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Abstract: Breast cancer treatment can be improved with biomarkers for early detection and indi-
vidualized therapy. A set of 86 microRNAs (miRNAs) were identified to separate breast cancer
tumors from normal breast tissues (n = 52) with an overall accuracy of 90.4%. Six miRNAs had
concordant expression in both tumors and breast cancer patient blood samples compared with the
normal control samples. Twelve miRNAs showed concordant expression in tumors vs. normal
breast tissues and patient survival (n = 1093), with seven as potential tumor suppressors and five as
potential oncomiRs. From experimentally validated target genes of these 86 miRNAs, pan-sensitive
and pan-resistant genes with concordant mRNA and protein expression associated with in-vitro
drug response to 19 NCCN-recommended breast cancer drugs were selected. Combined with in-
vitro proliferation assays using CRISPR-Cas9/RNAi and patient survival analysis, MEK inhibitors
PD19830 and BRD-K12244279, pilocarpine, and tremorine were discovered as potential new drug
options for treating breast cancer. Multi-omics biomarkers of response to the discovered drugs were
identified using human breast cancer cell lines. This study presented an artificial intelligence pipeline
of miRNA-based discovery of biomarkers, therapeutic targets, and repositioning drugs that can be
applied to many cancer types.

Keywords: microRNA; breast cancer diagnosis; CRISPR-Cas9/RNAi; artificial intelligence; drug
discovery; repositioning drugs; drug response

1. Introduction

Breast cancer is the most common female cancer worldwide and accounts for 30%
of new cancer cases for women each year in the United States. Despite the advances in
breast cancer treatment, global breast cancer-related deaths are estimated to total 684,996 in
2020 [1]. The majority of fatalities from breast cancer are caused by metastatic disease. Some
key unmet clinical needs for breast cancer treatment include: (1) Early detection: Since early
identification enhances the likelihood of effective treatment, improved approaches for early
detection of breast cancer are required, including more precise and accessible screening
tools using minimally invasive liquid biopsies. (2) Precision medicine: It is essential to
develop treatment strategies that are specifically tailored to the molecular features of each
patient’s tumor. Although multiple breast cancer prognostic gene signatures [2–4] and
molecular subtypes [5] have been applied in clinics, it is possible to enhance treatment
outcomes and reduce unnecessary procedures by identifying biomarkers and creating
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targeted therapies utilizing current multi-omics techniques. (3) Metastatic and triple-
negative breast cancer (TNBC): TNBC is the most aggressive breast cancer subtype with
limited treatment options [6]. The 5-year survival rate of metastatic breast cancer remains
low at 28%, in contrast to 86% to 99% for women with localized or regional breast cancer [7].
Refractory patients with failed prior therapies are generally put in hospice care. Developing
more effective treatment strategies, including new and repositioning drugs, is important to
prevent and treat metastatic breast cancer.

MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expres-
sion and activate translation under certain circumstances. The dynamic interaction between
miRNAs and their target genes is dependent on numerous factors, including miRNA sub-
cellular location, target mRNA abundance, and miRNA-mRNA interaction affinity [8].
In addition to miRNA-target mRNA dynamics, alterations in miRNA-induced silencing
complex (miRISC) localization in response to fluctuations in cellular environments, such as
stress induced by heat shock and translation inhibition and serum starvation, can also affect
miRNA activity and intracellular miRNA levels [9,10]. Extracellular miRNAs, enclosed
and transported by exosomes, mediate cell-cell communication [11]. Both intracellular and
extracellular miRNAs are pivotal in biogenesis, cellular signaling cascades, and numerous
human diseases including cancer [12,13].

