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Abstract: The cytolethal distending toxins (CDTs) are a family of exotoxins produced  

by a wide range of Gram-negative bacteria. They are known for causing genotoxic stress  

to the cell, resulting in growth arrest and eventually apoptotic cell death. Nevertheless, 

there is evidence that CDTs can also perturb the innate immune responses, by regulating 

inflammatory cytokine production and molecular mediators of bone remodeling in various 

cell types. These cellular and molecular events may in turn have an effect in enhancing 

local inflammation in diseases where CDT-producing bacteria are involved, such as 

Aggregatibacter actinomycetemcomitans, Haemophilus ducreyi, Campylobacter jejuni  

and Helicobacter hepaticus. One special example is the induction of pathological  

bone destruction in periodontitis. The opportunistic oral pathogen Aggregatibatcer 

actinoycemetemcomitans, which is involved in the aggressive form of the disease, can 

regulate the molecular mechanisms of bone remodeling in a manner that favors bone 

resorption, with the potential involvement of its CDT. The present review provides an 

overview of all known to-date inflammatory or bone remodeling responses of CDTs 

produced by various bacterial species, and discusses their potential contribution to the 

pathogenesis of the associated diseases. 
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1. Introduction 

The family of cytolethal distending toxins (CDTs) consists of a number of bacterial protein 

exotoxins expressed by a broad range of Gram-negative bacteria, with a potential involvement in the 

pathogenesis of a diverse range of human infections. They can be described as genotoxins, as their 

main action is to elicit DNA damage responses on the intoxicated host cells. Consequently, their  

action leads to cell cycle arrest and eventually cell apoptosis [1,2]. The CDT holotoxin consists of 

three subunits, namely CdtA, CdtB and CdtC. The CdtA and CdtC subunits mediate the internalization 

of the CdtB subunit into the cell, which is a molecule functionally homologous to deoxyribonuclease I. 

It is therefore CdtB which is responsible for the induction of these deleterious effects on the host cells. 

Apart from these well-characterized effects of CDTs, the literature indicates that CDTs may also be 

involved on other aspects of the pathogenesis of infection, such as the establishment of a chronic 

inflammatory response [3,4]. It is therefore the aim of this review to identify and present the current 

state of the literature with regards to the role of CDTs on host inflammatory responses, as well as the 

associated effects on bone remodeling. 

2. Host Inflammatory Responses to Cytolethal Distending Toxins 

Inflammation is a process that is triggered in response to a noxious stimulus, such as a bacterial 

pathogen or its virulence factors. Many bacterial virulence factors can act as pathogen-associated 

molecular patterns (PAMPs), which are highly conserved bacterial structures. Pattern recognition 

receptors (PRRs) are transmembrane or intracellular receptors of eukaryotic cells, specialized in the 

recognition of PAMPs. Therefore, PRRs are responsible sensing and responding to the invading 

bacteria. Examples of PRRs are the network of Toll-like (TLRs), nucleotide-binding oligomerization 

domain (NODs) and nod-like receptors (NLRPs) [5]. Activation of PRRs results in the maturation and 

extracellular secretion of cytokines, such as interleukins (ILs), that can thereafter exert their biological 

roles [6]. Cytokines are a group of diverse molecules that mediate the cell-to-cell signaling during the 

initiation and establishment of inflammation. As the CDTs are well established virulence factors with 

potential pro-inflammatory actions upon host cells, they can certainly classify as PAMPs. The effects 

of CDT on inflammation may not be necessarily restricted to a particular member of this toxin family. 

Accordingly, various host cell types are responsive to CDTs, in terms of host inflammatory responses. 

This section summarizes the inflammatory responses of host cells to CDT, according to each  

specific member of this toxin family. The literature search yielded pertinent publications in the  

cases of Aggregatibacter actinomycetemcomitans, Haemophilus ducreyi, Campylobacter jejuni and 

Helicobacter hepaticus. A summary of the associated effects and corresponding literature is provided 

in Table 1.  
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2.1. Effect of Aggregatibacter actinomycetemcomitans CDT 

Aggregatibacter actinomycetemcomitans is a Gram-negative facultative anaerobe, which is highly 

implicated in the pathogenesis of localized aggressive periodontitis, a disease leading to tooth loss in 

adolescents or young adults. This species expresses two protein exotoxins, namely a leukotoxin and a 

CDT, which is a unique property of A. actinomycetemcomitans, among all known oral species [7,8]. 

