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Abstract: The clinical management of bladder cancer continues to present significant challenges.
Bacillus Calmette–Guérin (BCG) immunotherapy remains the gold standard of treatment for non-
muscle invasive bladder cancer (NMIBC), but many patients develop recurrence and progression
to muscle-invasive disease (MIBC), which is resistant to BCG. This review focuses on the immune
mechanisms mobilized by BCG in bladder cancer tumor microenvironments (TME), mechanisms
of BCG resistance, the dual role of the BCG-triggered NFkB/TNFα/PGE2 axis in the regulation of
anti-tumor and tumor-promoting aspects of inflammation, and emerging strategies to modulate their
balance. A better understanding of BCG resistance will help develop new treatments and predictive
biomarkers, paving the way for improved clinical outcomes in bladder cancer patients.

Keywords: tumor microenvironment; BCG; bladder cancer; urothelial cancer; chemokines; cytokines;
immunotherapy; inflammation; lymphocytes; macrophages; Toll-like-receptors

1. Introduction

PD1/PD-L1 blockers have recently become a standard of care for patients with ad-
vanced bladder (urothelial) cancer [1–5], but the early stages of this disease have been
treated with local (intravesical) Bacillus Calmette–Guérin (BCG) immunotherapy since
1976 as an adjuvant treatment of non-muscle-invasive bladder cancer (NMIBC) [6]. BCG is
a key component of standard care for high-risk NMIBC patients following transurethral
resection of the bladder tumor and an option for intermediate-risk NMIBC patients [7,8].
The guidelines from the European Association of Urology and the American Association
of Urology suggest a risk-based approach to maintenance therapy duration. According to
these guidelines, individuals with intermediate-to-high-risk disease should undergo main-
tenance therapy for at least one year and up to three years [8,9]. Intravesical BCG therapy
has shown superior efficacy in reducing tumor recurrence and progression compared to no
treatment or adjuvant intravesical chemotherapy [10,11]. However, over 40% of high-risk
NMIBC patients do not respond to BCG treatment, and many more patients develop re-
currence and progression to BCG-resistant disease [12,13]. The mechanisms underlying
the failure of the anti-tumor effects of BCG therapy are not fully understood [14–16]. This
review provides an overview of the currently acknowledged immune barriers to BCG
efficacy and identifies the areas of need for future research.

2. BCG and Tumor Immunity

BCG infiltrates the urothelium and is taken up by macrophages, initiating local im-
mune activation [17–20]. The dominant pathway for the early activation of macrophages
involves pro-inflammatory cytokines. The resulting epigenetic modifications at regula-
tory sites that control inflammatory and metabolic genes lead to increased intracellular

Cells 2024, 13, 699. https://doi.org/10.3390/cells13080699 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells13080699
https://doi.org/10.3390/cells13080699
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-9903-6657
https://orcid.org/0000-0001-7025-3562
https://doi.org/10.3390/cells13080699
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells13080699?type=check_update&version=1


Cells 2024, 13, 699 2 of 17

glycolytic metabolism and oxygen consumption in host macrophages [21–23]. These early
events orchestrate gene transcription, resulting in an intensified cytokine production envi-
ronment within the BCG-activated cells. This augmented cytokine response surpasses the
initial wave, leading to increased recruitment and activation of cytotoxic leukocytes, ready
to execute their defensive mission [24–26].

Innate immunity plays a crucial role in initiating the immune response against BCG
therapy. In addition to BCG-activated macrophages, polymorphonuclear cells (PMNs), den-
dritic cells (DCs), and natural killer (NK) cells are involved in the response to BCG [27–29].
DCs, responsible for the induction of antigen-specific immunity, also activate innate immunity,
promoting the killing of cancer cells by NKT cells and γ/δT cells [30,31]. In the context of BCG
treatment of NMIBC, the effectiveness of BCG-induced immune responses and its potential
anti-tumor benefits rely on the presence of subsequent immune challenges. These challenges
play a crucial role in BCG-activated cells, leading to elevated production of Th1 cytokines and
resulting inflammation [32–34].

