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Abstract: Automated evaluation of all glomeruli throughout the whole kidney is essential for the
comprehensive study of kidney function as well as understanding the mechanisms of kidney disease
and development. The emerging large-volume microscopic optical imaging techniques allow for
the acquisition of mouse whole-kidney 3D datasets at a high resolution. However, fast and accurate
analysis of massive imaging data remains a challenge. Here, we propose a deep learning-based
segmentation method called FastCellpose to efficiently segment all glomeruli in whole mouse kidneys.
Our framework is based on Cellpose, with comprehensive optimization in network architecture and
the mask reconstruction process. By means of visual and quantitative analysis, we demonstrate
that FastCellpose can achieve superior segmentation performance compared to other state-of-the-art
cellular segmentation methods, and the processing speed was 12-fold higher than before. Based on
this high-performance framework, we quantitatively analyzed the development changes of mouse
glomeruli from birth to maturity, which is promising in terms of providing new insights for research
on kidney development and function.

Keywords: whole-kidney optical imaging; deep learning; segmentation

1. Introduction

The glomerulus is one of the essential functional units that is widely distributed in
the whole kidney. It is responsible for ultrafiltration of the blood as well as excreting waste
products and maintaining fluid balance [1]. Previous studies have revealed that a series
of kidney diseases, such as diabetes, unilateral ureteral obstruction, and chronic kidney
disease, can lead to changes in the structure and function of the glomeruli [2–5]. Moreover,
the number and size distribution of glomeruli are essential parameters for studying the
mechanisms of kidney function and development [6]. Therefore, quantitative analysis of
the whole-kidney glomeruli is vital for understanding the kidney in both physiological and
pathological states, and has the potential for quantitative renal diagnostics.

As the centimeter-sized whole human kidney is extremely difficult to quantitatively
study in 3D at the cellular level, mice are widely used as model animals for kidney re-
search. Early studies employed histological sectioning and manual stereologic counting
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for the purpose of extrapolating the size and number of glomeruli in the whole kidneys
of mice [7,8]. However, these techniques are essentially based on estimation rather than
direct measurements, which not only is prone to errors, but also loses precise morpho-
logical information relating to individual glomeruli. To directly measure whole-kidney
glomeruli, methods based on magnetic resonance imaging (MRI) have been developed [9].
However, the inherent low resolution of MRI precludes us from clearly distinguishing the
structural details of glomeruli, resulting in limited accuracy of morphological analyses. To
capture structural details at a higher resolution, optical microscopy is widely employed
for biomedical imaging. Combined with tissue-clearing technologies, the imaging depth
limitation of optical microscopies can be overcome, allowing for 3D visualization of the
tissues or organs in their entirety [10,11]. A recent work demonstrated a combination of tis-
sue clearing and light-sheet microscopy to characterize the morphology of renal glomeruli
in mice [12]. However, sample deformation caused by tissue clearing may result in inac-
curate measurements. Another strategy by which to explore the whole organism is the
combination of optical microscopy with serial tissue sectioning. These large-volume optical
imaging techniques can provide consistently high imaging quality with subcellular resolu-
tion throughout whole organs [13–17]. Based on this, a newly reported work has presented
a cryo-fluorescence micro-optical sectioning tomography (cryo-fMOST) method to acquire
complete 3D structural data of frozen organ samples with submicron resolution [18]. Using
this tool, high-resolution 3D imaging data of the whole kidney with well-preserved mor-
phology can be acquired. However, the generated massive imaging data, which contains
rich structural information, poses huge challenges for subsequent auto-analysis.

