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Abstract: Basal forebrain cholinergic dysfunction, most likely linked with tau protein aggregation, is
a characteristic feature of Alzheimer’s disease (AD). Recent evidence suggests that tau protein is a
putative target for the treatment of dementia, and the tau aggregation inhibitor, hydromethylthionine
mesylate (HMTM), has emerged as a potential disease-modifying treatment. However, its efficacy
was diminished in patients already receiving approved acetylcholinesterase inhibitors. In this study,
we ask whether this negative interaction can also be mimicked in experimental tau models of AD
and whether the underlying mechanism can be understood. From a previous age profiling study,
6-month-old line 1 (L1) tau transgenic mice were characterized by a severe reduction in several cholin-
ergic markers. We therefore assessed whether long-term pre-exposure with the acetylcholinesterase
inhibitor rivastigmine alone and in conjunction with the tau aggregation inhibitor HMTM can reverse
cholinergic deficits in L1. Rivastigmine and HMTM, and combinations of the two compounds were
administered orally for 11 weeks to both L1 and wild-type mice. The brains were sectioned with a
focus on the basal forebrain, motor cortex and hippocampus. Immunohistochemical staining and
quantification of choline acetyltransferase (ChAT), tyrosine kinase A (TrkA)-positive neurons and rel-
ative optical intensity (ROI) for vesicular acetylcholine transporter (VAChT), and acetylcholinesterase
(AChE) reactivity confirmed reversal of the diminished cholinergic phenotype of interneurons (nu-
cleus accumbens, striatum) and projection neurons (medial septum, nucleus basalis magnocellularis)
by HMTM, to a greater extent than by rivastigmine alone in L1 mice. Combined administration did
not yield additivity but, in most proxies, led to antagonistic effects in which rivastigmine decreased
the benefits shown with HMTM alone. Local markers (VAChT and AChE) in target structures of
the basal forebrain, motor cortex and hippocampal CA3 seemed to be normalized by HMTM, but
not by rivastigmine or the combination of both drugs. HMTM, which was developed as a tau ag-
gregation inhibitor, strongly decreased the tau load in L1 mice, however, not in combination with
rivastigmine. Taken together, these data confirm a cholinergic phenotype in L1 tau transgenic mice
that resembles the deficits observed in AD patients. This phenotype is reversible by HMTM, but at
the same time appears to be subject to a homeostatic regulation induced by chronic pre-treatment
with an acetylcholinesterase inhibitor, which interferes with the efficacy of HMTM. The strongest
phenotypic reversal coincided with a normalization of the tau load in the cortex and hippocampus of
L1, suggesting that tau accumulation underpins the loss of cholinergic markers in the basal forebrain
and its projection targets.
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1. Introduction

Until recently, the only approved drugs for AD have been anticholinesterase inhibitors
and memantine. Disease-modifying treatments are being sought that can remove or pre-
vent the formation of the characteristic pathologies of AD, namely β-amyloid plaques and
neurofibrillary tau tangles. Two amyloid immunotherapeutic drugs, aducanumab and
lecanemab, have been found to produce small benefits for patients in several Alzheimer
cohorts [1–4] and reignited the search for novel treatments. A tau aggregation inhibitor, hy-
dromethylthionine, typically administered as a mesylate salt (HMTM), has been developed
to target abnormal tau processing, and an exploratory analysis confirmed the high efficacy
of HMTM when administered to a drug-naive patient sub-cohort [5,6]. Since the majority
of recruits, however, were already receiving symptomatic therapies (acetylcholinesterase
inhibitors or memantine), the HMTM drug effect appeared to be lost due to a negative
interference between the therapies. Here, we attempted to (i) back-translate the human
treatment regime to the mouse model and (ii) get a richer understanding of the potential
mechanisms underlying this interference effect.

Of particular interest was the relationship between the cholinergic system, tau aggre-
gation and cell loss. In the nucleus basalis of Meynert (NBM), cytoskeletal changes are
observed from the early Braak stages of AD based on tau pathology [7] and more than 50%
of neurons in NBM degenerate in supranuclear palsy due to tau aggregation [8]. These
results are consistent with our own observations of tau transgenic animals in which there is
considerable degeneration of basal forebrain cholinergic neurons [9], and strongly support
the notion that the onset of tau aggregation in the basal forebrain plays a significant role
during the emergence and progression of AD [10–13]. Due to the selective requirement of
the cholinergic system for trophic support [14], this may also explain its excessive suscepti-
bility to the propagation of tauopathies. This would lead to a continuous decrease in the
concentration of the neurotransmitter acetylcholine, a phenotype that can be rescued in
transgenic mice by cholinesterase inhibition and HMTM [15], concomitant with a reversal
of learning and memory deficits [12,16,17].

In the Braak staging model [7,18], cholinergic projection areas (isocortex, hippocampus)
are particularly vulnerable to tau aggregation and spreading [19–21]. The reversal of tau
aggregation, particularly in basal forebrain cholinergic neurons and then by their tonic
release in the hippocampus and cortex, would seem a viable strategy for the development
of new therapeutics, including HMTM [6,22]. The HMTM-dependent prevention of tau
self-assembly may be effective in slowing the progression of AD and other tauopathies [23],
halting the emergence of pathological tau deposits due to the collapse of the intracellular
and axonal cytoskeleton [24]. The failure of tau to bind to microtubules and support their
assembly, stabilization and spacing, axonal length and diameter, and provide neuronal
rigidity results in neurotoxicity to multiple transmitter systems [25], including cholinergic
basal forebrain neurons [26–28].

Hydromethylthionine mesylate (HMTM), a stable reduced form of methylthioninium,
has been shown to act as a selective inhibitor of tau protein aggregation in cell-free systems
and in cellular and murine models of tauopathy [29–31]. An oxidized form, methylthion-
inium chloride (MTC), when administered as a monotherapy in patients with AD, was
also effective in alleviating symptoms of the disease [32]. In two independent phase III
studies, however, HMTM administered to patients with mild or moderate AD was safe
and effective as a monotherapy, but not when administered as an add-on to symptomatic
treatments (e.g., donepezil, rivastigmine and memantine) [5,33].

Therefore, we sought to mimic the latter clinical trial designs pre-clinically in the line
1 (L1) AD mouse model. L1 mice present with the typical Braak-like spreading of the tau
pathology and manifest cognitive impairments [30] at 5–6 months of age, together with
minimal sensorimotor deficits and significant loss of cholinergic staining in the basal fore-
brain, cortex and hippocampus [9]. While cognitive function can be rescued with HMTM
monotherapy, there is strong interference when acetylcholinesterase inhibitors (i.e., rivastig-
mine) are pre-administered before HMTM [34]. Here, we assessed the consequences of the
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single and combined administration of rivastigmine and HMTM for neuropathological
endpoints related to the cholinergic system and tau aggregation.

2. Materials and Methods
2.1. Animals and Study Design

Experiments were carried out in accordance with the European Communities Council
Directive (63/2010/EU), a project license with ethical approval from First Warsaw Local
Ethics Committee for Animal Experimentation, and were carried out in accordance with
the Polish Law on the Protection of Animals and National Institute of Health’s Guide for
Care and Use of Laboratory Animals (publication no. 85-23, revised 1985).

Experiments were conducted on female transgenic L1 mice and wild-type controls,
Naval Medical Research Institute mice (NMRI) mice. L1 was generated via the insertion
of the plasmid pSS296-390 containing a human tau fragment coding for the amino acid
sequence 296–390 of the largest CNS tau isoform, htau40 [35], fused with a signal-sequence-
directing protein to the endoplasmic reticulum [30]. The transgenic line is characterized
by the expression of a truncated form of tau in the brain which emulates the spread of
tauopathy as observed in -Braak staging. The expression of tau296–390 causes aggregation
of tau protein and the deposition of filamentous structures resembling the core fragment
of the paired helical filaments (PHFs) that are the principal constituent of neurofibrillary
tangles (NFTs). L1 mice also present with cognitive impairment [30].

Mice were bred commercially (Charles River, Margate, UK) in multi-cage isolators on
positive pressure and under specific pathogen-free (SPF) conditions. After weaning, they
were maintained in isolators in shoe boxes with siblings and aged until appropriate for
the experiment with ad libitum access to water and food chow. For acclimatization, the
mice were delivered (air and truck) to the Animal Facility of the Nencki Institute (Warsaw,
Poland) one month before the start of the experiment. They were housed, according to the
genotype, in small colonies of up to 5 mice in a single cage (Type III, 382 × 220 mm). The
cage lining included corn cobs, strips of paper, and cardboard tubes as an enrichment. The
holding rooms were maintained at a constant temperature (20–22 ◦C), humidity (60–65%)
and the air exchange rate (17–20 changes/h), with a 12 h light/dark cycle (lights on at
6 a.m.). The animals had free access to food and water. In alignment with previous
studies, female mice were 19 to 27 weeks old at the start of the experiments [36]. Animals
were assigned to treatment groups based on their body weights determined prior to drug
administration to have an equal mean body weight for each treatment cohort. In addition,
the body weights were recorded weekly during the in-life phase of dosing, and on the
final day prior to necropsy. After each drug dosing, the animals were observed for adverse
effects for up to 4 h. Clinical signs were recorded and, where possible, assessed for severity
by non-invasive screening [37]. Three mice were terminated prematurely due to poor
tolerance of the gavaging process/weight loss. No other clinical signs were observed in
the remaining animals. Additional behavioral observations were performed during the
first two weeks of drug administration in both the first and second phases of the study
(Figure 1). This included an assessment of motor activity, changes in reactivity, hind
limb standing, freezing and altered social behavior (isolation/dominance) [37]. Transient
behavioral anomalies were noted for both HMTM and rivastigmine administrations. Their
frequency was irregular and very rare.