In addition to innate immunity, adaptive immunity, particularly T cells, is critical to
the effectiveness of BCG therapy [35–37]. In animal models and human studies, T cells,
including CD4+ and CD8+ T cells, are found in the urine and bladder mucosa of BCG-
treated patients [35–37]. BCG treatment was shown to induce a shift from a T helper 2
(Th2) to a T helper 1 (Th1) response, characterized by elevated levels of IL-2, IL-12, and
interferon-gamma (IFNγ) [38–40]. This shift toward a Th1 response is associated with a
favorable clinical response to BCG [40]. The role of T cells in BCG efficacy is demonstrated
by the loss of BCG’s effectiveness in the absence of T cells in animal models [35,36]. BCG-
induced T cell responses target both BCG antigens and bladder cancer antigens [41]. The
transfer of T cells from BCG-cured mice to tumor-bearing mice results in tumor rejection,
indicating the presence of tumor-specific memory T cells [35]. Preliminary human data also
suggests the presence of tumor-specific T cells in BCG-treated patients [42].

The crucial role of the adaptive immune system in the susceptibility and resistance of
bladder cancer to BCG therapy is demonstrated by the differential regulation of MHC class
I on bladder cancer cells [16]. The initial response of cancer cells to BCG treatment typically
includes an increased expression of MHC class I, which helps activate the infiltrating
CD3+CD8+ T cells. However, a portion of cancer cells adapt by reducing the levels of MHC
class I after BCG therapy, limiting the increases in T cells within the TME, accompanied
by an enhanced immunosuppressive myeloid profile. The downregulation of HLA-I
expression in bladder cancers is unlikely to result from immunoediting (immune-mediated
selection of tumor cells with reduced immunogenicity), but it reflects a direct BCG-induced
HLA-I loss in cancer cells [43–49], a part of a wide spectrum of suppressive events involving
prostaglandins and elevation of PDL1 expression in bladder cancer TME [50–52], indicating
the need for coordinated targeting of these pathways.

Limited research has addressed the role of B cells and humoral immunity in the
response to BCG. Baseline levels of CD79a+ B cells before BCG treatment predict poor
treatment outcomes in male and female NMIBC patients [53], suggesting that the expansion
of exhausted immune cell populations, including atypical B cells, may contribute to early
disease recurrence [53]. Paradoxically, while the presence of tertiary lymphoid structures
(TLS) is typically associated with improved cancer outcomes [54,55], a recent study indi-
cated that pre-BCG TLS presence is a negative prognostic factor in NMIBC [56]. Moreover,
B cell depletion increased the production of IFNγ/IL-2 and IL-13 and the intratumoral
levels of CD8A, CXCL10, CXCL9, and BATF3 in response to BCG treatment [56], which
is consistent with CTL recruitment and a shift toward the desirable Th1/CTL-dominated
immune landscape [56]. BCG treatment was associated with an overall elevation of TNF,
IL-6, CXCR4, and CXCR5, the genes associated with the expansion of atypical B cells and
TLS formation, suggesting their contribution to poor treatment outcomes [56], further
suggesting that B cell depletion may have the potential to enhance the effectiveness of
BCG treatment [56]. These findings underscore the emerging role of B cells in shaping the
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immune landscape, the treatment efficacy of BCG, and the need for the identification of the
underlying mechanisms.

The clinical efficacy of BCG therapy is also affected by the molecular patterns of early
TME responses to BCG. A recent study in high-risk NMIBC identified three molecular
BCG response subtypes (BRS) predicting different clinical outcomes [57]. BRS1 represents
TME that is favorable for BCG treatment due to the presence of the desirable effector
immune cells. BRS2 predicts a moderate response to BCG, reflecting a balance between pro-
tumorigenic and anti-tumorigenic immune cell populations within the TME. BRS3 reflects
high activity of CD8+ T cells with indications of T cell exhaustion, leading to a poor clinical
response to BCG immunotherapy [57]. These distinctions indicate a potential for using
immune molecular subtypes in tailoring treatment approaches for bladder cancer patients
undergoing BCG therapy by either modulating the TME to reduce its immunosuppressive
components or selecting patients who are likely to respond to BCG treatment alone and
those who need combination therapies.