While the CDT of A. actinomycetemcomitans has been shown to exert its “classical” growth inhibitory 

effects in human T-lymphocytes [9], B-lymphocytes [10], mononuclear cells [11], epithelial  

cells [11,12], gingival fibroblasts and periodontal ligament cells [13,14], there is also evidence that this 

toxin is involved in the stimulation of cytokine production by the host. 

The first indication on such an effect came from the study of Akifusa [11]. This study used 

recombinant A. actinomycetemcomitans CDT holotoxin to challenge isolated human peripheral blood 

mononuclear cells (PBMCs), and identified that it was able to induce the synthesis of IL-1β, IL-6, and 

IL-8, but not tumor necrosis factor (TNF)-α, IL-12, or granulocyte-macrophage colony-stimulating 

factor (GM- CSF). When the different subunits were tested individually in this experimental system, 

CdtC appeared to be a more potent inducer of these cytokines, compared to CdtB, indicating that 

cytokine-inducing action is independent of the deoxyribonuclease I activity of the toxin (which is 

conferred by CdtB). A synergistic cytokine-inducing capacity was also demonstrated, most markedly 

in the case of interferon (IFN)-γ. None of the individual subunits demonstrated IFN-γ-stimulating 

capacity, whereas higher concentrations of the combination of CdtB and CdtC, and particularly all 

three subunits together, demonstrated a strong stimulatory effect. The three primary cytokines shown 

to be induced in PBMCs by A. actinomycetemcomitans CDT are of pro-inflammatory nature. Hence 

their induction is commensurate with the inflammatory traits of periodontal diseases. IL-8 in particular 

is a major chemokine, whose presence is responsible for recruiting neutrophils in the affected area, 

hence intensifying the histopathological events of inflammation [15]. IL-1β and IL-6 are also consider 

osteolytic cytokines, with a primary role in osteoclast formation and subsequent bone resorption [16], 

which is the hallmark of periodontitis. Hence, their induction by may denote an effect on the initiation 

of inflammation in the periodontal tissues that could lead to the pathological process of periodontal 

tissue breakdown, and hence periodontitis. 

The effect of A. actinomycetemcomitans CDT has also been investigated on the production of nitric 

oxide (NO) by murine peritoneal macrophages [17]. NO is a free radical and a crucial inflammatory 

mediator. It was found that CDT caused a rapid inhibition of NO production by these cells, which was 

directed towards IFN-γ-dependent inflammatory pathways, and was independent of anti-inflammatory 

cytokines IL-4 or IL-10. This was interpreted as an immunosuppressive effect of CDT, beyond  

its growth inhibitory and apoptotic capacities, which could be involved in the pathogenesis of  

A. actinomycetemcomitans–associated periodontitis. Hence, inhibition of NO production in macrophages 

by A. actinomycetemcomitans CDT could putatively hinder a cascade of pro-inflammatory events that 

lead to elimination of the invading bacterial pathogens, favoring the establishment of chronic 

periodontal infection. 

Apart from cells of the immune system, structural cells including gingival fibroblasts (GF) and 

periodontal ligament (PDL) cells have been studied for their inflammatory responses to CDT. By the 

use of CDT-deletion mutants, it was found that, although A. actinomycetemcomitans induced IL-6,  
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IL-1β and TNF-α gene expression in GF, the CDT was actually not in involved in these transcriptional 

events. Nevertheless, rather than transcription, IL-6 cytokine secretion was stimulated by  

A. actinomycetemcomitans challenge, and CDT conferred a partial additive effect to this capacity.  

On the contrary, there was no difference in IL-1β or TNF-α secretion. The gene expression of the 

different receptor subtypes for IL-6, IL-1β and TNF-α cytokines was also not affected by  

A. actinomycetemcomitans, either this expressed CDT or not [18]. Therefore, A. actinomycetemcomitans 

induces IL-6 production in GF, albeit with only partial involvement of the CDT. Accordingly, in 

another study it was shown that soluble surface extracts from A. actinomycetemcomitans cells 

stimulate the production of several pro-inflammatory cytokines (including IL-1β, TNF-α, IL-6, IL-8, 

MIP-1β) by whole human blood, but the CDT or the leukotoxin were not crucial in this respect, as 

demonstrated also by the use of a double mutant for these two toxins [19]. 