Thirteen groups of animals participated in the entire experiment and a total of 116 mice
were used. The details are summarized in Table 1. Eight core groups included both L1 and
wild-type genotypes with a matching drug administration route and dosing regimen. The
drugs included vehicle, HMTM (15 mg/kg) rivastigmine (0.5 mg/kg) and a combination
of rivastigmine first (0.5 mg/kg) and HMTM as an add-on (15 mg/kg). All drugs were
administered orally by gavage. Five further complementary groups included L1 mice only
in order to gain a better understanding of drug actions and the dose–response profiles.
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Table 1. The treatment groups, drug doses used and cohort sizes for NMRI wild-type and L1 tau
transgenic mice.

Core Groups

Groups Genotype Sex
Age

at the start day of
the study

Treatment
(weeks 1–5)

Treatment
(weeks 6–11)

Mice no.
at the

beginning of
the study

Mice no.
at the end of

the study

WT-Veh NMRI-WT F

23–27 weeks

Veh Veh 9 9

WT-HMTM NMRI-WT F Veh HMTM 15 10 10

WT-Riva NMRI-WT F Riva 0.5 Riva 0.5 9 8 *

WT-COMBO NMRI-WT F Riva 0.5 Riva 0.5 +
HMTM 15 10 10

L1-Veh NMRI-tgL1 F

19–27
weeks

Veh Veh 9 9

L1-HMTM NMRI-tgL1 F Veh HMTM 15 9 8 *

L1-Riva NMRI-tgL1 F Riva 0.5 Riva 0.5 9 8 *

L1-COMBO NMRI-tgL1 F Riva 0.5 Riva 0.5 +
HMTM 15 9 9

Total number
of animals 74 71

Complementary Groups

Groups Genotype Sex
Age

at the start day of
the study

Treatment
(weeks 1–5)

Treatment
(weeks 6–11)

Mice no.
at the

beginning of
the study

Mice no.
at the end of

the study

L1-HMTM NMRI-tgL1 F

19–27 weeks

Veh HMTM 5 9 9

L1-Riva NMRI-tgL1 F Riva 0.1 Riva 0.1 9 9

L1-COMBO NMRI-tgL1 F Riva 0.1 Riva 0.1 +
HMTM 5 9 9

L1-COMBO NMRI-tgL1 F Riva 0.1 Riva 0.1 +
HMTM 15 9 9

L1-COMBO NMRI-tgL1 F Riva 0.5 Riva 0.5 +
HMTM 5 9 9

Total number
of animals 45 45

* Two mice died due to poor gavaging tolerance; one on day 38 (L1 treated with HMTM) and a second on day
53 (NMRI-WT treated with Riva). One mouse was euthanized on day 46 (L1 treated with Riva) due to loss of
body weight. All drug doses are expressed in mg/kg per day. Veh—vehicle; HMTM—hydroxymethylthionine;
Riva—rivastigmine.
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2.2. Drugs and Administration

Two substances were tested in this experiment: rivastigmine, an acetylcholinesterase in-
hibitor for symptomatic therapy in AD [38]; and hydromethylthionine mesylate (N3,N7,N7′,N7′-
tetramethyl-10H-phenothiazine-3,7-diaminium bis(methanesulfonate), HMTM, also for-
merly termed leucomethylthionium bis(methanesulfonate), LMTM). HMTM was sup-
plied by TauRx Therapeutics Ltd., Aberdeen, UK, and rivastigmine was purchased from
Tocris Bioscience (Bristol, UK, #4440, lot numbers 1A/198244, 1/a206698, 1A/206690).
The treatment regime is depicted in Figure 1. The effects of HMTM administration on
cholinergic function in L1 tau mice and the interference of HMTM with concomitantly
administered rivastigmine were investigated in an 11-week study of two phases. During
phase 1 (weeks 1–5), mice received either the vehicle or rivastigmine and, during phase 2
(weeks 6–11), either the vehicle or HMTM were added to the earlier treatment. The exact
drugs and doses and group sizes are indicated in Table 1. The doses of rivastigmine were
0.1 and 0.5 mg/kg, while HMTM was given in at 5 and 15 mg/kg.

The oral route was chosen to be consistent with the anticipated clinical route of
administration. The drugs were administered via oral gavage at a dose volume of 5 mL/kg
of body weight daily for 5 days (Monday–Friday) per week (55 days in total) in the morning
between 8 and 10 a.m. Nitrogen-sparged deionized water was used as a vehicle for both
drugs. HMTM formulations were prepared fresh on each day of dosing and stored in an
amber glass bottle for light protection. Rivastigmine aliquots were used for 2–3 weeks
and stored at 4 ◦C. The HMTM administration schedule and dose were selected based on
previous data showing that the tau pathology was successfully reduced and the behavioral
phenotype was reversed in tau transgenic mice treated with the item [36]. Rivastigmine
doses were chosen based on their effects on extracellular acetylcholine concentration and
acetylcholinesterase activity in the rat cortex [39,40].

2.3. Animal Sacrifice and Brain Tissue Collection

The day after receiving their last dose of compounds, the animals were transported to
the treatment room one by one, weighed and terminally anesthetized via an intraperitoneal
injection of Morbital® (sodium pentobarbital, 150 mg/kg). Deep anesthesia was confirmed
as the absence of corneal reflex, pain sensation and unconditional reflexes. Anaesthetized
mice were transcardially perfused with 30 mL PBS (0.1 M, pH 7.4) containing heparin
(0.1 mL of heparin solution (WZF 5000 IU/mL, Polfa Warszawa SA, Warsaw, Poland)
for 100 mL PBS), followed by perfusion with 50 mL of 4% paraformaldehyde with 15%
saturated picric acid in 0.1 M PBS pH 7.4 and another 30 mL of 5% glycerol with 2%
dimethyl sulfoxide (DMSO) in 0.1 M PBS (pH 7.4). Then, the brains were removed and each
hemisphere was stored separately at 4 ◦C for 24 h in 4% paraformaldehyde for post-fixation
and tissue penetration. This was followed by incubation in glycerol with DMSO at two
different concentrations (10% glycerol for 24 h and then 20% glycerol for 24 h; both solutions
containing 0.1 M PBS with 2% DMSO) for further cryo-protection. The hemispheres were
then stored at −80 ◦C for later analysis.

2.4. Immunohistochemistry for ChAT and TrkA in Frozen Brain Sections

Due to different histochemical staining protocols, the animals in each experimental
group were divided into two cohorts, one for assays on the frozen sections (n = 5) and
the other for assays on the paraffin sections (n = 3 to 5). The right brain hemispheres
of five randomly selected mice from each experimental group were used to perform
ChAT and TrkA immunohistochemistry. The hemispheres were covered with a medium
(CryomatrixTM, Thermo Scientific, Rugby, UK), then sectioned coronally (Leica CM1850
freezing microtome, Germany) at −20 ◦C, a 40 µm thickness and the desired brain levels
in accordance with the Mouse Brain Stereotaxic Atlas [41]. Five series of consecutive
sections were collected throughout the basal forebrain of each mouse. From these series,
one set was processed for ChAT immunoreactivity (ChAT-ir), the second set for TrkA
immunoreactivity (TrkA-ir), the third one was stained with Cresyl-Violet (Nissl-staining)
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for the histological identification of anatomical regions, and the other two sets of sections
were stored at −20 ◦C in a cryoprotectant. For an immunohistochemical analysis, free-
floating sections were rinsed three times for 5 min with 0.1 M PBS. Then, the sections
were incubated with 1% H2O2 solution in 0.1 M PBS to block the endogenous peroxidase
activity. Next, the tissue material was rinsed three times with 0.1 M PBS and incubated
for one hour at room temperature (RT) with a 5% normal goat serum(NGS, for ChAT) or
normal rabbit serum (NRS, for TrkA) solution (Vector Laboratories, Cat. No. S-1000-20
and S-5000-20, respectively) in 0.1 M PBS with 0.3% TritonX100. This was followed by
incubation with the primary antibodies in a solution with 5% NGS or NRS, 1% bovine
serum albumin, (BSA), 0.3% TritonX100 in 0.1 M PBS for one hour at RT, and then at
4 ◦C overnight with continuous shaking. The following primary antibodies were used
(see Table 2): anti-ChAT (Merck, Cat. No. #Ab144p) at a 1:200 dilution and anti-TrkA
(Merck, Cat. No. #06-574) at a 1:200 dilution. After washing the sections three times with
0.1 M PBS, they were incubated for 1 h at RT with a secondary antibody: ChAT with
rabbit anti-goat IgG antibody, horseradish peroxidase (HRP)-conjugated (Sigma-Aldrich,
(St. Louis, MO, USA), Cat. No. AP106P) (5% NGS, 1% BSA, 0.3% TritonX100 in 0.1 MPBS)
and TrkA with goat anti-rabbit IgG antibody, HRP-conjugated (Sigma-Aldrich, Cat. No.
AP307P) (5% NRS, 1% BSA, 0.3% Triton X100 in 0.1 M PBS) at a dilution of 1:200 for both
antibodies. The sections were rinsed three times with 0.1 M PBS and then incubated for 1 h
at RT with the Vectastain ABC kit (Vector Laboratories). To visualize primary–secondary
antibody complexes, the sections were incubated in PBS containing 3,3′-diaminobenzidine
tetrahydrochloride (DAB, Sigma-Aldrich), H2O2, and NiSO4 at a concentration of 0.025%,
0.0125% and 0.04% respectively. The stained sections, representative of the basal forebrain
(for details see Section 2.7), were mounted, air-dried and cover-slipped. The controls for
the immunohistochemical procedure were obtained by running some slides through the
entire procedure with the omission of the primary or secondary antibodies. For all control
slides, no specific staining was observed.