3. BCG, Immune Checkpoints, and Immune Checkpoint Inhibitors (ICI)

The crucial immunological checkpoint maintaining immune homeostasis and moder-
ating prolonged T cell responses is the interaction between the Programmed Death-1 (PD-1)
molecule, expressed on T cells, and its ligands (PD-L1 and, to a lesser extent, PD-L2). PD-L1
is typically expressed by cancer cells and myeloid cells, such as macrophages, but it can
also be induced on activated T, B, and NK cells, endothelial cells, and other non-malignant
cells in an inflammatory environment. The overexpression of PD-L1 in cancer cells and
surrounding stromal cells allows malignant cells to circumvent the immune response,
leading to T cell inactivation [58,59]. The examination of tissue microarrays from pre- and
post-Bacillus Calmette–Guérin (BCG) bladder samples revealed that 25–30% of patients
who did not respond to BCG treatment exhibited intratumoral overrepresentation of PD-L1
at baseline, associated with high levels of CD8+ T cells, but low levels of CD4+ T cells [60,61].
In contrast, PD-L1 expression was virtually non-existent in patients who responded to BCG
treatment [60,61]. These findings were corroborated by additional studies showing that
PD-L1 expression in both tumor cells and immune cells was more pronounced in patients
with BCG-unresponsive carcinomas in situ (CIS) compared to BCG-responders, suggesting
that baseline PD-L1 expression could serve as a predictive marker for CIS that would not
respond to BCG therapy [62,63]. Moreover, BCG treatment was found to augment the
expression of both PD-L1 and PD-1. In a cohort of NMIBC patients treated with BCG, PD-1
expression was higher in BCG-unresponsive tumors compared to pretreatment tumors
from the same patients, leading to the hypothesis that BCG could stimulate this immune
checkpoint. BCG instillation appears to stimulate the expression of PD-L1 in tumor and
inflammatory cells through the induction of CD8+ T cells, which are primarily responsible
for IFN-γ production [64]. An increase in the number of PD-L1-expressing CD4+ T cells
(PD-L1+ Tregs) was reported in BCG-resistant patients [65]. It was also demonstrated that
BCG treatment triggers the up-regulation of PD-L1 expression on antigen-presenting cells
(APCs), leading to the secretion of certain cytokines such as IL-6 and IL-10, which in turn
lead to STAT3 phosphorylation and ultimately PD-L1 expression [66]. This aligns with a
recent study that found that NMIBC patients exhibiting resistance to BCG therapy showed
heightened levels of PD-L1+ cellular expression, which is in stark contrast to the negligible
presence of these cells in patients who responded to BCG [67]. In the therapeutic context,
PD-L1 positivity is advantageous when treatments are designed to target the PD-1–PD-L1
axis, as the lack of such targeted therapy can lead to tumor immune evasion. Consequently,
both PD-1 and PD-L1 have potential as biomarkers to predict the response to BCG therapy.
These observations provided rationale for clinical trials, evaluating the effectiveness of
PD-1/PD-L1 blockade, either as the next stage of treatment for patients who progressed on
BCG or in combination with BCG in high-risk NMIBC (Table 1).
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Table 1. PD-1/PD-L1 blockers trials in NMIBC.

Treatment Study Phase Trial Reference

Nivolumab and BCG Phase III NCT04149574 [68]

Sasanlimab and BCG Phase III NCT04165317 [69]

Durvalumab and BCG or EBRT Phase I NCT03317158 [70]

Durvalumab and BCG Phase III NCT03528694 [71]

Durvalumab Phase II NCT03759496 [72]

Durvalumab and Tremelimumab Phase I/II NCT05120622 [73]

Durvalumab and S-488210/S-488211 Phase I/II NCT04106115 [74]

Atezolizumab Phase Ib/II NCT02792192 [75]

In the recently completed randomized clinical trial, KEYNOTE-057, Pembrolizumab
(Keytruda; PD-1 blocker) has shown positive results in high-risk NMIBC unresponsive to
BCG, culminating in its recent approval by the FDA [76–78]. The trial reported a favorable
safety profile [78] and 41% a complete response (CR) rate at the 3-month mark among
the 96 patients with BCG-unresponsive carcinoma in situ (CIS) with or without papillary
tumors (Cohort A). Nivolumab, a PD-1 inhibitor previously approved for other indications,
has recently received FDA approval as a part of second-line therapy for metastatic bladder
cancer (BC), setting the stage for its exploration as a new treatment for BCG-resistant
high-risk non-muscle-invasive bladder cancer (HR-NMIBC) [79,80].