Of interest is also a study on inflammasome expression in human mononuclear cells (MNLs),  

in response to A. actinomycetemcomitans [20]. Inflammasomes are intracellular complexes that are 

activated by the PAMP-PRR interaction, responsible for the maturation and release of IL-1 cytokines 

by cells of the immune system [21]. It was shown that A. actinomycetemcomitans does not affect the 

expressions of NLRP1, NLRP2 and Absent In Melanoma (AIM)2 inflammasome sensors, or their 

effector Caspase-1. Nevertheless, it does cause an up-regulation of the NLRP3 and a down-regulation 

of the NLRP6 sensor. This effect was not dependent on the leukotoxin or the CDT, as demonstrated by 

the use of the CDT-deletion strains. Hence, the capacity of A. actinomycetemcomitans to regulate the 

expression of inflammasomes does not appear to be attributed to its CDT [20]. 

The nature on the host cell receptor via which A. actinomycetemcomitans CDT exerts its actions is 

not clear. Yet, there are indications that the glycosphingolipid GM3 can act as one [22,23]. The 

receptor binding capacity of CDT is attributed to the aromatic aminoacids of the CdtA subunit [24,25], 

but not restricted to these [26]. 

Collectively, A. actinomycetemcomitans components other than the CDT appeared to be stronger 

regulators of pro-inflammatory cytokines in the various experimental systems. However, the  

cytokine-inducing capacity of A. actinomycetemcomitans CDT appears to be evident in PBMCs and 

GF, particularly in the case of IL-6, a cytokine with a pronounced role in the stimulation of bone 

resorption [27]. Apart from the regulation of IL-6, the potential effects of CDT on bone resorption are 

further discussed in the next section. 

2.2. Effect of H. ducreyi CDT 

Haemophilus ducreyi is a Gram-negative species that is the etiological factor of chancroid, a disease 

characterized by genital ulcers and regional lymphadenitis. It expresses a CDT which is highly 

homologous to that of A. actinomycetemcomitans, exhibiting 96% amino-acid sequence identity. For 

this reason, it has also been used in its purified form as a model CDT in experimental systems relevant 

to A. actinomycetemcominans and periodontal pathogenesis. In one such example, purified H. ducreyi 

CDT was able to induce the secretion, but not transcription of IL-6 by GF [18]. Accordingly, it has 

also been shown that normal cells, as well as cancer cell lines, intoxicated with H. ducreyi CDT were 

induced to express several cytokines, particularly IL-6, IL-8 and IL-24 [28]. Nevertheless, in another 

in vitro study, purified H. ducreyi CDT partially inhibited the production of TNF-α, IL-6, IL-8, and  
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IL-12 by monocyte-derived dendritic cells, thus hampering the early stage immune responses to  

H. ducreyi [29]. Hence, although there is still limited volume of literature on this theme, H. ducreyi 

CDT may stimulate or inhibit cytokine production, depending on the experimental cell system employed. 

2.3. Effect of Campylobacter jejuni CDT 

Campylobacter jejuni is a Gram-negative species associated with enterocolitis, a local acute 

inflammatory response that involves intestinal tissue damage and diarrhea. The intestinal epithelium is 

a physical barrier that responds to C. jejuni infection by eliciting an inflammatory response. C. jejuni is 

yet another species that expresses a potent CDT, which can modulate the host inflammatory responses 

of the gut epithelium. An early study using intestinal epithelial cells has shown that C. jejuni can 

induce IL-8 release, attributed to a large extent to its CDT. Indeed, anti-CDT antibodies neutralized its 

capacity to stimulate IL-8 release [30]. In other studies involving human intestinal epithelial cells, it 

was confirmed that infection with C. jejuni or just its outer membrane vesicles, was able to stimulate 

the production of pro-inflammatory IL-8, as well as the anti-inflammatory cytokine IL-10. However, 

CDT-deficient strains elicited similar effects, suggesting a CDT-independent mode of action [31,32]. 