Table 2. List of antibodies, suppliers and dilutions used.

Primary
Antibody

Immunogen/
Epitope Host Species Dilution Mono/

Polyclonal Supplier
Secondary
Antibody 1 Dilution

Anti-ChAT
(Cat. No. #Ab144p)

Human
placental ChAT Goat 1:200 Polyclonal Merck Rabbit anti-goat

(Cat. No. AP106P) 1:200

Anti-TrkA
(Cat. No. #06-574)

Recombinant
protein

corresponding to
the extracellular

domain of rat
TrkA receptor

Rabbit 1:200 Polyclonal Merck Goat anti-rabbit
(Cat. No. AP307P) 1:200

Anti-VAChT
(Cat. No. 139 103)

Recombinant
protein

corresponding to
residues near the

carboxy terminus of
rat VAChT

Rabbit 1:500 Polyclonal Synaptic System Goat anti-rabbit
(Cat. No. AP307P) 1:100

Anti-tau S1D12
Human truncated

tau297–391/
epitope: 337–355

Sheep 2 1:100 Monoclonal Genting TauRx
Diagnostic Centre

Goat anti-mouse
(Cat. No. AP124) 1:100

1 Secondary antibodies supplied by Merck. 2 S1D12 derived from sheep immunized with tau297–391 and antibody
reformatted as a mouse IgG.

2.5. Immunohistochemistry for VAChT and Tau in Paraffin Brain Sections

Frozen hemispheres (from 3 to 5 animals per group) were defrosted by moving them
from −80 to −20 ◦C for 6 h, then, for another 6 h, the tissue was stored at 4 ◦C. After
thawing, the brains were immersed into 4% PFA in 0.1 M PBS for 5 days and stored at
4 ◦C. Tissue was progressed in a series of increasing ethanol concentrations (50% to 100%),
processed in pure xylene 3 times, and then embedded in paraffin wax. The brain tissue was
sectioned at 6 µm at the desired brain levels (motor cortex and hippocampal CA3) using
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a rotary microtome (Microm HM325, Leica Biosystems, Nussloch, Germany). For each
mouse, eight sections corresponding to the 8 stereotaxic levels of the motor cortex (1.21 to
−0.83 anterior/posterior to bregma) and 6 sections corresponding to the 6 stereotaxic levels
of the dorsal hippocampus (−1.31 to −2.45 posterior to bregma) were collected on one
SuperFrostTM glass slide (Thermo Fisher Scientific, Waltham, MA, USA), respectively. On
the first day, the glass slides were deparaffinized (xylene 1, xylene 2, xylene 3, 1:1 xylene:
ethanol, 100% ethanol, 100% ethanol, 96% ethanol, 96% ethanol, 70% ethanol, 50% ethanol)
and rehydrated in tap water two times for 1 min. Exposure of the antigen was performed
in a citric acid solution (pH 6.0) heated to 95–98 ◦C for 30–35 min, and allowed to cool
slowly to RT. The tissue was then washed two times in distilled water and treated with 3%
hydrogen peroxide in methanol for 15 min at RT. The sections were washed with water for
10 min and with 0.1 M PBS (pH 7.4) for 5 min. Tissue was incubated at 4 ◦C overnight with
a solution of primary anti-VAChT (1:500, Synaptic Systems Gmbh, Cat. No. 139 103) and
anti-tau antibody (1:100, s1D12, Genting TauRx Diagnostic Centre) with 3% bovine serum
albumin (BSA) in 0.1 M PBS (Table 2). The next day, after washing three times for 5 min in
0.1 M PBS with 0.3% Triton X 100 (PBST), the tissue was incubated with HRP-conjugated
goat anti-rabbit (1:100, Merck, Cat. No. AP307P) for VAChT and goat anti-mouse secondary
antibody (1:100, Merck, Cat. No. AP124) or for tau in 5% antibody-appropriate normal
rabbit or goat serum (Vector Laboratories, Cat. No. S-5000-20 and S-1000-20, respectively)
and 1% BSA in 0.1 M PBST for 1 h at RT. Then, the sections were washed three times for
5 min in 0.1 M PBS. 3,3′-Diaminobenzidine tetrahydrochloride (DAB, Sigma-Aldrich) with
H2O2, and NiSO4 at concentrations of 0.025%, 0.0125% and 0.04%, respectively, wasused
as chromogen for visualization of the primary–secondary antibody complex. Finally, the
samples were mounted using DePeX (Serva).

2.6. AChE Histochemistry

To reveal AChE staining in the motor cortex and hippocampus, 40 mm thick free-
floating sections (eight sections corresponding to the 8 stereotaxic levels of the motor cortex
and six sections corresponding to the 6 stereotaxic levels of the dorsal hippocampus for
each of the five mice in the group) were rinsed in double-distilled water and processed in
accordance to a modified version of Koelle–Friedenwald method [42,43], i.e., incubated
for 1 h (for hippocampus) and 1.5 h (for cortex) at RT on a tissue rocker, in a solution
containing ethopropazine, glycine, CuSO4·5H2O, acetylthiocholine iodide, sodium acetate
and glacial acetic acid in double-distilled water. The slides were washed six times for 5 min
with water and developed with 1.25% sodium sulfide solution for 1 min. The slides were
washed again six times for 5 min with water and incubated with an intensifying solution
(1% AgNO3, w/v in water), washed three times for 5 min with water and incubated again
two times for 5 min with 5% Na2S2O3 (w/v), at RT on a tissue rocker. Finally, the slides
were rinsed six times for 5 min with water, mounted on slides, immersed in xylene and
mounted in DePeX.

2.7. Quantitative Analysis of ChAT- and TrkA-Immunoreactive Neurons

The cholinergic basal forebrain regions of interest were pre-defined according to the
Mouse Stereotaxic Atlas [41] as the nucleus accumbens (NAc, bregma +1.34 mm AP),
vertical limb of the diagonal band of Broca (VDB, bregma +1.18 mm AP), medial septum
(MS, bregma +0.98 mm AP), horizontal limb of the diagonal band of Broca (HDB, bregma
+0.14 mm AP) and magnocellular basal nucleus (Bregma −0.58 mm AP). Moreover, we
also included the striatum, in which the analysis of cholinergic markers was performed
on sections approximately 0.14 AP from the Bregma (the level of anterior commissure
passage through the midline of the brain). For this final analysis, a slide series from
5 randomly selected animals of each group were chosen. The sections were viewed using a
Nikon EclipseNi microscope equipped with an X/Y movement-sensitive stage and Nikon
DS-Ri2 video camera attached to a Dell PC. An image analysis NIS Image digitizer and
software (Nikon Instruments, Tokyo, Japan) were used for the morphometric analysis of
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ChAT-ir and TrkA-ir neurons. The boundaries of the structures in the coronal plane were
determined microscopically and marked on-line using a computer-aided X–Y plotting
system. Subsequently, the counting of the number of neuronal profiles was performed in
the digitalized images of each outlined area by two independent and unbiased observers
(inter-observer correlation r = 0.87). The neurons were counted as cholinergic only if they
met the following criteria: neuronal cell bodies were ChAT or TrkA-immunopositive, and
the best focused nucleus and at least one dendrite were visible. These criteria were used to
exclude any population of non-complete remnants of neurons. All consecutive sections
of each series were analyzed. The data are presented as the means ± SD of five animals
per group.

2.8. Quantitative Analysis of AChE Histochemistry, Anti-VAChT and Anti-Tau Staining

The quantitative analysis of the intensity of staining for AChE, VAChT and tau was
performed in the cholinergic projection of the cortex (Bregma 0.86 ± 0.2 mm for the mo-
tor cortex) and hippocampus (Bregma −1.94 ± 0.36 mm for the dorsal hippocampus)
in accordance with the Mouse Brain Stereotaxic Atlas [41]. AChE, VAChT and anti-tau
were analyzed microscopically at 100x magnification using NIS-Elements BR4.30.00 Soft-
ware (Nikon Instruments, Japan). The measurements were taken from a fixed area of
100,000 ± 1000 mm2 in the primary motor cortex and the CA3 hippocampal area, which
comprises a cross-section of all the cortical layers and hippocampal stratum lucidum,
stratum pyramidale and stratum oriens. The relative protein content was measured as
integrated density in 8-bit images using the Fiji image processing package for ImageJ, (NIH
National Institutes of Health, Bethesda, MD, USA) [44]. For each individual mouse, data
are presented as the mean relative optical intensity (ROI—a semiquantitative densitometric
parameter in ImageJ) measured over the two-to-three analyzed sections for each region
and antibody (for the WT-HMTM and WT-Combo groups n = 5; for the WT-Veh, L1-Veh
and L1-Combo groups n = 4; for the WT-Riva, L1-HMTM and L1-Riva groups n = 3).