A phase 3 randomized study, CheckMate 7G8 (NCT04149574), is currently testing the
efficacy of Nivolumab in conjunction with BCG, in comparison to BCG monotherapy, in
patients who have persistent or recurrent high-risk NMIBC following a single adequate
course of BCG induction. The primary endpoint of this trial is event-free survival (EFS) [68].
Sasanlimab, another inhibitor of the PD-1/PD-L1 interaction that binds directly to PD-
1 [69], is currently being evaluated in a phase III trial (NCT04165317) to assess its efficacy
in combination with alternative BCG regimens in high-risk non-muscle-invasive bladder
cancer (HR-NMIBC) [69]. The trial is divided into two cohorts. Cohort A includes BCG-
naïve participants and is further divided into three arms (A, B, and C). Arms A and B,
which involve the administration of BCG in conjunction with Sasanlimab, are evaluated
against arm C, which employs BCG monotherapy for both induction and maintenance
phases. Cohort B is composed of patients unresponsive to BCG with carcinoma in situ (B1)
or papillary disease (B2) [69]. The primary endpoints of the study are event-free survival
(EFS) and complete response (CR) rates. The trial’s completion is expected in 2026.

Durvalumab is a monoclonal antibody targeting PD-L1, thus blocking the PD-1/PD-
L1 interaction from the other end, without directly engaging PD1 but directly interacting
with cancer cells and local myeloid cells [81]. In a phase I clinical study (NCT03317158),
durvalumab was administered with either BCG or external beam radiation therapy (EBRT)
in NMIBC patients with BCG-unresponsive, BCG-relapsing, and high-risk BCG-naive (HR-
NMIBC) disease, demonstrating a 12-month complete response (CR) in 46% of the total
patient cohort, with a notable 73% CR in the durvalumab plus BCG subgroup and a 33%
CR in the durvalumab plus EBRT subgroup [70]. The study’s primary focus was on estab-
lishing the recommended phase 2 dose (RP2D). Currently, a phase III trial (NCT03528694) is
examining the efficacy of durvalumab in combination with BCG in BCG-naive patients [71].
Another phase II trial (NCT03759496) is assessing the safety and effectiveness of durval-
umab in patients with BCG-refractory NMIBC, with the maximum tolerated dose (MTD)
and 1-year high-grade relapse-free rate as primary outcomes [72]. Further evaluation of
durvalumab is taking place in the phase I/II RIDEAU study (NCT05120622), which aims to
determine the efficacy of systemic durvalumab in conjunction with the anti-CTLA-4 anti-
body (Tremelimumab; blocker of the inhibitory interaction between CTLA4 and B7.1/B7.2)
in HR-NMIBC patients [73]. Lastly, the phase I/II DURANCE trial (NCT04106115) tests the
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combination of durvalumab with S-488210/S-488211, a five-peptide vaccine designed to
elicit a cytotoxic T-lymphocyte response and promote tumor cell lysis [74].

Atezolizumab, a monoclonal anti-PD-L1 antibody blocking the PD-L1/PD-1 pathway,
has been evaluated in 24 patients with BCG-unresponsive non-muscle-invasive bladder
cancer (NMIBC) in a non-randomized phase Ib/II clinical trial (NCT02792192) [75,82,83].
The results indicated that 33.3% of patients treated with Atezolizumab alone and 41.7% of
patients treated with a combination of Atezolizumab and BCG achieved complete remission
(CR) at the 6-month follow-up mark [75,83]. In the most recent phase III study, ALBAN,
516 patients were randomized across 45 centers in Europe at a 1:1 ratio between arm A
(BCG control) and arm B (BCG plus atezolizumab) [84].

4. BCG and Lymphoid/Myeloid Imbalance

The local balance between T lymphocytes and myeloid suppressor cells (MDSCs) is
critical for the outcomes of BCG therapy, independent of patient status, disease stage, and
histologic types of the tumor [85]. Of additional importance is the effector-to-regulatory
T cell balance, highlighting the role of FoxP3+ regulatory T cells (Tregs), which show
prognostic value independently from MDSCs [86,87]. These observations indicate that the
levels of effector and memory T cells in relation to Tregs and MDSCs in urine may serve as
a predictive biomarker of the therapeutic efficacy of BCG.