When the effect of C. jejuni challenge was considered on human colonic epithelial cells, both IL-8  

and TNF-α cytokines were up-regulated. Its ability to stimulate IL-8 secretion was reduced when 

CDT-deletion strains were used, indicating a crucial role of CDT here, which was also dependent on 

the activation of NF-κB and toll-like receptor (TLR) signaling [33]. It should be reminded that 

transcription factor NF-κB activates a number of pro-inflammatory cytokine genes, including IL-1β, 

IL-6, IL-8 and TNF-α [34]. Therefore, it possesses a key role in the initiation of the inflammatory 

events in response to bacterial challenge. In an interaction model using human monocytic cells,  

C. jejuni was able to induce a number of pro-inflammatory cytokines, including IL-1α, IL-1β, IL-6,  

IL-8, and TNF-α, but CDT was not involved [35,36]. Collectively, there is some evidence that the 

CDT of C. jejuni stimulates IL-8 production by gut epithelial cells, which may promote neutrophil 

migration and inflammatory events in the intestinal tissue. 

2.4. Effect of Helicobacter hepaticus CDT 

Helicobacter hepaticus is a Gram-negative CDT-producing species, associated with chronic 

gastrointestinal inflammation and neoplasia. It is also involved in the development of typhlocolitis  

and chronic hepatitis. The studies available in the literature regarding the inflammatory effects of  

H. hepaticus CDT are primarily using animal infection models, rather than in vitro models. Challenge 

of IL-10(−/−) mice with isogenic H. hepaticus mutants showed that CDT is not required for 

colonization of the murine gut. Despite this, a CDT-deficient mutant significantly diminished the 

capacity of H. hepaticus to induce lesions in this murine model of inflammatory bowel disease [37].  

In line with these findings, both a wild-type H. hepaticus and its derivative CDT-deficient mutant 

successfully colonized the intestinal tissue of IL-10(−/−) mice. Still, only the wild-type infected mice 

developed eventually typhlocolitis. However, at longer periods the CDT-deficient mutant could not be 

detected any further in the mice, but the wild-type strain could persist for longer periods [38].  

In line with this finding, in another study using an isogenic H. hepaticus CDT-deficient mutant to 

infect Swiss Webster mice it was shown that the presence of the toxin was important for longer term 
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colonization of this species, and associated with down-regulation of colonic IL-10 production [39].  

In yet another study, infection with an isogenic H. hepaticus CDT mutant induced chronic hepatitis in 

mice. The pathological traits were comparable to those elicited by the wild-type H. hepaticus, with the 

exception that the latter caused additionally hepatic dysplasic nodules. Moreover, the wild-type 

infected mice demonstrated significantly enhanced hepatic tissue expression of TNF-α, IFN-γ and IL-6 

[40]. Collectively, it appears that H. hepaticus CDT is not required for intestinal colonization, but is 

important for eliciting the chronic inflammatory response associated with colitis, and some of the 

histopathological traits of colitis and hepatitis. 

3. Bone Remodeling Responses to Cytolethal Distending Toxins 

Special mention should be made to the potential of CDT to perturb bone metabolism, particularly 

by interfering in the signaling for osteoclast differentiation. Among all CDT-producing species, it is 

the oral pathogen A. actinomycetemcomitans for which this virulence property could be of relevance. 

That is because periodontitis, in which A. actinomycetemcomitans is involved as a putative pathogen, 

pertains bone destruction of the tooth-supporting tissue. Hence, periodontitis is the only bone-related 

pathology in which a CDT family member may be involved. 