2.9. Statistical Analysis

All data were analyzed by parametric methods and the values are expressed as the
mean ± SD. The morphometric and densitometric data were compared by a factorial
two-way analysis of variance (ANOVA) followed by planned comparisons of the selected
groups of interest by post hoc multiple-range Newman–Keuls test. There was no a priori
assumption of the trends, and all analyses were performed two-tailed. The differences
between the groups were considered statistically significant for alpha < 0.05. Statistical
analyses were performed using STATISTICA 13.3 software (StatSoft Polska Sp. z o.o.,
Kraków, Poland). Only significant differences are reported for clarity.

3. Results
3.1. Effect of Genotype and Treatment on the Morphology of Basal Forebrain Cholinergic Neurons

For greater clarity and contrast, the results of the morphometric analysis of cholinergic
neurons are presented for hippocampal (NAc and MS) and cortical circuitries (striatum,
VDB, HDB, and NBM). Cholinergic projection neurons originate in the basal forebrain
regions such as MS, VDB and HDB or NBM, and send the efferent ones to distal areas such
as the hippocampus and cortex. They are dependent on NGF secreted from these regions
for their continued survival [45]. There are also cholinergic interneurons in the forebrain.
These are located in the striatum and the nucleus accumbens. Consequently, the number
of projection neurons was counted in the MS (projecting to the hippocampus) and as the
sum of ChAT or TrkA-ir neurons in the VDB, HDB and NBM (projecting to cortical areas),
whereas the number of interneurons is presented as the total number of either ChAT- or
TrkA-immunoreactive (-ir) neurons in the nucleus accumbens and striatum. Data for the
complementary groups are presented in the Supplementary Materials.

The representative microphotographs of the morphology and quantification of the
number of ChAT- and TrkA-ir in basal forebrain for the eight core groups are displayed
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in Figures 2–5. WT-Veh mice showed strong cytoplasmic immunoreactivity for ChAT and
TrkA in basal forebrain neurons, and their morphology appeared unchanged with HMTM
treatment. The cell bodies were densely stained, with tapering varicose dendrites forming
an intensely stained neuropil. This was not the case in L1-Veh subjects, where no distinct
ChAT and TrkA immunostaining was observed. The remaining ChAT- and TrkA-ir cells
appeared shrunken with a markedly reduced intensity of staining and almost invisible
dendrites. The administration of HMTM increased the number and morphology of ChAT-
and TrkA-ir cells in L1- in comparison to L1-Veh. However, treatment with HMTM did not
result in a full restoration of cholinergic neurochemical parameters in the basal forebrain of
L1 mice (Figures 2A, 3A, 4A and 5A).
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Figure 2. Choline acetyltransferase (ChAT) immunohistochemistry in the basal forebrain interneu-
rons of wild-type and L1 mice. The core groups were treated as indicated with the vehicle, HMTM,
rivastigmine or a combination of the two compounds. (A) Representative images of the ChAT, im-
munohistochemical staining of interneurons. Sums of ChAT-ir interneurons counted in (B) the nucleus
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accumbens and (C) striatum. Values are presented as the mean ± SD with scatter plots of individual
data. (B) For interneurons in the nucleus accumbens, a factorial two-way ANOVA confirmed a
significant main effect of the genotype (F(1,31) = 18.2; p = 0.0002). No other term was reliable. L1-
Veh mice presented with strongly reduced ChAT labeling (t = 2.8, df = 7, p = 0.026) relative to WT.
(C) For interneurons in the striatum, statistical analysis yielded the main effects of the genotype
(F(1,32) = 14.6; p = 0.00006) and treatment (F(3,32) = 3.9; p = 0.018), but no interaction. The mean
number of the ChAT-ir neurons was reduced in L1-Veh by 75% (t = 3.7, df = 8, p = 0.006 relative to WT-
Veh). While there was a substantial loss of ChAT labeling in L1 mice relative to NMRI, this phenotype
has been recovered when HMTM is administered. The combination of rivastigmine and HMTM
did not lead to added benefits. Statistical significance between the groups was calculated using the
Newman–Keuls test (* p < 0.05, ** p < 0.01). Scale bars: 100 µm for the basic microphotographs and
50 µm for the insertions; n = 5 for all groups.
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Figure 3. Choline acetyltransferase (ChAT) immunohistochemistry in the basal forebrain projecting
neurons of wild-type and L1 mice. The core groups were treated as indicated with the vehicle,
HMTM, rivastigmine or a combination of the two compounds. (A) Representative images of the
ChAT immunohistochemical staining of projecting neurons. Sums of ChAT-ir projection neurons
counted in (B) the medial septum and (C) VDB, HDB and the substantia innominata-magnocellular
basal nucleus (NBM). Values are presented as the mean ± SD with scatter plots of individual data.
(B) Results for ChAT-ir projection neurons in the medial septum demonstrated the main effect of the
genotype (F(1,29) = 12.9; p = 0.0012) for the core treatment groups, but no treatment or interaction
effects. L1-Veh mice had greatly reduced ChAT labeling (t = 7.9, df = 7; p = 0.0001) due to a reduction
of >90%. (C) For cholinergic neurons (ChAT-ir) in VDB/HDB/NBM, the analysis showed a difference
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between genotypes (F(3,32) = 12; p = 0.0015) due to a strong reduction in ChAT labeling in L1-Veh
relative to WT-Veh. While there is a dramatic loss of ChAT labeling in L1 mice relative to NMRI, this
phenotype was recovered when HMTM was administered. The combination of rivastigmine and
HMTM did not lead to added benefits. Statistical significance between the groups was calculated us-
ing the Newman–Keuls test (* p < 0.05, ** p < 0.01). Scale bars: 100 µm for the basic microphotographs
and 50 µm for the insertions; n = 5 for all groups.
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Figure 4. High-affinity nerve growth factor receptor (TrkA) immunohistochemistry in the basal
forebrain interneurons of wild-type and L1 mice.. The core groups were treated as indicated with the
vehicle, HMTM, rivastigmine or a combination of the two compounds. (A) Representative images
of the immunohistochemical staining against TrkA for interneurons. Sums of TrkA-ir interneurons
counted in (B) the nucleus accumbens and (C) striatum. Values presented as the mean ± SD with
scatter plots of individual data. There was a significant overall genotype effect for both (B) the nucleus
accumbens (F(1,32) = 8.6; p = 0.006) and (C) striatum (F(1,32) = 5.34; p = 0.027) mainly brought about
by a significantly lower level of TrkA in L1-Veh (t = 2.3, df = 8; p = 0.05 for the nucleus accumbens;
t = 3.4; df = 8; p = 0.0095 for the striatum). (C) HMTM administration protects TrKA-ir neurons in the
striatum of L1 mice while rivastigmine and combined treatment did not affect the mean number of
neurons. Statistical significance between the groups was calculated using the Newman–Keuls test
(* p < 0.05). Scale bars: 100 µm for the basic microphotographs and 50 µm for the insertions. n = 5 for
all groups.
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Figure 5. High-affinity nerve growth factor receptor (TrkA) immunohistochemistry in the basal
forebrain projecting neurons of wild-type and L1 mice. The core groups were treated as indicated
with the vehicle, HMTM, rivastigmine or a combination of the two compounds. (A) Representative
images of TrkA immunohistochemical staining of projecting neurons in the substantia innominata-
magnocellular basal nucleus (NBM). Sums of ChAT-ir projection neurons counted in (B) the medial
septum, and (C) VDB, HDB and NBM. Cholinergic projection neurons labeled for TrkA showed a sig-
nificant decrease in numbers in (B) the medial septum (F1,31 = 6.6, p = 0.015) and (C) VDB/HDB/NBM
(F(1,32) = 12.8, p = 0.001). In both cases, the reduction was primarily attributed to significant differ-
ences between WT-Veh and L1-Veh (t = 3.8, p = 0.005 for medial septum; t = 5, df = 8; p = 0.001 for
VDB/HDB/NBM). HMTM treatment significantly increased the number of TrkA-ir neurons in both
the medial septum and VDB/HDB/NBM in L1 mice. The same effect was observed in L1 groups
treated with rivastigmine, but only in the medial septum. The combination of rivastigmine and
HMTM did not lead to added benefits. Statistical significance between the groups was calculated
using the Newman–Keuls test (* p < 0.05, ** p < 0.01). Values are presented as the mean ± SD with
scatter plots for individual data. Scale bars: 100 µm for the basic microphotographs and 50 µm for
the insertions. n = 5 for all groups.

3.1.1. Number of ChAT- and TrkA-ir Neurons in L1 Tau Mice Differ from the
Wild-Type Controls

For interneurons in NAc, a factorial two-way ANOVA with the genotype and treat-
ment for the core groups confirmed the highly significant main effect of the genotype
(F(1,31) = 18.2; p = 0.0002). No other term was reliable (Figure 2B). While there was no
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treatment effect in each genotype, L1-Veh mice presented with strongly reduced ChAT
labeling (t = 2.8, df = 7, p = 0.026) relative to the WT.

For interneurons in the striatum (Figure 2C), statistical analysis yielded the main
effects of the genotype (F(1,32) = 14.6; p = 0.00006) and treatment (F(3,32) = 3.9; p = 0.018),
but no interaction. Again, the mean number of the ChAT-ir cell bodies was reduced in
L1-Veh by 75% (t = 3.7, df = 8, p = 0.006 relative to the WT-Veh).