A prerequisite and fundamental step for the auto-analysis of glomerular distribution
is the accurate segmentation of individual glomeruli. As the acquired whole-kidney flu-
orescence images contain various microstructures, including the glomerular tuft, renal
corpuscle, renal tubule, artery, vein, etc., it is very difficult to precisely extract the contours
of the glomeruli from such complex scenes. Although many open-source algorithms and
solutions [19–24] are currently available for microscope image segmentation, most of them
are based on traditional image processing methods such as intensity thresholding or wa-
tershed, which cannot handle imaging data with varying signal intensities and complex
structure information. Moreover, methods like CellProfiler [21,23] and ilastik [24] also
rely on manual interaction and user-customized analyzing pipelines involving a series
of adjustable parameters. Thus, these methods cannot be fully automated and are not
applicable to the automatic analysis of large-scale 3D imaging data. In contrast, deep-
learning methods can automatically and effectively handle complex imaging data. With
sufficiently labeled training data, these methods can automatically extract semantic fea-
tures of interested structures so as to accurately segment target structures from complex
scenarios [25–28]. A series of works has demonstrated the application of deep learning in
kidney segmentation using CT/MRI images [29,30] or glomeruli segmentation using whole
slide images [31–33]. Since the deep neural network (DNN)-based methods demonstrate
significantly higher accuracy, robustness, and scalability than traditional methods, they
have become the most popular solution in biomedical image segmentation. Among them,
U-Net [34] and Mask R-CNN [35] are the two most widely used neural networks, which
have been successfully applied to various types of biomedical image data and have become
the baseline for biomedical image segmentation. In 2018, Schmidt et al. developed the
Stardist method for cell segmentation in microscopy images and demonstrated its superior
performance on a general dataset (named Data Science Bowl) containing various fluores-
cence microscopy images [36]. Focusing on microscope image segmentation, Stringer et al.
developed the Cellpose framework [37,38], which outperformed the established U-Net,
Mask R-CNN model, and the Stardist method on various types of cells and cell-like objects.
The Cellpose method can be distinguished from the existing algorithms by the introduction
of a vector field output. This vector field predicted by a neural network represents the
spatial gradients of the target structures, which can guide the calculation of the precise
boundary of the target to be segmented. The Cellpose approach has the potential to accu-
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rately segment individual glomeruli in whole-kidney 3D datasets. However, this method
does not consider computational efficiency and cannot be scaled to large-scale datasets [39].
Using this method to segment the terabyte-sized dataset would require months of time,
which is unaffordable in real-world applications. Therefore, fast and accurate segmentation
methods are still lacking for analyzing large-scale, high-resolution whole-kidney datasets.

In this study, we propose FastCellpose, a high-performance deep-learning framework
for whole-kidney glomeruli segmentation. By pruning redundant features and simplifying
the network architecture, our approach enabled a sevenfold acceleration in the network
inference stage over the existing Cellpose method, while achieving higher segmentation
accuracy. More importantly, we optimized the time-consuming step involved in converting
the vector field output to the final binary mask and achieved 16-fold acceleration in the mask
reconstruction process. Using our approach, a whole-kidney dataset can be segmented in
3.5 h with a high Dice score of 0.945, demonstrating superior performance over the existing
advanced cell segmentation methods. Based on the FastCellpose framework, we segmented
and analyzed the glomeruli of mouse kidneys at different ages, which, to our knowledge,
is the first quantitative study on glomerular distribution changes in whole mouse kidneys
during their development process. Moreover, we also demonstrated the capability of this
framework in whole-brain neuron segmentation, exhibiting the potential of FastCellpose in
high-throughput automatic analysis of other organs or tissues.

2. Materials and Methods
2.1. Animals

A total of 18 transgenic fluorescent mT/mG mice (Jackson Laboratory, Bar Harbor,
ME, USA) of different ages (0 days, 3 days, 7 days, 2 weeks, 4 weeks, 8 weeks; three
mice per age group) were used for imaging. The mT/mG mice had the expression of red
fluorescence on the cell membranes of whole-body cells. All mice were fed according to the
procedures and were kept on a 12 h light/12 h dark cycle. This process involving the mice
was approved by the Institutional Animal Ethics Committees of Huazhong University of
Science and Technology.

2.2. Tissue Preparation

The mice were anesthetized with a mixture of 2% chloral hydrate and 10% urethane,
and subsequently transcardially perfused with 0.1 M PBS (Sigma-Aldrich, St. Louis, MO,
USA) followed by 4% PFA (Sigma-Aldrich, USA). Then, the kidneys of the mice were
excised and post-fixed in 4% PFA at 4 ◦C for 24 h. After fixation, the kidneys were rinsed
overnight at 4 ◦C in a 0.01 M PBS solution. Next, they were dehydrated using a 30% sucrose
solution until the tissue sank. Then, the kidneys were embedded using an optimal cutting
temperature (OCT) compound (Sakura Finetek, Torrance, CA, USA) and frozen in liquid
nitrogen immediately.