Receptor activator of NF-κB ligand (RANKL) is a membrane-bound or soluble ligand expressed by 

osteoblasts, fibroblasts and activated T-cells and B-cells. By binding onto its cognate RANK receptor 

on the surface of pre-osteoclasts, it triggers their differentiation into mature osteoclasts, which are the 

cells responsible for bone resorption. On the contrary, osteoprotegerin (OPG) is a soluble decoy 

receptor, responsible for binding to RANKL and therefore for blocking its action. This system of 

molecules is crucial for bone resorption, and the relative RANKL/OPG ratio is shown to be elevated in 

bone-destructive periodontal disease [41–44]. 

The current literature related to the RANKL-OPG system and A. actinomycetemcomitans CDT is 

pertinent to in vitro experimental systems. A. actinomycetemcomitans was able to induce RANKL gene 

expression, as well as cell-membrane RANKL protein up-regulation, in GF and PDL cells, which are 

both structural cells of the periodontium. However, OPG gene expression or secretion remained 

unaffected. An A. actinomycetemcomitans CDT-deletion mutant was not able to induce RANKL 

expression, in contrast to its parental wild-type. In agreement with this finding, pretreatment of  

A. actinomycetemcomitans wild-type with antisera raised against CDT, abolished RANKL expression [45]. 

Inhibition of IL-6, IL-1, TNF-α or prostaglandin E2, which are all well accepted mediators of  

RANKL induction, did not inhibit A. actinomycetemcomitans-induced RANKL expression [18].  

This demonstrates that the mechanism of RANKL induction by A. actinomycetemcomitans CDT is 

independent of classical inflammatory mediators. When purified H. ducreyi CDT was used as a model 

toxin to study RANKL induction in GF and PDL cells, it was alone able to induce RANKL, similarly 

to the wild-type A. actinomycetemcomitans strain. Alternatively, when it was added along with the 

CDT-mutant, it was able to rescue RANKL induction [45]. In another study employing T-cells, 

purified H. ducreyi CDT up-regulated RANKL gene expression and protein secretion, whereas OPG 

was not detected at all in this experimental system [46]. 

Collectively, CDT appears to induce RANKL, the key osteoclast-differentiating factor responsible 

for bone resorption, in several cell types of relevance to periodontal disease. Hence, this toxin of  
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A. actinomycetemcomitans may be a crucial virulence factor for the pathological bone resorption 

occurring during the process of localized aggressive periodontitis. 

Table 1. Summary of the literature: effects on cytolethal distending toxins (CDTs) on the 

production of host inflammatory mediators by various cell types. 

Species Target cell Effect CDT-dependence Reference 

A. actinom. GF IL-6 induction Partly [18] 
 GF/PDL cells RANKL induction Yes [45] 

 PBMCs 
IL-1β, IL-6, IL-8, IFN-γ 

induction 
Yes [11] 

 Macrophages NO, INF-γ inhibition Yes [17] 
 MNL cells NLRP3/NLRP6 regulation No [18] 

H. ducreyi GF/PDL cells RANKL induction Yes [45] 
 GF IL-6 induction Partly [18] 
 Various cell lines IL-6, IL-8, IL-24 induction Partly [28] 

 Dendritic cells 
TNF-α, IL-6, IL-8, IL-12 

inhibition 
Partly [29] 

 Jurkat T-cells RANKL induction Yes [46] 
C. jejuni Intestinal epithelium IL-8 induction Yes [30] 

 Colonic epithelium IL-8 induction Partly [33] 
H. hepaticus Hepatic tissue TNF-α, IFN-γ and IL-6 Yes [40] 

4. Conclusions 

Several Gram-negative pathogenic species produce a CDT. Apart from the well accepted effects  

on inhibition of cell cycle and induction of apoptosis in host cells, this toxin can also affect the 

transcription or production of some inflammatory mediators in diverse cell types, and may involve  

the TLR/NFκ-B pathway. The CDT-producing species with documented such capacities are  

A. actinomycetemcomitans, H. ducreyi, H. hepaticus and C. jejuni, while the affected inflammatory 

mediators are primarily RANKL, IL-6 and IL-8. This could have implications on the pathogenesis of 

the associated infections. In terms of future research, novel transcriptomic or proteomic approaches 

may be able to shed further light onto the global effects of CDTs, with regards to inflammatory 

responses, and other aspects of CDT-related toxicity. 
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