While MDSCs have been extensively studied in mouse cancer models, their clinical
prognostic value in human cancers, including bladder cancer, is less well established [88,89].
High infiltration of CD68+ tumor-associated macrophages (TAMs) has been associated with
poor response to BCG immunotherapy (37). Interestingly, only their levels in the tumor
itself but not in the adjacent lamina propria predict the failure of BCG therapy for bladder
carcinoma in situ (CIS) [89–91].

Recent studies in murine tumor models have indicated an important role of innate
lymphoid cells (ILCs) in the outcomes of anticancer immunity [92,93]. ILC1s and poten-
tially ILC3s have been implicated in tumor immunosurveillance, while ILC2s have been
shown to be detrimental [94]. Intriguingly, the presence of ILC2s, both locally in the TME
and in the peripheral blood of bladder cancer patients, strongly correlated with disease
progression [85]. A positive correlation between ILC2 and monocytic (M)-MDSC levels
was identified, both locally during BCG therapy and in the blood of patients with muscle-
invasive bladder cancer (MIBC) [85]. The molecular link between these cell subsets appears
to be IL-13, as M-MDSCs recruited to the bladder highly express IL-13Rα1, and ILC2s
secrete IL-13 in response to BCG and tumor cells in vitro. Furthermore, urine samples with
detectable IL-13 exhibited higher frequencies of ILC2s, suggesting a potential role for IL-13
in ILC2s recruitment. Additionally, IL-13 was found to preferentially recruit and induce
suppressive function in monocytic cells, possibly mediated by ARG1, an enzyme highly
expressed in urine M-MDSCs [85].

Therefore, in addition to promoting a robust Th1 response, which may depend on
preexisting BCG-specific adaptive immunity, BCG therapy may amplify an existing im-
munosuppressive TME involving MDSCs and ILC2s [41,95–98], indicating the importance
of restraining the tumor-induced “immunosuppressive switch” by targeting these cells to
shift the balance toward Th1/CTL responses.

5. BCG and Chemokines Attracting Effector versus Suppressive Populations of Immune
Cells: Rationale for Modulating PGE2 Production and Signaling

Suppressive TME has been shown to be an important factor contributing to ICI un-
responsiveness [99,100]. In addition to immune checkpoints, two other areas of immuno-
suppressive activity of the TME have been postulated to be key to its reduced ability to
support anti-tumor activity of immune cells: (a) reduced attraction of type-1 immune
cells (CTLs, Th1, and NK cells) associated with enhanced influx of immunosuppressive
cells, such as Tregs and MDSCs; and (b) enhanced production of suppressive factors by
TME-resident and newly infiltrating myeloid and stromal cells. Data from us and other



Cells 2024, 13, 699 6 of 17

labs demonstrate the key role of an arachidonic acid metabolite and cyclooxygenase (COX)
product, prostaglandin E2 (PGE2) [101–105], in the orchestration of both these negative
aspects of the suppressive TME.

Tumor-derived PGE2 has been shown to be responsible for local dysfunctional DCs
within the bladder TME, undermining their ability to support infiltrating CD8+ T cells and
resulting in ineffective immunity and immune escape [50]. Preventing such PGE2-induced
dysfunction in DCs restores effective T cell-mediated control of tumor growth. PGE2,
produced by cyclooxygenases, acts through cAMP-inducing EP2 and EP4 receptors in
DCs [50,101] and other myeloid cells, including a shift from M1 to M2 macrophages and
induction, attraction, and activation of MDSCs [51,52,101–104,106,107].

Our data from bladder and other cancer types (colorectal, prostate, and ovarian
cancers) [51,108–110] demonstrated that high COX2 levels are associated with the sup-
pression of CTL-attracting chemokines and the overexpression of Treg attractants and
that its suppression can promote selectively enhanced attraction of type-1 immune cells
while inhibiting Treg and MDSC attraction [103]. Interestingly, untreated bladder cancer
TMEs showed nearly a complete lack of effector cell-attracting chemokines but selective
expression of Treg/MDSC attractants IL-8/CXCL8, CXCL-12, and CCL22 [51,111].