The results for ChAT-ir projection neurons in the MS (Figure 3B) only returned a
main effect of genotype (F(1,29) = 12.9; p = 0.0012) for the core treatment groups, but no
treatment or interaction effects. Again, L1-Veh mice had greatly reduced ChAT labeling
(t = 7.9, df = 7; p = 0.0001) due to a reduction of >90%. This impression was confirmed
in the dataset on VDB/HDB/NBM, with an overall difference between the genotypes
(F(3,32) = 12; p = 0.0015) due to a strong reduction in ChAT labeling in L1-Veh relative to
the WT-Veh (see asterisks in Figure 3C).

Matching results were obtained for TrkA-ir, another specific marker of cholinergic
neurons. Again, there was a significant overall genotype effect for both the nucleus
accumbens (F(1,32) = 8.6; p = 0.006) and striatum (F(1,32) = 5.34; p = 0.027), mainly brought
about by a significantly lower level of TrkA in L1-Veh (t = 2.3, df = 8; p = 0.05 for the nucleus
accumbens; t = 3.4; df = 8; p = 0.0095 for the striatum). Decreases of about 54% and 66%
were observed, respectively (Figure 4B,C).

Similarly, cholinergic projection neurons labeled for TrkA were significantly lower in
numbers for L1 cohorts in MS (F1,312) = 6.6, p = 0.015) and VDB/HDB/NBM (F(1,32) = 12.8,
p = 0.001) (Figure 5B,C). For both the hippocampal afferents arising from MS and the cortical
input originating in VDB/HDB/NBM, this was mainly due to the significant differences
between the WT-Veh and L1-Veh (t = 3.8, p = 0.005 for septum; t = 5, df = 8; p = 0.001 for
VDB/HDB/NBM). These data compellingly confirm the previously reported cholinergic
phenotype of L1 mice [9].

Taken together, these data confirm the global loss of basal forebrain acetylcholine-
positive neurons in both the hippocampal and cortical projection pathways.

3.1.2. HMTM-15, but Not Rivastigmine-0.5, Recovers Cholinergic Markers in Both Inter-
and Projection Neurons in L1 Tau Mice

The administration of HMTM-15 mg but not rivastigmine-0.5 mg recovered the num-
ber of ChAT and TrkA-ir neurons in L1 mice (see asterisks in Figures 2–5; Supplementary
Materials Table S1). While HMTM-15 seemed efficacious in the recovery of both ChAT and
TrkA in interneurons and projection neurons, riva-0.5 only recovered the TrkA phenotype
in MS (Figure 5B). The efficacy of HMTM-15 was such that it recovered cholinergic markers
to the WT-Veh levels. While there seemed to be some improvement in cholinergic labeling
in L1 after riva-0.5 administration, these data were not reliable due to high variance. Both
drugs had no effect on WT mice, apart from riva-0.5 which reduced ChAT labeling in the
MS (Figure 3B).

We next asked the question of whether the effects are dose-dependent in L1. A
comparison for all L1 treatment conditions is presented in Supplementary Materials Figures
S1 and S2. These results confirmed that the two doses of HMTM (5 and 15 mg/kg) recovered
the ChAT phenotype in L1 mice in interneurons and projection neurons (Figures S1 and S2).

3.1.3. Combination Therapy Prevented the HMTM-15 Benefits in Cholinergic Interneurons
and Projection Neurons

Based on the significances in two-way ANOVAs, we compared the beneficial effect
of HMTM-15 following the pre-administration of riva-0.5. Statistical comparison between
the L1-Veh and L1-combo (riva-0.5 + HMTM-15) showed no improvement in the drug
groups for any area scrutinized here (See Figures 2–5; Supplementary Materials Table S1).
While a high data variance precluded significances, the levels of cholinergic markers in L1
combo therapy were always below the WT-Veh animals and often even significantly below
L1-HMTM-15 (Figure 5B), indicating an interference between the therapies. Other doses
and dose–combinations did not show an effect (Figures S1 and S2).
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3.2. Cholinergic Activity Is Deficient in the Cortex and Hippocampus of L1, and Rescued with
HMTM but Not Combination Therapy

We next measured VAChT, the transporter that shuttles reconstituted ACh into sec-
retary organelles ready for synaptic exocytosis upon depolarization of the pre-synaptic
bouton. The efficiency of this process is correlated with the strength of the cholinergic
projection and its physiological activity [46–48]. Projections from the basal forebrain (VDB,
HDB, NBM) play an essential role in, for example, motor cortex maturation and con-
trol [49,50]. By contrast, cholinergic efferents of the MS are terminated in all regions of
the hippocampus, with the strongest synaptic contacts on pyramidal cells in the stratum
oriens of CA1 and CA3 [51,52]. Both the cortex and the CA3 field of the hippocampus were
selected for analysis (Figure 6A).
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Figure 6. Vesicular acetylcholine transporter (VAChT) immunohistochemistry in the cortex and
hippocampus of wild-type and L1 mice. The core groups were treated as indicated with the vehicle,
HMTM, rivastigmine or a combination of the two compounds. (A) Representative images of the
VAChT immunohistochemical staining in the motor cortex (left panel) and the CA3 field of hippocam-
pus (right panel). Mean relative optical density (mean ROI) of the VAChT staining in (B) the motor
cortex and (C) hippocampal CA3. Two-way ANOVAs indicated a significant difference between the
groups in (B) the cortex (F(7,31) = 63.5, p < 0.0001) and (C) hippocampus (F(7,30) = 20.8, p < 0.0001),
with the main effects of treatment and interactions observed (cortex—treatment: F(3,31) = 4.3;
p < 0.013, interaction: F(3,31) = 4.7; p = 0.008; hippocampus—treatment: F(3,30) = 11.25; p < 0.0001,
interaction: F(3,30) = 7.6; p = 0.0007). A two-tailed planned comparison confirmed the cortex phe-
notype between the vehicle groups of WT and L1 (t = 3.8, df = 7; p = 0.007). Additionally, for the
hippocampus, the VAChT-ir phenotype was confirmed for the L1-Veh groups relative to the WT-Veh
(t = 5.2, df = 7; p = 0.0013). (B) No recovery of VAChT-positive neurons was observed in the cortex of
L1 across all HMTM treatment groups. However, the control groups treated with rivastigmine or with a
combination of rivastigmine and HMTM had elevated levels of the mean ROI. (C) For the hippocampus,
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there was a clear recovery of VAChT-ir in the HMTM L1 group (t = 6, df = 7; p = 0.0005). The
same effect was observed in L1 groups treated with rivastigmine (t = 4.3, df = 7; p = 0.003) and a
combination of both compounds, but this effect was weaker than for HMTM. Treatments did not
affect levels in the control mice. Statistical significance between the groups was calculated using
theNewman–Keuls test (* p < 0.05, ** p < 0.01, *** p < 0.001). Values are presented as the mean ± SD
with scatter plots for individual data. Scale bars: 200 µm for cortex microphotographs and 100 µm
for hippocampus microphotographs. For the WT-Veh and WT-Combo groups n = 5; for the L1-Veh
and L1-Combo groups n = 4; for the WT-Riva, L1-LMTM and L1-Riva groups n = 3.

As the metabolizing enzyme, acetylcholinesterase (AChE) provides another reliable
marker of cholinergic fibers and terminals in the cortex and hippocampus [53,54]. Cortical
and hippocampal AChE staining is also coincident with cholinergic terminals that have
their origin in the basal forebrain [55–58], and vary in their laminar patterning [59,60]. In
the hippocampus, AChE was most intensely stained in the stratum pyramidale and with a
lower intensity in the adjacent stratum radiatum and stratum oriens (Figure 7A).
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Figure 7. Acetylcholinesterase (AChE) activity in the cortex and hippocampus of wild-type and
L1 mice. The core groups were treated as indicated with the vehicle, HMTM, rivastigmine or a
combination of the two compounds. (A) Representative images of AChE activity in the motor cortex
(left panel) and for the CA3 of the hippocampus (right panel). The mean relative optical density
(mean ROI) of AChE staining in the motor cortex (B) and hippocampal CA3 (C). For the AChE, there
were noticeable effects based on genetic differences in both (B) the cortex (F(1,32); p = 0.005) and
(C) hippocampus (F(1,32) = 12; p = 0.002). However, the treatment and interactions were significant
only for the cortex (treatment: F(3,32) = 7.85; p = 0.0005, interaction: F(3,32) = 5.2; p = 0.005). Two-
tailed planned comparisons confirmed a significant reduction in AChE levels in both the cortex
(t = 3.3, df = 8; p = 0.01) and hippocampus (t = 5.2, df = 8; p = 0.0008). In both structures, there was
a significant recovery of AChE levels in the L1 groups treated with HMTM (cortex—t = 3.5, df = 8;
p = 0.008; hippocampus—t = 5.1, df = 8; p = 0.0009). The combination of rivastigmine and HMTM did
not lead to added benefits in L1 groups. Treatment with rivastigmine decreased the intensity of AChE
staining in the WT in both the cortex (t = 3, df = 8; p = 0.02) and hippocampus (t = 6.5, df = 8; p = 0.0002)
but not in L1. Statistical significance between the groups was calculated using the Newman–Keuls test
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(* p < 0.05, ** p < 0.01, *** p < 0.001). Values are presented as the mean ± SD with scatter plots for
individual data. Scale bars: 200 µm for cortex microphotographs and 100 µm for hippocampus
microphotographs. n = 5 for all groups.

