Gene	Assay	Primers sequence $(5^{\prime} \rightarrow 3^{\prime})$	Amplicon	CpGs	Number of PCR cycles	Annealing temperature	Target
CNICA	4		(bp) 240	analyzed	(٨)	(1; -C)	Due diete die were et en
SNCA	1		340	6	45	63	Predicted promoter
		Pyroseq (F): GGAGTAAGTIGTAGGGAAAGTA					
SNCA	2	F: AGGTAGG A GGTTGGAGTTGAT	380	8	38	61	Predicted promoter
		R: *TAACCACTCCCAATTCTCC					
		Pyroseq (F): GGG TTT AAGAGAGGGGG					
SNCA	3	F: GGAGAA T TGGGAGTGG TT AT	262	5	45	60	Exon 1
		R: *CACA AA TACTTACCT A A A TCCCTCT A C					
		Pyroseq (F): GGGTTTG TT T TTT A T T TTTT AG					
LRRK2	1	F: GGGG T T TA GGG TT TGTGGA T	307	9	45	65	Predicted promoter
		R: *TCCCTCTCC CA AACCCTCCTAC					
		Pyroseq (F): AG TT AGG TTA GG T T T AG T AG T					
LRRK2	2	F: TT TGAGTGGGGGAGGAGGAA	254	9	45	63	Exon 1
		R: *ACCACTAACCATAATAACACCTACTTC					
		Pyroseq (F): AG T TG TT T TT TT T TTATAAA T AGG					
PRKN	1	F: AGAGTTGTAATAAGTTTTTAAAGGTAAGT	284	4	45	60	Predicted promoter
		R: *CTCCCACCAACCACTCTCCTAAATTA					
		Pyroseq (F): GGGGGG T TGGGGG T A					
PRKN	2	F: GATAGGTA A GTGGGTA TT TG TT AGGTA T AG	124	9	38	58	Predicted promoter partially
		R: *ACTTT AA CCCC C TCATT A ACA A TT AA CACC					overlapping with intron 1
		Pyroseq (F): ATTTGTTAGGTATAGTTTTTTG					
PINK1	1	F: TGGTG A GGG TT TGGGG T TG	142	5	38	61	Predicted promoter
		R: *ACCCCCCCTCACCTAAATCTCCTAAC					overlapping with exon 1
		Pyroseq (F): T TGGG TT T T AT A GAGGAAAAA T AG					
DJ-1	1	F: GGGAGG TT TGGA TT AGAGT TT	229	6	38	61	Predicted promoter
		R: *ACCCCCCAC C AAT AA CACA A TCC					
		Pyroseq (F): GG TT TGGA TT AGAGT TT TAA T AG					
DJ-1	2	F: GGTGG A GGTAGAGA T TGTTAAG TTT	273	8	45	60	Predicted promoter
		R: *CACCCCACACCA AA CT A A					overlapping with exon 1
		Pyroseq (F): TGTGGGG T TGAGGGA					

Table S1. Description of the parameters used for the epigenetic analysis of DNA methylation levels by pyrosequencing.

*All the reverse primers were biotinylated in 5'.

T (in forward primers) and A (in reverse primers) denote the converted unmethylated cytosines whereas A (in forward primers) and C (in reverse primers) correspond to cytosines in CpG dinucleotides and are thus introduced as mismatches to overpass those variable positions.

PCR conditions: 95°C 15'; X cycles (94°C 30", Y°C 30", 72°C 30"); 72°C 10'; 4°C ∞

PCR mix per one reaction (1X) for a final volume of 25μ L: 17.25 μ L Milli-Q water + 2.5 μ L 10X buffer + 1 μ L dNTPs 5mM each + 2.5 μ L MgCl₂ 25mM + 0.5 μ L primerF 10 μ M + 0.5 μ L primerR 10 μ M + 0.25 μ L Maxima Hot Start *Taq* DNA polymerase (Thermo Scientific) 5U/ μ L + 0.5 μ L bisulfite treated DNA 50ng/ μ L.

Table S2. Characteristics of the CpG islands predicted by the software employed in this work. In this table, for each gene and for each program, we show the length (in bp) of the predicted CpG islands as well as their GC content. When a particular software predicted several CpG islands, they are shown separated by "," (comma)

Gene	Program	CpG island length (bp)	% GC content
	Bioinformatics	1761	60
	CpG cluster	282, 579, 149, 306	60, 69, 61, 58
SNCA	UCSC	862	67
	Emboss	591	69
	Softberry	364	71
	Bioinformatics	899	66
	CpG cluster	649	72
LRRK2	UCSC	558	76
	Emboss	403, 235	73, 74
	Softberry	282	78
	Bioinformatics	1027	67
	CpG cluster	778	72
PRKN	UCSC	641	73
	Emboss	772	72
	Softberry	522	75
	Bioinformatics	969	67
	CpG cluster	779	73
PINK1	UCSC	506	75
	Emboss	749	74
	Softberry	435	80
	Bioinformatics	1075	63
	CpG cluster	840	68
DJ-1	UCSC	925	66
	Emboss	335, 507	63, 70
	Softberry	925	66

PARIETAL CORTEX

OCCIPITALCORTEX

SUBSTANTIA NIGRA

Figure S2. Methylation levels for the three assays in *SNCA* **in the parietal and occipital cortices and** *Substantia nigra* from PD patients and controls. The percentatge of methylated C for each CpG pair in the assays is shown (bars) together with its corresponding Standard deviation for PD patients (Black bars; n=5) and healthy controls (white bars; n=5 in parietal and occipital cortices, n=4 in *Substantia nigra*). The global level of methylation for each CpG island is also included (Overall). * p<0.05; ^o p<0.01

Figure S3. Methylation levels for the two assays in *LRRK2* in the parietal and occipital cortices and *Substantia nigra* from PD patients and controls. The percentatge of methylated C for each CpG pair in the assays is shown (bars) together with its corresponding Standard deviation for PD patients (Black bars; n=5) and healthy controls (white bars; n=5 in parietal and occipital cortices, n=4 in *Substantia nigra*). The global level of methylation for each CpG island is also included (Overall).

Figure S4. Methylation levels for the two assays in *PRKN* **in the parietal and occipital cortices and** *Substantia nigra* from PD patients and controls. The percentatge of methylated C for each CpG pair in the assays is shown (bars) together with its corresponding Standard deviation for PD patients (Black bars; n=5) and healthy controls (white bars; n=5 in parietal and occipital cortices, n=4 in *Substantia nigra*). The global level of methylation for each CpG island is also included (Overall). * p<0.05

healthy controls (white bars; n=5 in parietal and occipital cortices, n=4 in Substantia nigra). The global level

Figure S5. Methylation levels in *PINK-1* in the parietal and occipital cortices and *Substantia nigra* from PD patients and controls. The percentatge of methylated C for each CpG pair in the assays is shown (bars) together with its corresponding Standard deviation for PD patients (Black bars; n=5) and of methylation for each CpG island is also included (Overall). * p<0.05

Figure S6. Methylation levels for the two assays in *DJ-1* in the parietal and occipital cortices and *Substantia nigra* from PD patients and controls. The percentatge of methylated C for each CpG pair in the assays is shown (bars) together with its corresponding Standard deviation for PD patients (Black bars; n=5) and healthy controls (white bars; n=5 in parietal and occipital cortices, n=4 in *Substantia nigra*). The global level of methylation for each CpG island is also included (Overall).