We observed that BCG-induced inflammation in human bladder cancer tissues in-
volves the induction of COX2 and its product PGE2, associated with the EP4-mediated
induction of the chemokines CCL22 and CXCL8, which attract myeloid-derived suppressor
cells (MDSCs) and regulatory T cells (Tregs) [51,111]. Blockade of PGE2 synthesis or EP4-
mediated signaling eliminated these undesirable effects, instead enhancing the BCG-driven
induction of CTL-attracting chemokines, such as CCL5, CXCL9, and CXCL10 (Figure 1),
associated with the differential impact of attraction of CTLs versus Tregs in preclinical
models [51]. Interestingly, BCG treatment was also associated with elevation of addi-
tional COX2/PGE2-dependent suppressive factors, such as indoleamine-2,3-dioxygenase 1
(IDO1) and IL10 [51,111,112], which is consistent with our earlier observations that COX2
is critical for the induction, persistence, and suppressive activity of tumor-associated MD-
SCs [102,104]. These observations raise the possibility that manipulating the chemokine
system, or, more broadly, prostaglandin antagonism, may be used to enhance the efficacy
of BCG therapies and counteract BCG unresponsiveness.

BCG-triggered immune responses are affected by the levels of indoleamine 2,3-
dioxygenase 1 (IDO1) in the TME [113–115]. IDO1-mediated tryptophan catabolism re-
sults in local tryptophan depletion, impeding T cell function and proliferation, thereby
attenuating the BCG-induced immunity [113–115]. Moreover, IDO-produced metabolites
of the kynurenine pathway suppress effector T cell function and promote the develop-
ment of regulatory T cells (Tregs), thereby fostering an immunosuppressive TME [115].
Kynurenine, an IDO product, activates the aryl hydrocarbon receptor (AhR), facilitating the
differentiation of T cells into Tregs and contributing to immune tolerance [115]. The genetic
makeup of individuals regulates IDO1 expression through the polymorphisms or muta-
tions that regulate the IDO1 gene directly or modulate the regulatory pathways governing
IDO1 expression [116–118]. Polymorphisms associated with heightened IDO1 activity,
fostering a suppressive TME that is conductive of immune evasion [116–118], indicating
their consideration in the therapeutic potential of IDO1-targeted interventions [119,120].
Furthermore, chemotherapeutic agents can elevate IDO1 expression as a result of the cancer
cell stress response [121,122]. Conversely, other therapeutic modalities may mitigate IDO1
expression or its immunosuppressive effects, thereby influencing subsequent responses to
BCG [121,122]. Combining BCG therapy with IDO1 inhibitors or other immunotherapeutic
modalities, including ICI, holds promise for augmenting the overall outcomes in NMIBC.
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Figure 1. BCG-driven activation of the bladder cancer TME involves the NFκB/TNFα signaling
pathway and IRFs/IFN pathway. While the IRF/IFN pathway selectively induces the chemokines
attracting the desirable effector cells, the NFκB/TNFα pathway enhances the induction of both the
CTL-attracting cytokines, CCL5, CXCL9, CXCL10, and CXCL11, but also amplifies the undesirable
COX2/PGE2/EP4 pathway, which orchestrates the induction, activation, and recruitment of MDSCs
and Tregs, through chemokines such as CXCL8, CXCL12, and CCL22. The combination of BCG
with COX2- or EP4 blockers can selectively augment the attraction of CTLs while neutralizing PGE2-
dependent suppressive factors and Treg and MDSC attractants, suggesting its potential to augment
effective anti-tumor immunity in response to BCG treatment.

IFNα, which suppresses EP4 expression and antagonizes PGE2-driven immune sup-
pression [106], has demonstrated the ability to promote anti-tumor immunity in various
bladder cancer models [123,124]. However, the combination of BCG and IFNα did not ex-
hibit any advantage over BCG monotherapy in patients with relapsed non-muscle-invasive
bladder cancer (NMIBC) [125,126]. These disappointing results may be attributed to the
observation that the combination of IFNα with BCG, alone or with poly-IC (which activates
not only the IFN-enhancing Toll-like receptor 3 pathway but also the COX2-augmenting
RIG-I/MDA5/NFkB pathway), not only enhances CXCL10 production but also triggers
the production of CCL22 in human tumor tissues [106,111].