3.2.1. The expressions of VAChT and AChE in L1 Tauopathic Mice Differ from the
Wild-Type Controls

In the control WT-Veh mice, cortical staining tended to coalesce into bilaminar patterns
of intensive staining that was observed in cortical layers II–III and V, while the other layers
were only weakly stained. In the hippocampal formation, VAChT-immunoreactive fibers
were observed predominantly in the CA3 region. The strong immunoreactivity of VAChT
in nerve endings and fibers clearly identified the afferent terminals of cholinergic axons on
pyramidal cell somas in the stratum pyramidale, but also on the dendrites of pyramidal
cells in the stratum oriens and stratum radiatum of CA3 (Figure 6A). This characteristic
pattern of VAChT immunostaining was disrupted in L1 mice, with a decreased intensity of
VAChT-ir observed in both the cortex and hippocampus. VAChT-ir was restored through
the administration of HMTM in L1, most prominently in CA3 (Figure 6A).

AChE staining in the motor cortex returned a bilaminar pattern of moderately intense
AChE staining in cortical layers II–III and V in the WT-Veh controls. Contrastingly, an aber-
rant labeling pattern was observed in L1-Veh mice, in which the cortical staining intensity
was generally reduced (Figure 7A). Similar results were obtained for the hippocampus,
where the AChE staining density was strongly reduced in L1-Veh mice relative to the
WT-Veh. The administration of HMTM caused an increase in the enzyme activity to a level
comparable with the WT-Veh, both in the cortex and hippocampus (Figure 7A).

Quantitative densitometry was performed on both of these markers. The relative
optical intensity (ROI) of the VAChT-ir (Figure 6B) showed differences that corresponded
with the reduced cholinergic cell number of the basal forebrain reported above. For the
core groups, two-way ANOVAs revealed a significant difference between the groups for
the cortex (F(7,32) = 68.3, p < 0.0001) and the hippocampus (F(7,32) = 24.7, p < 0.0001),
but also the main effects of treatment and interactions (cortex—treatment: F(3,32) = 4.3;
p < 0.0046—interaction: F(3,32) = 4.7; p = 0.01; hippocampus—treatment: F(3,32) = 12.3;
p < 0.0001—interaction: F(3,32) = 8; p = 0.0004). The differences in the cortical VAChT-ir
phenotype between the WT and the L1 vehicle groups were confirmed by a two-tailed
planned comparison (t = 4.2, df8; p = 0.003; Figure 6B). For the hippocampus, the VAChT-ir
phenotype was also confirmed for the L1-Veh groups relative to the WT-Veh (t = 5.2, df = 7;
p = 0.0013; Figure 6C).

Similar results were found for AChE labeling (Figure 7A), with L1 subjects showing
vastly diminished AChE positivity compared with the WT in both the cortex (Figure 7B)
and the hippocampus (Figure 7C). As highlighted for VAChT, there were significant main
effects of the genotype for both the cortex (F(1,32) = 9; p = 0.005) and the hippocampus
(F(1,32) = 12; p = 0.002), but the treatment and interactions were reliable only for the former
(treatment: F(3,32) = 7.85; p = 0.0005, interaction: F(3,32) = 5.2; p = 0.005). Two-tailed
planned comparisons confirmed the significantly reduced AChE levels in both the cortex
(t = 3.3, df = 8; p = 0.01) and the hippocampus (t = 5.2, df = 8; p = 0.0008).

Overall, these data confirm our previously reported cholinergic deficit in L1 mice [9]
in a new and independent cohort.

3.2.2. HMTM, but Not Rivastigmine, Reverses Impaired VAChT and AChE Expression in
L1 Tau Mice

Long-term treatment with HMTM-15 or rivastigmine-0.5 produced negligible changes
in VAChT labeling in the motor cortex of L1 (Figure 6A; levels did not differ from the
L1-Veh). Intriguingly, VAChT labeling intensity was enhanced in the cortex of WT cohorts
exposed to rivastigmine-0.5 by 38% relative to the WT-Veh (t = 6.3, df = 8; p = 0.0002;
Figure 6B). No such effects were observed for the hippocampus (Figure 6C). In the hip-
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pocampus, however, there was a strong recovery of the ROI for VAChT in L1-HMTM-
15 subjects (92% increase, t = 6, df = 8; p = 0.0001), but only a 42% increase in the L1-
rivastigmine-0.5 cohort (t = 5, df = 8; p = 0.001; see asterisks in Figure 6C). Nevertheless, this
effect seemed to be dose-independent and was also observed when drugs were combined
(see Figure S5A,B).

The AChE staining density remained unchanged following HMTM-15 treatment in
WT-Veh subjects in both the cortex and hippocampus (Figure 7B,C). L1 mice responded
very well to HMTM-15 by increasing the levels of AChE in the cortex by 50% (t = 3.5, df = 8;
p = 0.008) and by 43% in the hippocampus (t = 5.1, df = 8; p = 0.0009). These results indicate
a clear normalization of AChE labeling to WT levels. As would be expected from an AChE
inhibitor, rivastigmine-0.5 lowered the staining density for AChE in both the cortex (t = 3,
df = 8; p = 0.02) and hippocampus (t = 6.5, df = 8; p = 0.0002) in WT subjects (Figure 7B,C).
In contrast, no change occurred in L1 mice treated with rivastigmine-0.5 and the AChE
levels remained at the reduced level typical for L1 tau mice, even when different doses
were considered (see Figure S6A,B).

3.2.3. Rivastigmine Interferes Negatively with the Beneficial Effect of HMTM on VAChT
and AChE Expression in L1 Tau Mice

When rivastigmine-0.5 was administered first for 5 weeks and then combined with
HMTM-15 for another 6 weeks, the typical beneficial effects observed for HMTM-15 as a
single therapy were not seen. This was particularly obvious for VAChT (Figure 6C) and
AChE (Figure 7C) in the hippocampus, where HMTM-15 strongly reversed the deficits
(see above), but combination therapy at these doses failed. In the hippocampus, this was
mainly due to rivastigmine at 0.5 mg/kg, which, when given alone or in combination, did
not reverse the AChE phenotype in L1 (t’s < 1.7; see Figure S6B). All other drug doses and
drug combinations, however, were effective (all t’s > 2.5). Similar results were obtained
for the cortex (Figures 6B and 7B), but HMTM-15 was not as efficient as for hippocampus.
Nevertheless, the combination with rivastigmine-0.5 clearly prevented any HMTM-15
improvement. Smaller doses were not effective (Figure S6A).

A different result was observed for WT cohorts, where all the effects of HMTM-15
were maintained in the presence of rivastigmine-0.5. This provides compelling evidence
for an interference of rivastigmine in the efficacy of HMTM, at least at the concentrations
administered here.

