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Abstract: Visual perception plays a crucial role in foraging, avoiding predators, mate selection, and
communication. The regulation of color vision is largely dependent on opsin, which is the first step
in the formation of the visual transduction cascade in photoreceptor cells. Short-wave-sensitive 1
(sws1) is a visual pigment that mediates short-wavelength light transduction in vertebrates. The
depletion of sws1 resulted in increased M-opsin in mice. However, there is still no report on the visual
function of sws1 in teleost fish. Here, we constructed the sws1 knockout medaka using CRISPR/Cas9
technology. The 6 dph (days post-hatching) medaka sws1−/− larvae exhibited significantly decreased
food intake and total length at the first feeding stage, and the mRNA levels of orexigenic genes
(npy and agrp) were significantly upregulated after feeding. The swimming speed was significantly
reduced during the period of dark-light transition stimulation in the sws1-mutant larvae. Histological
analysis showed that the thickness of the lens was reduced, whereas the thickness of the ganglion cell
layer (GCL) was significantly increased in sws1−/− medaka larvae. Additionally, the deletion of sws1
decreased the mRNA levels of genes involved in phototransduction (gnb3b, grk7a, grk7b, and pde6c).
We also observed increased retinal cell apoptosis and oxidative stress in sws1 knockout medaka larvae.
Collectively, these results suggest that sws1 deficiency in medaka larvae may impair visual function
and cause retinal cell apoptosis, which is associated with the downregulation of photoconduction
expression and oxidative stress.

Keywords: sws1; food intake; visual development; medaka larvae

1. Introduction

The animal visual systems play vital roles in foraging, avoiding predators, mate
selection, and communication [1]. In vertebrates, the retina is a multilayered tissue whose
photoreceptor cells express opsin genes that are the core of vision at the molecular level [2].
Compared with other vertebrates, teleost fish have a unique set of visual opsins [3–5].
In fish, UV (short-wavelength sensitivity 1: sws1), blue (short-wavelength sensitivity 2:
sws2), green (medium-wavelength sensitivity: rh2), and red (long-wavelength sensitivity:
lws) opsins are expressed in cones and mediate color perception under strong light, and
rod opsin (rh1) is expressed in rod cells and plays a role in dim light [6,7]. Some species
have only a subset of these photopigment types, while others have multiple copies. Fish
typically have fewer copies of short-wavelength-sensitive opsin (sws1 and sws2) than
long-wavelength-sensitive opsin genes, and sws1 does not appear to have been ancestrally
duplicated in teleost fish [8].

sws1 belongs to the G-protein-coupled receptor family, and is highly expressed in
planktonic fish owing to its ability to enhance ultraviolet light sensitivity [9,10]. To date,
most fish studied have the SWS1 pigment, although many fish lose SWS1 (UV-sensitive)
with maturity. This heterochronous expression may cause changes in spectral sensitivity,
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thereby adjusting the visual system of fish to adapt to environmental spectra [11,12]. For
instance, African cichlid fishes that feed on zooplankton, algae, and phytoplankton display
higher levels of sws1 expression than those that feed on fish or benthic invertebrates [13].
In mice, the disruption of sws1 resulted in the increased expression of M-opsin but did
not cause retinal degeneration [14]. Recently, it was demonstrated that sws1 deletion
not only led to head and eye malformations but also retinal developmental defects in
rainbow trout [15]. However, little is known about the relationship between sws1 and
visual dysfunction in fish larvae.

The teleost fish, medaka (Oryzias latipes) is an excellent model organism for the in-
vestigation of visual development and function [16,17]. Medaka has outstanding vision
and still retains all four of the ancient pyramidal subtypes of vertebrates [18,19]. In the
present study, we constructed sws1 knockout medaka using CRISPR/Cas9 technology. We
identified a sws1 mutant zebrafish line with a 214 bp deletion, which resulted in a frameshift
and premature stop codon. We further explored the visual function of sws1 in larvae.