2.3. Cryo-fMOST for Whole-Kidney Imaging

The OCT-embedded kidneys were imaged with a Cryo-fMOST system. A brief system
diagram is shown in Figure 1a. The imaging part was based on line-scanning microscopy.
The laser beam from a CW diode laser (Cobolt 06-DPL 561 nm 100 mW, Hübner Photon-
ics, Kassel, Germany) was expanded by a 4f system. The system consisted of two lenses
(L1, AC050-008-A-ML, f = 7.5 mm and L2, AC254-250-A, f = 250 mm, Thorlabs, Newton,
NJ, USA). The line illumination was formed by a cylindrical lens (CL, ACY254-100-A,
f = 100 mm, Thorlabs, USA) and then transmitted through a lens (L3, AC254-125-A,
f = 125 mm, Thorlabs, USA). The excitation beam was reflected on a dichroic mirror
(DM, FF493/574-Di01–25×36, Semrock, Rochester, NY, USA) and focused on a target sur-
face through an objective lens (LUCPLFLN 20×, NA = 0.45, Olympus, Tokyo, Japan). The
excited fluorescence was filtered by DM and an emission filter (EM, FF01-620/52, Semrock
Inc., USA), focused by a tube lens (TL, U-TLU, f = 180 mm, Olympus, Japan), and detected
by a scientific complementary metal oxide semiconductor (sCMOS) camera (ORCA-Flash
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4.0, Hamamatsu Photonics K.K., Hamamatsu, Japan). The x-y planes of the sample were
obtained through line scanning, where the illumination line remained stationary and the
sample was scanned by a 3D translation stage (X: XML210, Y: XMS100, Z: GTS30V, Newport,
Irvine, CA, USA). After imaging, the translation stage moved the sample to the microtome
(Diatome AG, Port, Switzerland) for removal of the imaged tissue. The process of imaging
and sectioning was repeated until the entire kidney dataset had been acquired.
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Figure 1. Whole-kidney imaging by Cyro-fMOST. (a) System configuration of Cyro-fMOST. EM,
emission filter; TL, tube lens; DM, dichroic mirror; L1-L3, lens; CL, cylindrical lens; Obj, objective.
(b) Three-dimensional visualization of the whole mouse kidney. (c) A typical x-y plane from the
whole-kidney dataset. The enlarged area of the image, indicated by the dashed box, is shown in
the bottom left corner. The pink arrows indicate the glomeruli. Scale bar, 1000 µm; 200 µm for the
enlarged image.

The whole kidney was imaged at a voxel size of 0.32 × 0.32 × 3 µm3, and the raw
data volume for an 8-week-old mouse kidney had a size of 33,996 × 19,520 × 1584 voxels,
corresponding to a data size of 1.5 TB. Figure 1b demonstrates the imaging results of an
8-week-old mouse kidney. It can be seen from the 3D reconstruction result that the overall
morphological structure of the kidney was complete. Furthermore, the anatomical structure
of the individual glomeruli can be clearly observed, as shown in the enlarged image from
the x-y plane (Figure 1c). The high image quality ensures the feasibility of our subsequent
automatic analysis of whole-kidney glomeruli.

2.4. FastCellpose Framework

The FastCellpose framework was proposed for rapid and accurate image segmentation
in large-scale data. Similarly to Cellpose, it utilizes a two-step process. In the first step, the
neural network learns to transform the raw input images into vector fields that represent
the spatial gradients of the target structures. In the second step, it uses gradient tracking
to convert the vector field output into the final mask. Compared to the original Cellpose
method, the FastCellpose framework is optimized in terms of network structure and the
mask reconstruction process, which significantly improves the overall processing efficiency
and enables its application to large-scale data.

As shown in Figure 2, a lightweight U-shaped neural network was proposed for
efficient gradient prediction in FastCellpose. The network consists of an encoder path and
a decoder path. The encoder path is responsible for extracting abstract representations
of the input data. This is achieved by stacking a series of encoding units. Each encoding
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unit contains two convolution layers, and each convolution layer is accompanied by a
batch normalization (BN) layer [40] and a rectified linear unit (ReLU) layer. After two
convolution operations, the output data goes through a max pooling layer in order to halve
the image size. The output feature size for the first encoding unit (i.e., base feature size) is
16, and the subsequent encoding units steadily double the output feature size. The decoder
path is responsible for recovering the hierarchy features extracted from the encoder path
into the gradient vector field of the input image. Symmetric with the encoder path, a series
of decoding units lie in the decoder path to gradually upsample the image to its original
size. Each decoding unit contains a deconvolution and a convolution layer.
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Figure 2. The architecture of the proposed lightweight network in FastCellpose. The number of
output feature maps is denoted on the top of the block, and the numbers on the bottom of the block
represent the size of the feature map. The operations are represented by arrows of different colors.

The number of encoding and decoding units is 3, and there are skip connections
between layers of the same size in the encoder and decoder paths. Instead of using feature
concatenation as the skip connection, additive identity mapping is employed, which is
more computationally efficient. Both the input and output image sizes are 256 × 256.
The input channel is 1, and the output channel is 3 (horizontal, vertical gradients, and a
probability map indicating whether a pixel belongs to the interested structure).

