reasonable that circFGFR2 could act as a molecular sponge for miR-133a-5p and miR-29b-1-5p.
To confirm this, we further performed rescue experiments and found that circFGFR2 eliminated the
inhibition effect of miR-133a-5p and miR-29b-1-5p on myoblast proliferation and differentiation.
Considering all of this, we declared that circFGFR2 regulates skeletal muscle cell proliferation and
differentiation by inhibiting the expression and activity of miR-133a-5p and miR-29b-1-5p in poultry.

5. Conclusions

In conclusion, we found that a novel circular RNA of circFGFR2, generated by the FGFR2 gene,
could regulate myoblast proliferation and differentiation by acting as a sponge of miR-133a-5p and
miR-29b-1-5p in poultry.
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