2. Results
2.1. Generation of sws1 Knockout Medaka

We detected the expression pattern of sws1 in medaka. Sws1 was mainly expressed in
the eye among adult tissues, and further RT-qPCR analysis showed that sws1 expression
was significantly higher in adult tissues than in larval tissues (Figure S1). Subsequently, we
used the CRISPR/Cas9 technique to generate sws1 mutant lines and better understand the
function of sws1 during medaka larval development. The sws1−/− larvae line with 214 bp
deletion (sws1−/−) in the 7-tm_1 domain resulted in frameshift and premature stop codon
(Figure 1A,B). Compared with the WT, the sws1−/− larvae showed a normal survival rate
and morphology at 6 dph (Figure S2). In situ hybridization analysis revealed that sws1
expression was significantly diminished in the sws1−/− larvae (Figure 1C). The mRNA
levels of sws1 (p = 0.003), sws2a (p = 0.041), sws2b (p = 0.016), and rh2-b (p = 0.044) were
down-regulated in the sws1−/− mutant medaka at 6 dph (Figure 1D).
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Figure 1. Establishment of sws1-knockout medaka. (A) Sws1 gene and target sites of CRISPR/Cas9.
Sws1 consists of 5 exons (filled box). The sgRNA targets exon 1 and purple boxes indicate the sgRNAs
targets, and red boxes indicate the sequences of sgRNA targets. DNA sequencing showing the
sws1 mutant lines (sws1 ∆214). (B) Comparison of sws1 ∆214 mutant with wild-type SWS1 protein
structure. (C) In situ hybridization showing the expression patterns of sws1 in WT and sws1−/−

medaka. Scale bar: 50 µm. (D) Relative mRNA expression of opsin genes in WT and sws1−/− mutant
medaka in the larval eyes at 6 dph. All data are expressed as means ± S.E.M (n = 6). * p < 0.05 per
Student’s t-test.
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2.2. Decreased Food Intake in the Larvae of sws1 Knockout Medaka

To assess feeding capacity in sws1−/− medaka, we tested the food intake at 6 dph
of the sws1 mutant and WT. The results showed that there was significantly decreased
food intake in the sws1−/− medaka compared with the WT medaka at 6 dph (p < 0.001)
(Figure 2A,B). Subsequently, we continued to analyze growth performance at the first-
feeding stage. There was reduced growth compared with the WT within seven days of
first feeding (p < 0.05) (Figure 2C). The relative expression levels of orexigenic genes (npy
(p = 0.034) and agrp (p = 0.012)) in sws1−/− mutant larvae were significantly increased after
feeding (Figure 2D,E). No difference in the mRNA levels of the anorexigenic gene (pomc)
was observed between the WT and sws1−/− medaka (p > 0.05) (Figure 2F).

Cells 2023, 12, x FOR PEER REVIEW 3 of 12 
 

 

medaka in the larval eyes at 6 dph. All data are expressed as means ± S.E.M (n = 6). * p < 0.05 per 
Student’s t-test. 

2.2. Decreased Food Intake in the Larvae of sws1 Knockout Medaka 
To assess feeding capacity in sws1−/− medaka, we tested the food intake at 6 dph of 

the sws1 mutant and WT. The results showed that there was significantly decreased food 
intake in the sws1−/− medaka compared with the WT medaka at 6 dph (p < 0.001) (Figure 
2A,B). Subsequently, we continued to analyze growth performance at the first-feeding 
stage. There was reduced growth compared with the WT within seven days of first feeding 
(p < 0.05) (Figure 2C). The relative expression levels of orexigenic genes (npy (p = 0.034) 
and agrp (p = 0.012)) in sws1−/− mutant larvae were significantly increased after feeding 
(Figure 2D,E). No difference in the mRNA levels of the anorexigenic gene (pomc) was 
observed between the WT and sws1−/− medaka (p > 0.05) (Figure 2F). 