An optimized post-processing pipeline was proposed for mask restoration from the
network-predicted vector fields. As shown in Figure 3a, inspired by the
downsample–upsample structure in Unet, we chose to downsample the vector field output
from the network so that the gradient tracking was performed on the downsampled image,
which greatly reduced the computational burden. Then, an interpolation algorithm was
used to restore the output mask to its original size. This method effectively accelerated
the processing speed and showed comparable accuracy to the previous method. The
downsampling scale factor was set to 2 for all experiments. Moreover, we optimized the
hyperparameters relating to gradient flow tracking. According to the size and shape of
glomeruli, a relatively low iteration number is enough for a given pixel to converge to the
center point. Therefore, instead of using an iteration number of 200, as suggested in the
Cellpose article, we set the iteration number to 50 in our FastCellpose framework. Further-
more, we employed parallel computing to further accelerate the reconstruction process,
as shown in Figure 3b. For a whole x-y plane image, we first cropped it into a series of
sub-images of 2048 × 2048 pixels. Then, multiple threads were assigned to simultaneously
perform the gradient flow tracking process. In this way, the processing throughput of the
computing unit was fully utilized, resulting in higher computational efficiency. Finally,
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the segmented x-y plane image was obtained by fusing all the reconstructed sub-images
in order.
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Figure 3. The optimized pipeline for mask reconstruction in FastCellpose. (a) We accelerated the
gradient tracking process by downsampling the vector field and then upsampling the reconstructed
mask. (b) We employed parallel computing to further accelerate the mask reconstruction process for
whole x-y plane images.

To summarize, the difference between the original Cellpose method and the FastCell-
pose method lies in the network architecture and the mask reconstruction process. Instead
of using a deep and large network, as in the Cellpose method, the FastCellpose method
employs an optimized lightweight network for fast and efficient computing. Furthermore,
compared to the Cellpose method, the FastCellpose method showed 3 improvements in the
mask reconstruction component, including performing gradient tracking in downsampled
vector fields, reducing the iteration number, and employing parallel computing. These
optimizations aim to improve the segmentation performance and efficiency.

2.5. Training Data Preparation and Implementation Details

To obtain training data for the base FastCellpose model, we randomly selected 10 x-y
plane images at an axial interval of 330 µm from an 8-week-old mouse kidney dataset. The
ground-truth (GT) masks of the above images were obtained by experts’ manual annotation.
The ground-truth spatial gradient maps were generated through simulated diffusion on
the mask images. Afterwards, the ground-truth images along with the raw input images
were cropped into 3000 paired image patches with image sizes of 256 × 256 pixels. The
training set was generated by randomly selecting 2500 image pairs from the above data.
The remaining 500 image pairs served as the validation set. The test set contained 10 raw
and ground-truth mask images with pixel sizes of 2048× 2048 that were randomly cropped
in the 8-week-old whole-kidney dataset and not included in training or validation sets. The
loss function for the FastCellpose model is defined as:

Ltotal = Lgradient + Lprob
Lgradient = ‖C0 − λH‖2 + ‖C1 − λV‖2
Lprob = −(1− P) log[1− σ(C2)]− P log[σ(C2)]

(1)

where Ci is the i-th channel of the network output, and H and V denote the horizontal
and vertical ground-truth gradient maps, respectively. λ is a weighted parameter for
balancing the contribution of the gradient loss and probability loss, and is set as 5. P is the
ground-truth mask, and σ denotes the sigmoid function.
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The network parameters were optimized via an SGD optimizer with a momentum of
0.9 and a weight decay of 0.00001. The batch size was set as 4, and the network was trained
for 150 epochs. For the first 10 epochs, the learning rate started at zero and linearly increased
to 0.2. For the next 90 epochs, the learning rate was fixed at 0.2. And for the final 50 epochs,
the learning rate decayed by half after every 10 epochs. We saved the network snapshot after
each training epoch and evaluated its performance on the validation set. The best model was
found with the highest segmentation performance on the validation set. The network model
was constructed using the Pytorch framework (version 2.0.1). Training and testing of the
FastCellpose framework was performed on a workstation equipped with a Nvidia GeForce
RTX 3090 GPU card, an Intel(R) Xeon(R) Gold 5222 CPU, and 128 GB of RAM.

2.6. Performance Criteria

The segmentation performance of our framework was evaluated using two commonly
used criteria, i.e., Dice and Intersection over Union (IoU), which are defined as:

Dice(P, G) =
2|P ∩ G|
|P|+ |G|

IoU(P, G) =
|P ∩ G|
|P ∪ G|

(2)

where P and G denote the algorithm-segmented image and the ground-truth mask image,
respectively. Both the Dice and IoU were between 0 and 1, with a higher score indicating a
better segmentation performance.

3. Results
3.1. Evaluation of Segmentation Algorithms for Glomeruli Segmentation

Toward the goal of developing high-performance automated algorithms for whole-
kidney glomeruli segmentation, we first searched for well-performing algorithms for
further optimization. We quantitatively evaluated and compared the current state-of-the-
art DNN-based segmentation algorithms on the test set. In Figure 4a,b, a typical test image
and the corresponding ground-truth label are demonstrated.