3.3. HMTM Affects the Level of Tau in L1 Mice

We previously highlighted the fact that the administration of MTC or HMTM can
reduce tau loading in L1 mice [30]. We therefore sought to confirm this by using the newly
developed antibody S1D12, which recognizes an epitope within tau337–355. In the motor
cortex and the hippocampus, the intensity of immunostaining with S1D12 was distinctly
higher in L1-Veh mice than in the WT-Veh group (Figures 8A and 9A). Both the WT controls
and L1 tau mice expressed S1D12-anti-tau immunoreactivity mainly in fibers and processes
including axons. However, WT-Veh mice presented with long projections penetrating
the cortical layers (Figure 8B), while in L1-Veh, these processes were short with scattered
segments (Figure 8B). We take this as evidence for axonal dystrophy in L1 mice. In addition,
L1 mice showed dark granular deposits (puncta) in close proximity of pyramidal cells, both
in the cortex and the hippocampus, which may indicate an early accumulation of tau in the
synapses of projection cells (Figures 8B and 9B).
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Figure 8. S1D12-tau immunohistochemistry in the motor cortex of wild-type and L1 mice. The core
groups were treated as indicated with the vehicle, HMTM, rivastigmine and a combination of the
two compounds. (A) Representative images of S1D12 immunoreactivity in the cortex. (B) High
magnification of anti-tau cortical staining in vehicle-treated NMRI-WT (on the left) and L1 (on the
right) mice showing a different pattern of tau labeling in neural processes in both groups. In L1
mice (right image), the presence of dark granular deposits (some examples indicated by arrows) in
the vicinity of pyramidal cells surface suggests elevated tau levels at the synapses. (C) The mean
relative optical density (mean ROI) of S1D12 staining in the cortex. An ANOVA of the core groups
revealed a significant difference between treatments and an interactions with the genotype (F’s > 13,
p < 0.0001). Two-tailed planned comparisons confirmed a significant increase in tau levels in the
cortex of L1 mice compared to NMRI (t = 3.9, df = 6; p = 0.007), and this phenotype was recovered
upon administration of HMTM in L1 animals (t = 3.8, df = 6; p = 0.009). The same effect, albeit weaker,
was observed in L1 mice treated with rivastigmine (t = 3.5, df = 5; p = 0.02). The combination of
rivastigmine and HMTM did not lead to added benefits (t < 1). NMRI-WT treated with HMTM had
a significant increase in tau intensity in comparison with the NMRI vehicle group (t = 6.1, df = 7;
p = 0.0005). Values are presented as the mean ± SD with scatter plots for individual data points.
Statistical significance between the groups was calculated using the Newman–Keuls test (** p < 0.01,
*** p < 0.001, **** p < 0.0001). Scale bars: 200 µm for cortex microphotographs and 20 µm for the
insertions. For the WT-Veh and WT-Combo groups n = 5; for the L1-Veh and L1-Combo groups n = 4;
for the WT-Riva, L1-LMTM and L1-Riva groups n = 3.
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Figure 9. S1D12 tau immunohistochemistry in the hippocampus of wild-type and L1 mice. The
core groups were treated as indicated with the vehicle, HMTM, rivastigmine and a combination of
the two compounds. (A) Representative images of S1D12 immunoreactivity in the hippocampal
CA3. (B) High magnification of anti-tau hippocampal staining in vehicle-treated NMRI-WT (on the
left) and L1 (on the right) mice showing a different pattern of tau labeling in neural processes in
both groups. In WT mice, immunolabeling was seen in thin afferent fiber terminals in the stratum
lucidum and fine varicosities adjacent to the pyramidal cell membrane (arrows in the left image).
In L1 mice, the presence of dark granular deposits in the vicinity of pyramidal cell surface may
indicate elevated tau levels in the synapses (arrows in the right image). (C) The mean relative optical
density (mean ROI) of S1D12 staining in the hippocampus. An ANOVA of the core groups revealed
a significant effect of the genotype, treatment and an interaction between these factors (F’s < 3.9;
p’s < 0.0026). Two-tailed planned comparisons confirmed a significant increase in tau levels in the
hippocampus of L1 mice compared to NMRI (t = 4.4, df = 6; p = 0.0005), and this phenotype was
recovered upon the administration of HMTM (t = 5.8, df = 6; p = 0.001). The rivastigmine treatment
and combination of rivastigmine and HMTM did not lead to added benefits. NMRI treated with
HMTM showed a significant increase in tau immunoreactivity in comparison with the NMRI vehicle
group (t = 3, df = 7; p = 0.02). Values presented as the mean ± SD with scatter plots for individual data.
Statistical significance between the groups was calculated using the Newman–Keuls test (*** p < 0.001,
**** p < 0.0001). Scale bars: 200 µm for cortex microphotographs and 20 µm for the insertions. For the
WT-Veh and WT-Combo groups n = 5; for the L1-Veh and L1-Combo groups n = 4; for the WT-Riva,
L1-LMTM and L1-Riva groups n = 3.

3.3.1. Cortical Tau Immunoreactivity in L1 Tau Mice Is Normalized by HMTM-15 and
Rivastigmine-0.5, but Not by Combination Therapy

The quantitative analysis confirmed the macroscopic observations. For the cortex, a
two-way ANOVA of the core groups revealed a significant difference between treatments
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and an interaction with the genotype (F’s > 13, p < 0.0001), which was confirmed by a
planned post hoc analysis to yield a reliably higher level of tau labeling in L1-Veh relative
to the WT-Veh (t = 3.9, df = 6; p = 0.007). While this was reversed in L1 by 44% in the
HMTM-15 cohort (t = 3.8, df = 6; p = 0.009), as predicted [30], there was only a trend for the
lower dose of HMTM 5 mg/kg (p = 0.09; Figure S7A). We also found a small reduction in
tau for rivastigmine-0.5 (t = 3.5, df = 5; p = 0.02) but not at lower doses. Nevertheless, the
pre-administration of rivastigmine-0.5 followed by HMTM-15 prevented this normalization
(t < 1), suggesting a negative interaction between the two compounds (see asterisks in
Figure 8C). This was corroborated by our complementary groups in that the block of
HMTM efficacy by rivastigmine was seen for all drug dose combinations (see Figure S7A).
The only exception was the low doses of 0.1 mg/kg rivastigmine with 5 mg/kg HMTM
which also normalized tau levels in the cortex (t = 4.3, df = 6; p = 0.005).

Another unpredicted observation was the over 100% increase in tau labeling in the
WT animals treated with HMTM-15. The labeled tau in the WT is likely to be qualitatively
different from that in L1 in that it consists of murine tau only, and was significantly
heightened relative to the WT-Veh (t = 6.1, df = 7; p = 0.0005).

3.3.2. Hippocampal Tau Immunoreactivity in L1 Tau Mice Is Normalized by HMTM-15,
but Not by Rivastigmine-0.5 or Combination Therapy

For the hippocampus, the results were comparable to those observed in the cortex. A
two-way ANOVA for the core groups showed the significant main effects of the genotype,
treatment and an interaction between these factors (F’s < 3.9; p’s < 0.0026) (Figure 9C).
In the vehicle groups, a significantly enhanced S1D12 labeling occurred for L1 (t = 4.4,
df = 6; p = 0.0005), which was reduced by 66% in the presence of HMTM-15 (t = 5.8, df = 6;
p = 0.001), and also by the lower dose of HMTM-5 (t = 4.7, df = 6; p = 0.004; Figure S7B), but
not when combined with rivastigmine-0.5 for any dose combination (Figure S7B). Again,
rivastigmine-0.5 alone also exerted some beneficial effects and reduced tau labeling in L1
subjects, albeit not significantly (see asterisks in Figure 9C).

As revealed in the cortex, HMTM-15 also increased the levels of murine tau (t = 3,
df = 7; p = 0.02) by 56% in the hippocampus of the NMRI vehicle group. These data stress
the prevention efficacy of HMTM when rivastigmine is pre-administered to tau mice.

4. Discussion

The broader goals of the current studies were to(1) provide further in vivo evidence of
an interaction between tauopathy and cholinergic atrophy in tau transgenic L1 mice, (2) test
whether HMTM administration attenuates the development of tauopathy and worsening
of the cholinergic status in an animal AD model and (3) provide a better insight into the
decreased therapeutic efficacy when HMTM is administered against the background of a
symptomatic rivastigmine treatment.

We report three main findings: (i) tau transgenic mice develop an impairment of
the cholinergic system and this confirms our previous findings [9,15]; (ii) HMTM treat-
ment partially reversed this impairment and lessened the tauopathy in L1; (iii) combined
HMTM and rivastigmine treatment is less efficacious than HMTM monotherapy, with
the cholinesterase inhibitor completely blocking any beneficial effects of HMTM in some
instances. Collectively, these data suggest that, in L1 tau mice with a severe expression of
human tau [36] and a cholinergic deficit [9], the loss of the cholinergic phenotype in basal
forebrain neurons is probably reversible through the administration of the tau aggregation
inhibitor HMTM and, to a lesser extent, the symptomatic drug rivastigmine. Secondly, we
confirmed a negative interaction between the two treatments, i.e., the administration of
HMTM against prior long-term treatment with rivastigmine [15,34], in agreement with
clinical observations [5,33,61,62].
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4.1. Tau Transgenic L1 Mice as a Model for Early Stages of Alzheimer’s Disease

The basal forebrain cholinergic system occupies a central role in normal cognition
and age-related cognitive decline, including dementias such as AD. The cholinergic hy-
pothesis of AD is centered on the progressive loss of limbic and neocortical cholinergic
innervation [63], and is supported by neurotrophic deficiencies given the dysregulations of
nerve growth factor signaling [64]. The progressive and selective degradation of the basal
forebrain cholinergic system has been well documented during the onset of AD in humans
and animal models, both in vivo and in vitro [65–67], and neurofibrillary degeneration
is believed to be the primary cause of the loss of cholinergic innervation [68–71] and a
concomitant loss of cognitive function characteristic of AD [13,72]. Abnormally phospho-
rylated tau in the form of oligomers or early neurofibrillary tangles in the basal forebrain
contributes to both the initiation and/or progression of neurodegeneration in AD [73,74].
Basal forebrain cholinergic neurons are among the earliest to show tau oligomers [75,76]
and present with the dysregulation of genes encoding neurotrophic and neurotransmitter
signaling proteins in the AD brain [77].

The findings reported here confirm that the integrity of the basal forebrain cholinergic
system is deteriorated in tau transgenic L1 mice. This was indicated by the impaired
cholinergic neuronal morphology, a reduced number of ChAT positive cells [9] and a
progressive impairment of spatial learning when aged three-to-six months [30]. Using a
number of additional cholinergic markers, we expanded this reduced functioning not only
based on a significant decrease in the number of ChAT- and TrkA-stained neurons in the
basal forebrain, but also on the lowered density of VAChT immunolabeling and histological
staining of AChE of cortical and hippocampal efferents. The reduction in morphometric
parameters of ChAT and TrkA immunolabeling was particularly severe in large projection
neurons located in the MS, VDB, HDB and NBM, as well as the number of small cholinergic
interneurons present in the NAc and ST of L1 mice. These data provide unambiguous
evidence for the lowering of cholinergic function in the basal forebrain of L1 mice.

The target projection zones (motor cortex and hippocampal CA3) were also explored,
with labeling for (i) VAChT, which mediates the transfer of ACh from the cytoplasm into
secretory synaptic vesicles; and (ii) AChE, a type B carboxylesterase that rapidly hydrolyzes
ACh in brain cholinergic synapses and terminates neuronal signaling of extracellular ACh.
Both markers were lowered in L1-Veh compared to wild-type mice in the cortex and CA3.
These results provide compelling evidence that the disturbances in the cholinergic system
of L1 mice concern not only structural changes in cholinergic neurons of the basal forebrain,
but also functional changes at their projection targets, and hence serve as a good model for
AD. These traits coincided with enhanced tau immunoreactivity in L1 mice, suggesting
that the underlying tau pathology is driving this cholinergic loss.