 
Figure 2. Analysis of WT and sws1−/− medaka larval feeding. (A) Feeding assay of WT and sws1−/− 
medaka using Artemia at 6 dph. Scale bar: 500 µm. (B) Quantification of the food intake between WT 
and sws1−/− medaka larvae (n = 6/group). (C) Total length measurements of medaka within seven 
days of first feeding (n = 20/group); d, day. The transcriptional levels of orexigenic genes (npy (D) 
and agrp (E)) and anorexigenic gene (pomc (F)) in WT and sws1−/− medaka larvae (n = 10/group, with 
6 replicates). Results are shown as mean ± SEM. * p < 0.05. ns, not significant per Student’s t-test. 

2.3. sws1 Deficiency in Larvae Affected Retinal Lamination and Reduced Expression of 
Phototransduction Genes 

In order to characterize the retina in medaka sws1−/−, we performed histological 
analysis using hematoxylin–eosin (H&E) staining. The thickness of the lens in the sws1−/− 
larvae was significantly reduced (p = 0.018), whereas the thickness of the ganglion cell 
layer (GCL) was significantly increased (p < 0.023). The results showed no significant 
change in the thickness of the inner plexiform layer (IPL), inner nuclear layer (INL), outer 
nuclear layer (ONL), outer segment (OS), and retinal pigment epithelium (RPE) between 
the WT and sws1−/− mutant larvae (p > 0.05) (Figure 3). In addition, we found that the 
transcript levels of genes involved in phototransduction (gnb3b (p = 0.015), grk7a (p = 0.019), 
grk7b (p = 0.025), and pde6c (p = 0.019)) also decreased in the sws1−/− mutant larvae (Figure 
4C–F). 

Figure 2. Analysis of WT and sws1−/− medaka larval feeding. (A) Feeding assay of WT and sws1−/−

medaka using Artemia at 6 dph. Scale bar: 500 µm. (B) Quantification of the food intake between WT
and sws1−/− medaka larvae (n = 6/group). (C) Total length measurements of medaka within seven
days of first feeding (n = 20/group); d, day. The transcriptional levels of orexigenic genes (npy (D)
and agrp (E)) and anorexigenic gene (pomc (F)) in WT and sws1−/− medaka larvae (n = 10/group,
with 6 replicates). Results are shown as mean ± SEM. * p < 0.05. ns, not significant per Student’s
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2.3. sws1 Deficiency in Larvae Affected Retinal Lamination and Reduced Expression of
Phototransduction Genes

In order to characterize the retina in medaka sws1−/−, we performed histological
analysis using hematoxylin–eosin (H&E) staining. The thickness of the lens in the sws1−/−

larvae was significantly reduced (p = 0.018), whereas the thickness of the ganglion cell layer
(GCL) was significantly increased (p < 0.023). The results showed no significant change in
the thickness of the inner plexiform layer (IPL), inner nuclear layer (INL), outer nuclear
layer (ONL), outer segment (OS), and retinal pigment epithelium (RPE) between the WT
and sws1−/− mutant larvae (p > 0.05) (Figure 3). In addition, we found that the transcript
levels of genes involved in phototransduction (gnb3b (p = 0.015), grk7a (p = 0.019), grk7b
(p = 0.025), and pde6c (p = 0.019)) also decreased in the sws1−/− mutant larvae (Figure 4C–F).
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of the retina with H&E staining. Scale bar: 40 µm. (B) The thickness of lens, GCL, IPL, INL, ONL, OS,
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outer nuclear layer; OS&RPE, outer segment and retinal pigment epithelium. Error bars represent
SEM, and asterisks indicate * p < 0.05 per Student’s t-test.
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2.4. Disruption of sws1-Impaired Medaka Larvae Swimming Behavior

Next, we performed a photoperiod stimulation test at 6 dph for WT and sws1−/−

mutant larvae. Compared with the WT, the sws1−/− larvae displayed a decrease in swim-
ming speed during periods of dark-light and light-dark transition stimulation (p < 0.05)
(Figure 5).
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2.5. Induced Oxidative Stress in sws1-Deficient Medaka Larvae

To evaluate the oxidative stress activities in medaka larvae, the activities of total
superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and
malondialdehyde (MDA) were detected. Compared with the WT larvae, CAT activity and
GSH-Px content were not significantly changed, but the T-SOD activity was significantly
reduced (p = 0.007) (Figure 6A–C). Meanwhile, we observed an MDA content in the sws1−/−

mutant larvae that was dramatically increased (p < 0.001) (Figure 6D).
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2.6. Depletion of sws1 Led to Retinal Cell Apoptosis in Medaka Larvae