We selected four representative microscope cell segmentation algorithms, including
U-Net, Mask R-CNN, Stardist, and Cellpose, for a comparison of their performances. For
an intuitive comparison of the segmentation results, we demonstrated the visualization
results as shown in Figure 4c–f. It can be clearly seen that in the segmentation results of
U-Net, Mask R-CNN, and Stardist, wrongly identified and missed glomeruli were common.
In contrast, the Cellpose algorithm accurately identified the vast majority of glomeruli,
and the output contour was close to GT. We also demonstrated the quantitative statistical
results, as shown in Figure 4g. The Dice and IoU values of the Stardist algorithm on
the test set were 0.875 ± 0.022 and 0.778 ± 0.036, respectively. The Mask R-CNN model
slightly outperformed Stardist and obtained Dice and IoU values of 0.888 ± 0.020 and
0.799 ± 0.033, respectively. The U-Net model outperformed the Stardist and Mask R-
CNN algorithms on the kidney dataset and had Dice and IoU values of 0.913 ± 0.018 and
0.840 ± 0.031, respectively. Compared with the above methods, the Cellpose model, which
employs spatial gradients as intermediate representations, achieved a significantly higher
segmentation performance, with Dice and IoU values of 0.938 ± 0.018 and 0.884 ± 0.031,
respectively. These results indicate that Cellpose showed a superior performance in kidney
glomeruli segmentation. However, the high segmentation performance came at the cost
of an extremely low reconstruction time. Even for a high-performance workstation, the
segmenting time of Cellpose for an image with a 2048 × 2048 pixel size reached 6.18 s,
which is unaffordable in the application of large-scale data. Therefore, optimization of the
reconstruction efficiency of Cellpose is direly needed.
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Figure 4. Quantitative comparison of advanced deep-learning-based segmentation methods on
glomeruli segmentation. (a) A typical image from the whole-kidney dataset. (b) The GT masks of
glomeruli (pink) are shown overlaid with the original image. (c–f) Segmentation results of different
methods on the image shown in (a). Scale bar, 400 µm. (g) The Dice and IoU scores of the U-Net,
Mask R-CNN, Stardist, and Cellpose methods. Correctly segmented glomeruli (true positive) are
colored in green. Extra (false positive) and missing glomeruli (false negative) are in colored red and
blue, respectively.

3.2. Comprehensive Optimization of FastCellpose for Rapid Image Segmentation

To accelerate the processing speed of the original Cellpose framework, we first op-
timized the network architecture and network deployment. Since a large network was
employed in the Cellpose framework, a series of issues including long training and infer-
ence time, large memory consumption, and overfitting would arise when directly applying
it to specific tasks. Therefore, we made the corresponding simplifications. Specifically, we
removed the style branches, as they were designed for simultaneously segmenting different
types of cellular images. Moreover, we modified the upsampling module. We employed
the deconvolution layer to replace the original interpolation-based upsampling layer and
a subsequent convolution layer, making the network more compact. More importantly,
we optimized the network width and depth parameters, as they are key parameters that
impact the overall performance of the network. In the U-Net-based network, the width
and depth of the network are determined by the number of base feature maps (denoted as
K) and the number of convolutional layers in each encoding/decoding unit (denoted as N),
respectively. Therefore, we investigated the comprehensive performance of the network
under different combinations of the K and N parameters. As shown in Table 1, the best
model was found with K and N values of 16 and 2, respectively.

Compared with the original Cellpose model, our lightweight network compressed the
network parameters by 92%, thus reducing the inference time and memory consumption by
67% and 78%, respectively. Moreover, as the overfitting problem was effectively suppressed,
our network achieved an even higher segmentation performance than the original large model
(Figure 5). The Dice and IoU scores were 0.947± 0.017 and 0.899± 0.031, respectively. Further-
more, we implemented our lightweight model using TensorRT (Nvidia). This optimization in
hardware deployment further accelerated the network inference time by 2.3 times, resulting
in an overall sevenfold speed improvement in the network inference stage.
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Table 1. Performance comparison of network architectures with different widths and depths.

Segmentation
Model

Architecture Parameters Performance

K N Trainable
Parameters Dice IoU Inference

Time

Model 1 32 4 6.60 × 106 0.938 ± 0.018 0.884 ± 0.031 1.50
Model 2 32 2 3.06 × 106 0.942 ± 0.015 0.891 ± 0.026 0.98
Model 3 16 4 1.62 × 106 0.936 ± 0.021 0.881 ± 0.037 0.91
Model 4 32 1 1.49 × 106 0.926 ± 0.017 0.863 ± 0.030 0.84
Model 5 16 2 0.56 × 106 0.947 ± 0.017 0.899 ± 0.031 0.68
Model 6 16 1 0.37 × 106 0.922 ± 0.017 0.856 ± 0.029 0.57
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mask reconstruction, as long as the network can accurately predict the horizontal and 
vertical gradients. Using this strategy, the heavy computational burden related to the 
gradient tracking process can be reduced effectively, leading to a higher processing speed. 
After systematic comparison, the downsampling scale factor was set as 2 (Table 2). 
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Figure 5. Segmentation results of different models. (a) A typical image from the whole-kidney
dataset. (b) The GT masks of glomeruli (pink) are shown overlaid with the original image.
(c–h) Segmentation results of different models on the image shown in (a). Scale bar, 400 µm. Correctly
segmented glomeruli (true positive) are colored in green. Extra (false positive) and missing glomeruli
(false negative) are colored in blue and red, respectively.