Notably, the local inflammatory response triggered by BCG administration in bladder
cancer patients is reflected by the increased presence of macrophages, T cells, B cells, natural
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killer (NK) cells, and neutrophils in the urine [127]. These elevated cell levels and the levels
of PD1+ T cells have been shown to predict the clinical response to ICI combined with
BCG [67], which is well aligned with the observations that the overall levels of CD8+ T cells
in the TME correlate with improved survival in bladder cancer patients [128]. Conversely,
elevated levels of Tregs in the TME and urine in response to BCG predict poor treatment
outcomes [129,130]. Similar, the predominance of MDSCs over T cells following BCG
therapy predicts reduced recurrence-free survival [85].

These observations help explain the ability of COX1 and COX2 inhibitors to overcome
resistance to BCG in mouse models [52,131–133], providing rationale for in-depth evalua-
tions of PGE2 interference as a potential tool to improve the efficacy of BCG (Figure 1).

It is currently unclear how far the COX2/PGE2 system is involved in the induction
and maintenance of PD-L1 and PD-L2 expression on cancer cells and cancer-associated
myeloid and stromal cells, but these two inhibitory pathways appear to be at least partially
independent, resulting in a synergistic effectiveness of their blockade in preclinical mouse
models [134–138]. Synergistic activities were also reported between immune checkpoint
inhibition and inhibitors of IDO, a downstream mediator of PGE2-orchestrated immune
suppression. Dual blockade of CTLA-4 or PD-1/PD-L1 combined with IDO inhibition
proved to be highly effective in enhancing the TME-infiltration with CD8+ T cells [139]; how-
ever, a phase II l trial, Check-Mate 9UT (NCT03519256), designed to assess the anti-tumor
efficacy of an oral IDO inhibitor, BMS-986205, in combination with nivolumab in patients
with high-risk BCG-unresponsive NMIBC, was discontinued due to poor enrollment [140].
Therefore, the potential for enhancing the effectiveness of both ICI and BCG therapies (as
well as their combinations) using PGE-blocking strategies remains to be investigated.

6. Beyond Cyclooxygenase Inhibitors: Emerging Targets and Biomarkers to Counteract
PGE2-Driven Suppression and Enhance Type-1 Inflammatory Pathways

BCG activates two main inflammatory pathways: the TRIF/IRF3/IFNα/β pathway,
which has a uniformly pro-immunogenic and anti-tumor role, and the NFκB/TNFα sig-
naling pathway, which mobilizes immunogenic/anti-tumor but also immunosuppressive/
tumor-promoting mediators in bladder cancer TME. Since BCG and BCG-expressed Toll-
like receptors 2, 4, 9, and Mincle all signal through the myeloid differentiation primary
response 88 (MyD88) and NFκB pathway, which is needed for the induction of TNFα
and PGE2 and not only promotes immune suppression but also metastasis and resistance
to apoptosis [51,112,141–146], using the existing blockers of NFκB- and TNFα signal-
ing represents additional tools that may enhance the effectiveness of BCG therapy and
its combinations.

The downstream immunomodulatory effects of PGE2 are mediated through its re-
ceptors EP1, EP2, EP3, and EP4 [101]. Among these, EP2 and EP4, which both activate
adenylate cyclase, leading to cAMP elevation and activation of protein kinase A (PKA) and
CREB phosphorylation, have been identified as key mediators of immune suppression and
tumor promotion in multiple cancer types [101]. Notably, the overexpression of the EP4
receptor, observed following BCG treatment, and cyclooxygenase-2 (COX2) has been linked
to poor overall survival in bladder cancer patients [147]. PGE2 drives an EP4-mediated
upregulation of COX2, establishing a positive feedback loop involving COX2, PGE2, and
EP4. This loop is critical for driving excessive intratumoral production of not only PGE2
but also multiple PGE2-dependent “secondary” suppressive factors, including IDO1, IL-10,
and ARG1, which inhibit the activation, expansion, attraction, and effector functions of
cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs) (Figure 1). Therefore, target-
ing each of these elements of PGE2 signaling offers an opportunity to counteract multiple
elements of TME-associated suppressive phenomena, both at baseline and in the course of
immunotherapy, offering an advantage over targeting individual suppressive factors.