To investigate whether apoptosis activation mediates the effects of visual function in
medaka larvae, apoptosis was assessed in the WT and sws1−/− larvae at 6 dph. There were
few TUNEL-positive cells in the WT retinas. In comparison, the sws1−/− mutant larvae
had significantly more apoptotic cells in the eye (p = 0.045) (Figure 7A,B). Caspase-9 is a
relatively upstream caspase in apoptotic signaling [20]. At 6 dph, the activity of caspase-9
in the sws1−/− medaka larvae was found to be higher than that in the WT larvae (p = 0.005
(Figure 7C).
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3. Discussion

In this study, we created a medaka mutant line with a 214 bp deletion via CRISPR/Cas9
gene editing technology. The deletion caused the loss of seven transmembrane domain
1 (7-tm_1). We observed that the knockout of sws1 caused impaired feeding ability and
hypoactivity in the first feeding stage. Histological analysis and subsequent experiments
indicated that impaired feeding ability and hypoactivity might be the causes of the affected
retinal structures and downregulation of phototransduction related genes. We further
found that sws1−/− individuals had reduced resistance to oxidative stress and increased
apoptosis in the larval eye.

Visual perception is the main sensory way for fish larvae to detect and capture prey [21].
Fish with photopic vision utilize more cones, whereas those with scotopic vision, or dark-
adapted eyes (twilight vision), use rods [22]. Ultraviolet vision plays a crucial role in
identifying zooplankton because UV light scatters in water bodies, while near-transparent
zooplankton absorb UV light in contrast [23,24]. The UV-sensitive opsin (sws1) expressed
by UV cones is sensitive to UV light, and its expression level determines the sensitivity
of UV cones [25]. Flamarique [9] treated young rainbow trout with thyroid hormone,
resulting in the reduction in single cone cells expressing sws1 mRNA in the retina and
the reduction in sensitivity to zooplankton. Similarly, the tbx2b zebrafish mutant with
reduced UV cones also found zooplankton with a smaller mean positional distance and
angle than wild zebrafish [26]. Yoshimatsu et al. [27] further revealed that the UV cone is
the main input of the visual predator–prey circuit of zebrafish larvae through two-photon
imaging in vivo, transcriptome, and computational models. In sws1 knockout medaka,
food intake was shown to be significantly reduced, accompanied by slow growth during
the first feeding phase (Figure 2A–C). Correspondingly, the appetite–orexigenic genes (npy
and agrp) were significantly upregulated after feeding in the sws1 mutants (Figure 2D,E).
Our explanation is that the sws1−/− mutant larvae have an impaired feeding ability and
still do not reach satiation after half an hour of feeding compared with the WT, so their
appetitive genes are still upregulated. Numerous studies have implicated npy and agrp in
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the regulation of appetite and food intake in teleosts [28–30]. In mice, the NPY+ and AgRP+

signals in the hypothalamic arcuate nucleus (ARC) in the fasting group were significantly
stronger than those in the feeding group [31]. Our result is consistent with the expression
of npy and agrp during fasting. The mediating and integrating role of sws1 in feeding and
appetite needs to be investigated in further studies.

The retina is a highly complex tissue structurally composed of three layers of nerve cell
bodies (ONL, INL, and GCL) and two layers of synapses (OPL and IPL) [32]. In each layer,
there are specific cells with varied physiological functions. An important retinal neuron
is the GCL, which connects the retina to the optic tectum in the brain [33]. Histological
results showed that the thickness of the GCL was significantly increased, whereas the lens
became thinner in the sws1−/− mutant larvae (Figure 3), which may have led to impaired
visual function [34]. The spectral specificity of visual pigments is determined via the opsin
synthesized by cones and rods in the ONL [35]. Here, there was no obvious histological
damage in the ONL, indicating that it is likely a molecular effect. Our quantification showed
that the transcription levels of sws1, sws2a, sws2b, and rh2-b were significantly decreased in
sws1−/− mutant larvae (Figure 1D). Opsin accumulation in photoreceptors may be reduced
as transcription levels of opsin genes decline [36]. In addition, many previous studies have
suggested that photoreceptor defects may lead to the decreased sensitivity of fish larvae to
light stimulation [37–39].