Another time-consuming step in the original Cellpose framework is the mask recon-
struction process, which accounts for 75% of the entire reconstruction time. To accelerate
this process, we proposed a novel strategy that performed gradient tracking on the down-
sampled network output image, and then upsampled the restored mask image to obtain
the final segmentation result. This was based on our finding that reducing the sizes of
the gradient maps within a certain range has a negligible impact on the results of mask
reconstruction, as long as the network can accurately predict the horizontal and vertical
gradients. Using this strategy, the heavy computational burden related to the gradient
tracking process can be reduced effectively, leading to a higher processing speed. After
systematic comparison, the downsampling scale factor was set as 2 (Table 2).

We demonstrated that the segmentation results obtained using this strategy achieved
similarly high Dice and IoU values (0.945 ± 0.016 and 0.894 ± 0.028) to the previous ones,
while the reconstruction speed was 3.5-fold higher than before. We also demonstrated that
if segmentation were to be performed directly on the downsampled original image, the
accuracy would be significantly reduced, with Dice and IoU values of only 0.810 ± 0.050
and 0.683± 0.068, respectively. This result demonstrated the superiority of our method. We
further optimized the reconstruction pipeline by combining hyperparameter optimization
and parallel computing, achieving a total 16-fold acceleration in the mask reconstruction
process. Using the FastCellpose framework, the network inference time and mask recon-
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struction time for an image with a 2048 × 2048 pixel size were only 0.22 s and 0.28 s,
respectively. The overall segmentation speed was 12 times faster than before. We demon-
strated a comparison of the performance of the FastCellpose method with other advanced
cellular segmentation methods, as shown in Table 3. The results show that our method
achieved the state-of-the-art level in either segmentation accuracy or efficiency.

Table 2. Segmentation performance under different downsampling scale factor.

Downsampling
Scale Factor

Segmentation Performance
Acceleration

Dice IoU

1 0.947 ± 0.017 0.899 ± 0.031 \
2 0.945 ± 0.016 0.894 ± 0.031 3.5-fold
3 0.931 ± 0.015 0.871 ± 0.026 8.0-fold
4 0.896 ± 0.016 0.812 ± 0.020 11.4-fold

Table 3. Performance comparison of FastCellpose with other existing methods of glomeruli segmentation.

Segmentation
Methods

Trainable
Parameters

Performance

Dice IoU
Network
Inference
Time (s)

Mask
Reconstruction

Time (s)

U-Net 2.96 × 106 0.913 ± 0.018 0.840 ± 0.031 0.88 \
Mask R-CNN 4.39 × 107 0.888 ± 0.020 0.799 ± 0.033 3.45 \

Stardist 1.43 × 106 0.875 ± 0.022 0.778 ± 0.036 0.81 4.05
Cellpose 6.60 × 106 0.938 ± 0.018 0.884 ± 0.031 1.50 4.68

FastCellpose 0.56 × 106 0.945 ± 0.016 0.894 ± 0.028 0.22 0.28

We segmented an 8-week-old mouse whole-kidney dataset using FastCellpose, as
shown in Figure 6.

The 3D visualization of the whole-kidney glomeruli segmentation result is demon-
strated in Figure 6a. We further selected four different coronal sections from the segmented
results for visual inspection (Figure 6b–e). It can be seen that, although the structure and
morphology of the kidney manifested significant differences at different coronal planes, the
FastCellpose model was able to accurately identify all the glomeruli in the image, and the
segmentation contour matched well with the edges of the glomeruli. To further validate the
accuracy of FastCellpose in whole-kidney glomeruli segmentation, we performed a study
involving professional nephrologists. In this blind study, we randomly selected 48 coronal
images with the corresponding segmentation results from the mouse whole-kidney dataset
to generate a test set. Three nephrologists independently evaluated the segmentation results
generated by FastCellpose and rated the quality (Figure 7). The statistical results showed
that all images had good segmentation quality, and over 90% of the segmentation results
were considered excellent. These results demonstrate that our FastCellpose framework has
the capability to automatically and accurately segment all glomeruli in an entire kidney.

We also counted the time consumption needed to segment the whole dataset on a
normal workstation. It took only 3.5 h for FastCellpose to segment a whole-kidney dataset
with 1.3 × 1.3 × 3 µm3 voxel resolution, demonstrating the high efficiency of the proposed
FastCellpose framework.
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different axial positions are demonstrated. Segmentation results (magenta) are shown overlaid with
the original data. Scale bar, 1000 µm; 200 µm for the enlarged image.
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by FastCellpose.