4.2. The Therapeutic Effect of HMTM Is Similar in Cholinergic Projections to the Hippocampus
and Neocortex: Blocking by Rivastigmine

The reduction in the morphometric parameters of ChAT- and TrkA-immunolabeled
neurons was partially or completely reversed by the prolonged HMTM administration as a
monotherapy. This indicates that for untreated L1 tau mice, the basal forebrain cholinergic
neurons have a lowered expression of ChAT and TrkA receptors and that, following
HMTM treatment, they recover their ChAT and TrkA expression to detectable levels. The
administration of HMTM to L1 mice also increased the levels of VAChT and AChE, in
agreement with the complete rescue of the cholinergic system with a significant cholinergic
tone in the cortex and hippocampus [15]. At the same time, HMTM also attenuated the tau
load in both pathways, further corroborating the notion that the driver for the pathology of
the cholinergic system is the formation of tau aggregates.

The beneficial effect of HMTM was less evident when combination therapy was used.
In the present study, the effects of HMTM on cholinergic function were inhibited by pre-
treatment followed by concurrent treatment with rivastigmine, a prototypic AChE inhibitor,
and HMTM. The administration of HMTM in combination with rivastigmine was also less
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effective in reducing tau protein levels in L1 mice, although monotherapy with HMTM
significantly reduced tauopathy symptoms present in untreated L1 mice. This reduction in
the pharmacological efficacy of HMTM, when given as an add-on to symptomatic treat-
ment in humans, was observed in several other studies using the L1 tau model [15,34] and
in clinical trials [5,61]. However, similar studies using other AD treatments are widely
missing, and combination therapies have concentrated on symptomatic treatments but the
benefits of combinations with AChE inhibitors or memantine remain controversial [78,79].
In clinical trials, participants were frequently being prescribed one of the symptomatic
treatments currently approved for Alzheimer’s disease (donepezil, rivastigmine, meman-
tine); interference with HMTM might be expected in experimental models with each of
these drugs, but further work is required to understand the mechanism of action for each
drug. Several results suggest that rivastigmine, donepezil and galantamine differ in their
pharmacology. While donepezil and galantamine do not inhibit BuChE and are associated
with an increase in CSF AChE protein levels, rivastigmine provides a sustained inhibition
of both AChE and BuChE [80]. However, we have no evidence that this difference in the
mechanisms of action of cholinesterase inhibitors is important in modulating the efficacy of
add-on therapy with HMTM.

To our knowledge, we are the first to investigate Riva/HMTM combination treatment
in tau models of AD at multiple levels/systems of the brain, and have demonstrated
decreased pharmacological efficacy of combination therapy in the regulation of hippocam-
pal acetylcholine [15], synaptosomal glutamate release and mitochondrial activity [34,81],
and the presynaptic expression of SNARE proteins involved in synaptic vesicle docking
and fusion [82]. Although a decrease in brain MT+ was observed in animals undergoing
long-term rivastigmine treatment [80], the MT levels were still within the therapeutic range
and should have been effective. The block of HMTM activity is therefore not due to the de-
creased bioavailability of HMTM/MT+, but appears due to neuronal interactions. We have
previously postulated a homeostatic adjustment of the nervous system to the long-term
availability of rivastigmine/acetylcholinesterase inhibitors in general [34], and these data
provide further support for such a mechanism.

4.3. Cholinergic System as a Potential Disease-Modifying Target for HMTM

The central question arising from this research is how does the cholinergic phenotype
recover with HMTM? Here, we offer two alternative scenarios. (1) It is conceivable that
our treatment with HMTM was initiated at the very timepoint when atrophy of choliner-
gic neurons began in L1 mice, and HMTM protected these cells from degeneration. Our
data suggest that neurodegeneration in L1 is greatly dependent on the build-up of tau in
cholinergic neurons and could indeed have been prevented by the lowering of tau with this
therapy. This is consistent with the failure of rivastigmine alone or in combination with
HMTM to fully recover/protect the cholinergic phenotype that emerged in L1 mice, despite
therapeutically effective doses being administered. Evidence comes from our AChE mea-
surements in WT mice which were strongly decreased by rivastigmine in both the cortex
and hippocampus at a 0.5 but not 0.1 mg/kg dose. (2) An opposite mechanism would be
that the HMTM treatment restored the cholinergic phenotype that was lost in the L1 mice.
This explanation is supported by our previous observation that the treatment to replenish
NGF recovered acetylcholine in aging rats to the level of young adult subjects [82]. Thus,
the neuroprotective effects of HMTM are akin to the substances that provide continuous
trophic support for the cholinergic system [83–85]. Whether HMTM exerts direct or indirect
trophic support remains elusive. Consequently, impairment of the cholinergic system in
L1 appears to be due to the lowered functional expression of choline acetyltransferase and
tyrosine kinase receptors rather than the degeneration of neuronal cell bodies. And it is this
functional recovery which is brought about by both doses (5 and 15 mg/kg) of HMTM in
both inhibitory and projection neurons, but not by rivastigmine or combination treatment.
Here, we provide strong and supporting evidence for the notion that HMTM is mecha-
nistically different and not acting via the inhibition of acetylcholinesterase [15] (Figure 7).
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Rather, HMTM appears to increase AChE activity. How this rescue of cholinergic cells from
a quasi-silent /degenerative state is mechanistically achieved by HMTM requires a more
in-depth study. However, it suggests that our L1 model truthfully mimics the cholinergic
deficit that is a principle and early feature of AD and, in part, due to the suppression
of cholinergic markers in the absence of cell death [69]. Since similar observations have
recently been reported for AD [86], our results provide a functional explanation as to why
HMTM monotherapy induced an arrest of cognitive decline and brain atrophy in clinical
AD [5,6]. Such a rescue of cholinergic cells and lowering of tau levels are two potential
mechanisms by which HMTM may halt the progression of AD [34,80,81]. It would similarly
explain why the upregulated cholinergic tone with rivastigmine pretreatment negatively
interferes with these mechanisms.

5. Conclusions

This research was motivated by clinical observations of the tau aggregation inhibitor
HMTM being effective as a mono but not add-on therapy on the background of symp-
tomatic treatment [5,61]. We replicated this here in an experimental model, providing
compelling evidence that monotherapy with different doses of HMTM rescues the choliner-
gic phenotype in both projection and inhibitory circuits, but that this effect was prevented
by the pre-administration of rivastigmine over several weeks. This negative interaction
may be explained by the hyperactivation of the cholinergic tone which would interfere
with the trophic rescue of ACh neurons by HMTM. In addition, this trophic support and
recovery of basal forebrain neurons to normal cholinergic function would explain the arrest
of both the cognitive decline and brain atrophy observed in clinical trials [87].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells13070642/s1, Figure S1: Choline acetyltransferase (ChAT)
immunohistochemistry in the basal forebrain in L1 mice. Mean number of ChAT-ir interneurons
in (A) the nucleus accumbens (NAc) and (B) striatum. Values expressed as mean ± S.D. * p < 0.05;
** p < 0.01. Figure S2. Choline acetyltransferase (ChAT) immunohistochemistry in the basal forebrain
in L1 mice. Mean number of ChAT-ir interneurons in (A) the medial septum and (B) total number
of neurons in the vertical (VDB) and horizontal (HDB) limb of the diagonal band of Broca and
the magnocellular basal nucleus-substantia innominata (NBM). Values expressed as mean ± S.D.
* p < 0.05; ** p < 0.01; *** p < 0.001. Figure S3. High affinity nerve growth factor receptor (TrkA)
immunohistochemistry in the basal forebrain in L1 mice. Mean number of TrkA-ir interneurons in (A)
the nucleus accumbens (NAc) and (B) striatum. Values expressed as mean ± S.D. * p < 0.05. Figure S4.
High-affinity nerve growth factor receptor (TrkA) immunohistochemistry in the basal forebrain in L1
mice. Mean number of TrkA-ir interneurons in (A) the medial septum and (B) total number of neurons
in the vertical (VDB) and horizontal (HDB) limb of the diagonal band of Broca and the magnocellular
basal nucleus-substantia innominata (NBM). Values expressed as mean ± S.D. * p < 0.05. Figure
S5. Vesicular acetylcholine transporter (VAChT) immunohistochemistry in L1 mice. Mean Relative
Optical Density (Mean ROI) of VAChT staining in (A) motor cortex and (B) hippocampal CA3 field.
Values expressed as mean ± S.D. * p < 0.05; ** p < 0.01; **** p < 0.0001. Figure S6. Acetylcholinesterase
(AChE) in L1 mice. Mean Relative Optical Density (Mean ROI) of AChE staining in (A) motor
cortex and (B) hippocampal CA3. Values expressed as mean ± S.D. * p < 0.05; ** p < 0.01. Figure S7.
Tau immunohistochemistry, using S1D12, L1 mice. Mean Relative Optical Density (Mean ROI) of
anti-tau staining in (A) motor cortex and (B) hippocampal CA3 field. Values expressed as mean ± S.D.
* p < 0.05; ** p < 0.01; *** p < 0.001.
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