Subsequently, we tested the sensitivity of the fish larvae to light stimulation, and we
discovered that the sws1−/− larvae showed a reduction in swimming speed compared with
the WT larvae in the light/dark behavior test (Figure 5). The light/dark cycle is considered
to be the main factor that entrains the biological rhythm of teleosts through its influence
on feeding physiology and gene expression [40–42]. Studies have shown that both clock
genes and feeding behavior exhibit a circadian pattern [43]. Rods, cones, and melanopsin
are the only photoreceptors that contribute to circadian light entrainment [44]. Therefore,
sws1 loss may affect circadian photoentrainment. In addition, intrinsic photosensitive
retinal ganglion cells (ipRGCs) are also involved in regulating circadian photoentrainment,
whereas ipRGCs reside in the GCL [45,46]. In this study, changes in the thickness of ganglion
cells may also have affected circadian photoentrainment. Furthermore, the genes gnb3b,
grk7a, grk7b, and pde6c, which are associated with phototransduction, were downregulated
in sws1−/− mutant medaka at 6 dph (Figure 4). In phototransduction, opsin converts
optical signals into electrical signals by generating electrochemical signals from captured
photons via pigments and intracellular mechanisms [2,47]. Gnb3b, grk7a, grk7b, and pde6c
form the downstream phototransduction pathway of cone opsin [48,49]. In zebrafish,
gnb3b disruption exhibited aberrant cone photoreceptor formation [50]. It was also found
that grk7a-knockdown larvae had slower photoresponse recovery and that their temporal
contrast sensitivity was reduced [51]. Also, similar results were observed in pde6c zebrafish
mutant larvae [52]. In addition, it has been reported that the thinning of the GCL prevents
electrical signals from being transmitted to the central nervous system [53,54]. Therefore,
the decreased activity of the sws1−/− mutant larvae may have mainly been due to impaired
retinal light signal reception and transmission.

Our study further found that the absence of sws1 reduced the resistance of larvae to
oxidative stress. The levels of CAT and GSH-Px in the WT and sws1−/−mutant larvae were
not statistically significantly different (Figure 6B,C). These results suggested that CAT and
GSH-Px may not be involved in antioxidation to sws1 in medaka larvae. The T-SOD activity
and MDA content in the sws1−/− mutant larvae were significantly altered (Figure 6A,D),
demonstrating that sws1 disruption caused oxidative damage. Excess free radicals lead
to the overproduction of MDA, a lipid peroxidation product that indicates the severity
of oxidative stress [55]. On the other hand, oxidative stress is one potential factor in the
cellular apoptosis process. Oxidative stress releases mitochondrial cytochrome c, which
activates apoptogenic proteins [56,57]. The loss of sws1 led to retinal cell apoptosis in
medaka larvae (Figure 7A,B). Additionally, caspase (cysteine-requiring aspartate protein)
is a protease family that plays an important role in the process of cell apoptosis, and
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caspase-9 is the initiator of apoptosis signal transduction [58–60]. In our study, the activity
of caspase-9 in the sws1−/− medaka larvae was significantly increased compared with the
wild-type medaka (Figure 7C), suggesting that the deletion of sws1 resulted in the activation
of caspase-9. Our characterization of retinal cell apoptosis in sws1 genes is similar to that of
Blanch et al. [61]. Moreover, previous studies have shown that eye development defects in
zebrafish larvae are caused by the apoptosis of neuronal progenitor cells in the eye [62].
Therefore, we speculated that the abnormal development of the eye in the sws1−/− mutant
larvae is also related to the increased level of apoptosis.