3.3. Quantitative Analysis of Glomerular Development

As there are significant differences in the morphology and structure of the kidneys
of mice of different ages, the base FastCellpose model obtained by using the training data
from an 8-week-old mouse kidney would not perform equally well on imaging data of
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other mouse kidneys at different development stages. An effective solution is to retrain
the network model for kidney imaging data of mice of different ages, but this would lead
to another problem: manually annotating raw imaging data is very time-consuming and
laborious. To circumvent this, we employed a human-in-the-loop approach. As shown
in Figure 8a, we first used the pretrained FastCellpose model to segment kidney datasets
of mice of different ages. Then, we manually checked and corrected the reconstructed
mask. The corrected annotations along with the original imaging data formed the new
training data. In this way, it only took 0.5 h to obtain new annotated training data, which
was 20 times less than traditional manual annotation from scratch (Figure 8b). We used
new training data to perform transfer learning on the pretrained model to obtain optimal
networks for the kidneys of mice of different ages.
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glomeruli increased rapidly from 3 days to 7 days, and after 2 weeks, the number of 
glomeruli no longer continued to increase (Figure 9c). The number of renal glomeruli in 
newborn mice is 1545 ± 210, while the total number of glomeruli in a mature mouse kidney 
reaches 15,095 ± 714. We also quantified the diameter distribution of the glomeruli. We 
observed that, at each stage of mouse kidney development, the diameter distribution of 
glomeruli exhibited a Gaussian distribution. In the kidneys of mice aged 0 days to 2 weeks, 
the vast majority of glomeruli were distributed in the range of 40 to 60 µm, while in the 

Figure 8. A human-in-the-loop approach for applying FastCellpose to accurately segment the kidney
datasets of different ages. (a) Schematic of the human-in-the-loop approach. (b) Annotation time of
the traditional (manual annotating from scratch) and the human-in-the-loop approach.

Figure 9 demonstrates the segmentation results of our method on mouse kidneys
at different development stages. The detailed information for each mouse whole-kidney
dataset is shown in Table 4. The 3D reconstruction results intuitively exhibit the overall
morphological changes during kidney development (Figure 9a). From the typical coronal
sections of the imaging data, it can be clearly seen that the glomeruli in mouse kidneys
of different ages can be accurately identified and segmented by our method (Figure 9b),
demonstrating the effectiveness of our method for the unbiased analysis of glomerular
development. After segmentation, we performed connected component analysis to obtain
the number and morphological parameters of glomeruli. We observed that the number
of glomeruli increased rapidly from 3 days to 7 days, and after 2 weeks, the number of
glomeruli no longer continued to increase (Figure 9c). The number of renal glomeruli in
newborn mice is 1545 ± 210, while the total number of glomeruli in a mature mouse kidney
reaches 15,095 ± 714. We also quantified the diameter distribution of the glomeruli. We
observed that, at each stage of mouse kidney development, the diameter distribution of
glomeruli exhibited a Gaussian distribution. In the kidneys of mice aged 0 days to 2 weeks,
the vast majority of glomeruli were distributed in the range of 40 to 60 µm, while in the
kidneys of mice aged 2 to 8 weeks, most glomeruli were distributed in the range of 60
to 80 µm. We also found that the average size of the glomeruli increased slowly during
kidney development. The average glomerular diameter of a kidney of a newborn mouse is
49.8 ± 3.6 µm. After 4 weeks of development, the glomerular size stops increasing at
63.0 ± 3.3 µm (Figure 9d). From these results, it can be deduced that the development
of glomeruli in the kidney is basically complete after 4 weeks. These results further
demonstrate the effectiveness of FastCellpose for the automatic and accurate analysis of
glomeruli, and the obtained quantitative analysis results are expected to promote further
study of kidney development.
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Figure 9. Glomeruli segmentation and analysis results of mouse kidneys of different ages. (a) Three-
dimensional visualization of the segmentation results of mouse kidneys at different development
stages. (b) Two-dimensional visualization of the segmentation results of mouse kidneys at different
ages. Segmentation results (magenta) are shown overlaid with the original data. Scale bar, 1000 µm;
100 µm for the enlarged image. (c,d) The development curves of the mouse glomeruli. The number
(c) and the average diameter (d) of glomeruli in mouse kidneys of different ages are exhibited.

Table 4. Detailed information on the mouse whole-kidney datasets.