Significantly, elevated production of intratumoral PGE2 translates into increases in PGE2
levels within the urinary tract, which are augmented after BCG immunotherapy [43,47]. There-
fore, measurements of PGE2 levels (or its metabolites) in urine could serve as indicators of local
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PGE2-mediated suppression and be used as a surrogate measurement of the effectiveness of
PGE2-targeting strategies used in combination with BCG and/or immune checkpoint inhibitors.

7. Conclusions and Perspectives

The intricate interplay between bladder cancer TME and BCG and other forms of can-
cer immunotherapy involves both immuno-activating and immunosuppressive elements
of immunity, jointly affecting the response to treatment of individual patients and affecting
its diminishing effectiveness in the course of bladder cancer progression. While BCG
alone is the most commonly used approach, its efficacy is currently limited to a group of
patients with NMIBC. The strong association between the levels of COX2 in BCG-activated
myeloid cells and the local production of factors that attract regulatory T cells (Tregs)
and myeloid-derived suppressor cells (MDSCs), as well as suppressive factors, indicates
multiple opportunities for targeting the individual elements of the PGE2 induction and
production pathway and its downstream signaling pathways to reprogram bladder cancer
TME for enhanced effectiveness of BCG, ICI, and other forms of immunotherapy of NMIBC
and potentially MIBC.

Notably, BCG induces a dual response, involving the enhancement of both desirable
and undesirable immune mechanisms. Undesirable effects include the elevation of MDSC-
and Treg-attracting chemokines, as well as multiple myeloid cell-produced suppressive
factors, as a consequence of the activation of NFκB, TNFα, COX2, and suppressive PGE2
receptors. We propose a strategy to selectively modulate this response. Employing in-
hibitors of key molecules involved in PGE2 induction, synthesis, and signaling has the
potential to suppress the induction of MDSC/Treg attractants and immunosuppressive
factors produced by these cells while enhancing the production of chemokines that attract
CTLs, Th1, and NK cells and facilitating their anti-tumor effector functions.

Since the balance between CTLs and suppressive cells within the TME is a strong
prognostic factor for bladder cancer outcomes, correcting it is likely to correct the limita-
tions of BCG therapies, prolonging their duration and possibly extending their efficacy to
MIBC when used alone or as a part of combinatorial treatments involving other forms of
immunotherapy, such as ICI, or possibly with chemotherapy, also known to depend on
intratumoral CTLs, both in bladder cancer and possibly potentially additional malignancies.
In accordance with this possibility, our recent clinical trials involving systemic blockade
of COX2 (oral celecoxib), combined with the local- or systemic administration of the
chemokine-modulating (CKM) regimen involving a TLR3 ligand (rintatolimod) and IFNα

(which inhibits EP2 and EP4 expression and PGE2-driven CREB phosphorylation [106]),
resulted in an intratumoral shift from Treg-attracting to CTL-attracting chemokines and
local enhancements (up to 10-fold [148]) of the CTL markers in the TME of ovarian and
breast cancer patients [148–150].

Additional research is needed to better understand the mechanism of regulation of
inflammatory immune responses by BCG in resting and activated myeloid cells, the role
of BCG strain-specific differences, histologic subtypes of bladder cancer, and the stage
of the disease in immune and clinical responses to BCG. The identification of biomark-
ers predicting effective responses to BCG, analogous to those identified for PD1/PDL1
treatment [151–153], may help in the optimal selection of BCG dosage, duration, and most
effective combinations for individual patients. Moreover, standardizing the biomarker
assays poses another significant challenge. Different studies utilize various antibodies for
PD-L1 staining, resulting in distinct staining patterns and intensities, which can lead to in-
consistent results [61]. Factors such as tumor stage, grade, genetic mutations, and previous
treatments can influence the immune response. Therefore, the predictive value of potential
biomarkers must be validated across diverse patient cohorts to ensure their applicability
to a broad range of patients. This includes stratifying patients based on relevant clinical
and molecular characteristics to identify subgroups that may particularly benefit from
biomarker-based predictive strategies. Addressing these challenges in properly designed
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prospective studies is critical to ensuring the reliability and widespread applicability to
predict BCG responses and overcome resistance in bladder cancer patients.
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