In summary, we revealed an essential role of sws1 in vision-guided behavioral al-
teration and visual development. Our results implicate sws1 signaling as a regulator
of reactions to prey capture and light–dark transitions in larval medaka, with sws1−/−

medaka larvae showing decreased food intake and swimming speed during the period
of dark–light and light–dark transition stimulation. As another new discovery, we ob-
served microphthalmia and increased retinal cell apoptosis in sws1 knockout medaka
larvae, which may have been related to oxidative stress. Our results provide insights into
understanding the mechanisms of sws1 mutation-mediated vision-guided behavioral and
visual developmental alteration in medaka.

4. Materials and Methods
4.1. Medaka Lines and Maintenance

The wild-type medaka is an orange strain, which was kept at 26–28 ◦C and a 14 h
light/10 h dark cycle. Medaka embryos were raised at 28 ◦C in medaka embryo medium
(MEM) [63]. Larvae at 6 days post-hatching (dph) were given live Artemia twice daily
after the yolk sac had almost been consumed. All medaka protocols were approved by the
Institutional Animal Care and Use Ethics Committee of Huazhong Agricultural University
(approval reference number HZAUFI-2020-0024).

4.2. Generating sws1−/− Mutants Using CRISPR/Cas9 Technology

The single-guide RNAs (sgRNAs) of medaka sws1 (ENSORLG00000019293) gene were
designed using CCTOP web (https://cctop.cos.uni-heidelberg.de/). The sequences of
single-guide RNAs (sgRNAs) and PCR primers are shown in Supplementary Table S1.
sgRNAs were cloned into pMD-18T vector and were synthesized using TranscriptAid T7
High Yield Transcription kit (Thermo, Scientific, San Diego, CA, USA). The compounds
of sgRNAs (50 ng/µL) and Cas9 protein (NEB, Ipswich, MA, USA) were coinjected into
one-or two-cell stage wild-type embryos. The F0 medaka were outcrossed with the wild
type to generate F1 medaka. The target region was amplified using ordinary PCR with
sws1 test-F and sws1 test-R. The reaction conditions were 95 ◦C for 30 s, 60 ◦C for 30 s, and
72 ◦C for 30 s for 40 cycles. We detected that the sws1 mutation type is a large deletion,
and we could preliminarily judge whether the F1 generation was a heterozygous mutant
using PCR. Then, the mutation type was determined via sequencing. The F1 heterozygous
with the same mutation in-crossed to obtain F2 homozygous, and all experiments were
conducted with F3 homozygous.

4.3. Histological Assessment, In Situ Hybridization (ISH), and TUNEL Staining

Whole medaka at 6 dph were preserved in 4% paraformaldehyde solution (PFA) for
24 h, dehydrated in 70–100% ethanol, embedded in paraffin, and sectioned in thicknesses
of 4 µm (Leica, Wetzlar, Germany). Then, the sections were stained with (H&E) according
to standard protocols. The slides were imaged via slice digital scanning (Pannoramic250,
Pannoramic250 MIDI, 3D HISTECH). The thickness of each retinal layer in right eye was
measured using ImageJ 1 software according to the Chen et al. method [37].

For in situ hybridization (ISH), the 6 dph sections hybridized with the DIG-labeled
RNA probes (Roche, Basel, Switzerland) at 65 ◦C for 12–16 h and the hybridization signals
were visualized with nitroblue etrazolium chloride (NBT)/5-bromo-4-chloro-3-indolyl
phosphate (BCIP) (NBT/BCIP) (Sigma, Cibolo, TX, USA) staining, as described in our
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previous study [64]. The signals from the right eye of the larvae were observed un-
der an optical microscope (Olympus, Tokyo, Japan). The probes primers are listed in
Supplementary Table S1.

A TUNEL staining kit (catalog no. G1501) (Servicebio, Wuhan, China) was used
to identify apoptotic cells in the medaka 6 dph sections, following the manufacturer’s
instructions. The TUNEL-positive cells on the slides were observed using a fluorescence
microscope (NIKON ECLIPSE C1, Tokyo, Japan), and the quantification of TUNEL-positive
cells was performed by manually counting the number of positively labeled cones in
the retina.