Mouse Age (Days) Number of Datasets Number of Images
per Dataset Image Size

0 3 736 8497 × 11,712
3 3 852 10,997 × 15,616
7 3 1020 19,993 × 11,712
14 3 1248 22,993 × 17,568
28 3 1527 31,993 × 17,568
56 3 1584 33,996 × 19,520

3.4. FastCellpose for Neuronal Soma Segmentation

The success of FastCellpose for renal glomeruli segmentation motivated us to further
investigate the feasibility of FastCellpose for application in other tissues and organs. We,
therefore, tested it on neuronal soma segmentation, which is a crucial step in the quantitative
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analysis of neuronal morphology [41,42]. A Thy1-GFP mouse brain dataset was selected
for testing. The raw data were acquired by a fMOST system at a voxel resolution of
0.32× 0.32× 2 µm3. We trained the FastCellpose model by using randomly selected coronal
sections and the corresponding manually annotated data. After training, a typical image
stack (500 × 500 × 500 µm3) in the brain cortex was selected to validate the segmentation
performance of FastCellpose (Figure 10a).
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Figure 10. Application of FastCellpose in neuronal soma segmentation. (a) Three-dimensional
visualization of a typical raw imaging stack from the neocortex in a Thy1-GFP mouse brain.
(b) Segmentation results of FastCellpose for the imaging data are shown in (a). Segmentation
results (orange) are shown overlaid with the original data. (c) Two-dimensional visualization of the
segmentation results of different methods. Scale bar, 150 µm. (d) The Dice and IoU scores of the
methods are shown in (c).
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It can be seen that the neuronal somas were densely distributed in this small area,
and there were also interweaving neurites, making accurate segmentation very difficult.
Faced with such a complex scenario, our FastCellpose still performed well. The neuronal
somas of varying intensities and sizes were accurately identified and segmented, and the
interference signals were effectively removed (Figure 10b). We evaluated and compared the
performance of FastCellpose with other competitive methods (Figure 10c). Compared with
the existing cellular segmentation methods, our method achieved the best segmentation
accuracy; the Dice and IoU values were 0.904 ± 0.022 and 0.826 ± 0.037, respectively
(Figure 10d). Moreover, our method finished the segmentation of this data block in only
1.7 min, while the original Cellpose model took 20 min, further demonstrating the high
efficiency of FastCellpose.

4. Discussion and Conclusions

Here, we present FastCellpose for rapid and accurate segmentation of whole-kidney
glomeruli. Our framework was based on Cellpose, the most advanced cellular segmen-
tation algorithm at present, and overcame its limitations in processing large-scale data.
This was achieved by comprehensive optimization of the network architecture and the
mask reconstruction process. Our proposed lightweight network effectively suppressed
the risk of overfitting on specific segmentation tasks, achieving improved segmentation
accuracy compared to Cellpose and reducing the inference time by sevenfold. Moreover,
our optimized reconstruction pipeline significantly accelerated the time-consuming pro-
cess of gradient tracking, achieving a 16-fold improvement in mask reconstruction speed.
These improvements distinguish FastCellpose as a unique segmentation algorithm that can
rapidly process large-scale data while maintaining high segmentation accuracy.

Using FastCellpose, we segmented mouse whole-kidney glomeruli and analyzed
glomerular changes during the development process. These quantitative results, which
were difficult to obtain previously, will effectively promote our understanding of and
research into kidney development. Although a series of works based on traditional tech-
niques has been proposed for measuring the glomerular sizes and numbers in whole mouse
kidneys [7–9], these methods are prone to errors, and the obtained results are not very
reliable. For example, the total glomerular count for a healthy adult mouse, derived using
MRI and the watershed segmentation algorithm, was only 12,010 ± 447 [9], which deviates
significantly from our results. This is mainly because the inherent low resolution of MRI
and the low performance of the watershed algorithm led to a large number of glomeruli not
being correctly identified. In contrast, our pipeline, which incorporated the high-resolution
optical imaging technique and the high-performance deep-learning-based segmentation
algorithm, can provide more precise measurements, and the derived results can potentially
serve as a benchmark for mouse whole-kidney glomerular count. Therefore, we believe
that our approach has broad application potential in kidney research and may facilitate our
understanding of the mechanisms of kidney functions and diseases.

Besides whole-kidney glomeruli segmentation, we also demonstrated the effectiveness
of FastCellpose for brain neuronal soma segmentation, highlighting the versatility of our
method. Although our method is applicable to many types of cells, it should be worth
noticing that for cells with elongated morphology, such as neuronal fibers, our method
may yield unsatisfactory results. This is because the flow fields for the images of elongated
cells may have multiple sinks and result in over-segmentation after gradient tracking. This
problem is expected to be mitigated by introducing new intermediate representations such
as distance fields.

Overall, the presented FastCellpose framework is a promising approach for the rapid,
automated, and accurate analysis of whole-organ datasets. As biomedical research increas-
ingly requires unbiased explorations of whole organisms, we anticipate that our method
will be widely employed in many fields.
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