4.4. Light/Dark Behavior Analysis

Light/dark behavioral tests were conducted between 15:00 and 17:00 using a Danio-
Vision Observation Chamber (Noldus Information Technology, Wageningen, The Nether-
lands) linked to Etho Vision XT13 software. The 6 dph larvae were plated into a 24-well
plate (diameter 1.56 cm wells) with 1 mL of MEM (individual larvae per 24-well plate). The
larvae were acclimated for 10 min at 28 ◦C, and the larval locomotor activity was tested in
response to dark–light conversion (3 min light/3 min dark/3 min light/3 min dark) based
on the protocol by Huang et al. [65] with some modifications. The average swimming
speed (cm/s) for each individual larva was collected every 60 s, and each experiment
was repeated 3 times. Further analysis was performed using custom Open Office Org
2.4 software.

4.5. Larvae Feeding Assays

For larvae food intake, 6 dph larvae were fed with Artemia in wells of a 6-well plate
with 8 mL of MEM (diameter 3.48 cm wells) for 30 min (6 larvae per 6-well plate). Then, lar-
vae were anesthetized with MS-222 and some larvae were fixed with 4% PFA overnight for
food intake analysis, and others were frozen with liquid nitrogen for quantitative analysis
of appetite genes. The orange area of Artemia in the digestive tract was photographed using
a stereomicroscope and measured with Image J 1 software. The amount of food ingested
by medaka larvae was determined following the procedure described previously [66].

4.6. Growth Performance and Survival Rate

For the growth performance and survival rate, 6 dph larvae were fed with abundant
Artemia twice daily for 7 days. Twenty WT and sws1−/− medaka larvae were randomly
selected, anaesthetized, and fixed with 4% PFA for total-length measurement using Image
J1. The experiment was repeated 3 times.

4.7. Biochemical Analyses and Caspase Activity Assay

The homogenate (20%) of larvae (n = 100/group) from each replicate was centrifuged at
8000 rpm at 4 ◦C for 10 min, and the supernatant was collected for subsequent analysis. The
total superoxide dismutase (T-SOD) activity, catalase (CAT) activity, glutathione peroxidase
(GSH-Px) content, and malondialdehyde (MDA) content were measured with commercially
available kits (T-SOD assay kit (catalog no. A001-1-2), CAT assay kit (catalog no. A007-1-
1), GSH-Px assay kit (catalog no. A005-1-2), and MDA assay kit (catalog no. A003-1-2))
purchased from Jian-cheng Institute of Biotechnology (Nanjing, China) and the caspase-9
activity was detected with a Caspase-9 Activity Assay Kit (catalog no. C1157) (Beyotime,
Haimen, China) according to the manufacturer’s instructions.

4.8. RNA Isolation and Quantitative RT-PCR

All fish were sampled in the light phase of the light/dark cycle. The adult fish tissues
(n = 3 individuals) and 6 dph larval eyes (n = 6 individuals) were collected and frozen
in liquid nitrogen. Total RNA was extracted from each sample according to the RNAiso
instructions and the cDNA reverse-transcribed using a HiScript® III 1st Strand cDNA
Synthesis Kit (Vazyme, Nanjing, China). Quantitative RT-PCR was performed with ChamQ
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universal SYBR qRT-PCR master mix (Vazyme, Nanjing, China) on a CFX 96 Touch System
(Bio-Rad, Hercules, CA, USA). The data were collected using the 2−∆∆Ct value method
and normalized to β-actin [67]. The primers of opsin genes and phototransduction-related
genes are set in Table S2, and the primers of appetite genes were carried out as described
previously [68].

4.9. Statistical Analysis

All results are presented as means ± standard error of the mean (S.E.M), and the
normality of the data was first tested using the Shapiro–Wilk test. The differences were
analyzed using Student’s t-test, and differences were considered significant at p < 0.05. All
statistical analyses were carried out using IBM SPSS Statistics 25 software.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12172157/s1, Figure S1: The expression pattern of sws1 in
medaka; Figure S2: The survival and morphology of WT and sws1−/− medaka larvae; Table S1: The
primers used for CRISPR/Cas9; Table S2: The primers for qRT-PCR.
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