The investigation of miRNA expression and its implications in carcinogenesis has
garnered significant attention within the field of cancer biology. For instance, several
cancer-related pathways are regulated by miRNA, including apoptosis, differentiation,
proliferation, and stem cell maintenance [14]. The utilization of miRNAs as biomarkers
in cancer diagnostics has gained substantial attention, holding potential superiority over
mRNAs in this context. First, the distinct miRNA expression profiles observed in different
tissues and tumor types highlight the significant role they play in cancer diagnostics [15].
For example, Iorio et al. [16] identified a set of 15 miRNAs that were able to distinguish
normal breast tissue from breast tumor samples with 100% accuracy. Researchers also noted
differential miRNA expression based on various clinicopathologic features of the breast
tumor samples such as estrogen and progesterone receptor status, positive lymph node
metastasis, or higher proliferation indices. Additionally, researchers were able to classify
the estrogen receptor status in 93 primary breast tumor samples [17]. Using this miRNA
expression data and an independent test set of samples, this study also was able to classify
basal-like and luminal A tumors according to their molecular subtype classification. Second,
miRNAs can be isolated from a variety of samples in which mRNA extraction is usually
difficult or unsuccessful such as formalin-fixed paraffin-embedded samples and serum or
plasma samples [18–20]. A unique feature of miRNAs is their presence in biofluids, such
as serum, plasma, saliva, and amniotic fluid [21]. A set of 26 miRNAs were identified in
plasma samples that can separate normal and breast cancer patients [22]. Multiple breast
cancer-derived exosomal miRNAs showed promise as liquid biopsy biomarkers to predict
metastasis [23].

A single miRNA can regulate a broad spectrum of target protein-coding genes and
subsequently direct entire cellular signaling pathways. Thus, modest changes in miRNAs
can affect complex genetic, transcriptional, and translational networks, offering efficient
therapeutic approaches in addition to diagnostic potential [24]. Despite the emerging op-
portunities, miRNA-based drugs need to overcome several technical difficulties, including
the selection of appropriate delivery routes, management of in-vivo stability, targeting of
specific tissues and cell types, and achievement of the desired intracellular effects [25]. Due
to these practical challenges, there are currently no miRNA drugs for treating breast cancer.
Efficient artificial intelligence (AI)/machine learning (ML) pipelines are needed to utilize
miRNA/mRNA/protein expression data for effective screening of chemical compounds to
identify new and repositioning drugs for breast cancer treatment.

The objective of this study is to identify relevant miRNAs shown to be differentially
expressed in samples from breast cancer patients versus those from normal patients. By
employing bioinformatics tools and statistical analyses, we sought to determine a select
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group of miRNA biomarkers that may be clinically useful in the diagnosis and prognosis of
breast cancer. From the set of identified miRNA biomarkers, their experimentally validated
target genes were selected for further analysis. Among these miRNAs and their target genes,
pan-sensitive and pan-resistant biomarkers to 19 National Comprehensive Cancer Network
(NCCN)-recommended drugs for treating breast cancer were identified. The proliferation
potential of the target genes was assessed using public CRISPR-Cas9/RNAi screening data
in Cancer Cell Line Encyclopedia (CCLE) human breast cancer cells. Potential new and
repositioning drugs were discovered for treating breast cancer based on miRNA-regulated
mRNA expression signature using Connectivity Map (CMap) [26,27]. Patient responders
and non-responders to these potential new drug options were characterized by concordant
mRNA/protein expression, non-silent mutations, and gene fusions in the genome-scale
analysis of CCLE human breast cancer cell lines.

2. Materials and Methods
2.1. Patient Samples

The patient tissue samples consisted of snap-frozen breast tumors and normal breast
tissue samples, which were stored at a temperature of −80 ◦C. Frozen patient blood samples
collected in EDTA blood tubes were also stored at −80 ◦C until further use. All patient
identifying information was removed from the pathology reports of the samples while
retaining important details such as cancer stage, tumor grade, and histology. West Virginia
University (WVU) Tissue Bank (Morgantown, WV), WVU Mary Babb Randolph Cancer
Center (MBRCC) Biorepository, and the Cooperative Human Tissue Network (CHTN) were
the providers of the de-identified patient tissue samples for this study. Comprehensive
patient clinical information can be found in Table 1.

Table 1. Clinical information of patient samples used in this study.

Clinical Information Sample Size (N)

Cancer Stage
Ductal carcinoma in situ (DCIS) 1
1 8
2 22
3 12
4 2
Normal 7

Age
<60 27
60–80 17
>80 3
Missing 5

Tumor Grade
1 3
2 13
3 25
Missing 11

Histology
Ductal adenocarcinoma 1
In situ carcinoma 1
Invasive ductal carcinoma 35
Invasive lobular carcinoma 3
Metaplastic carcinoma 1
Mucinous carcinoma 1
Normal tissue 7
Predominantly lobular 1
Spindle cell sarcoma 1
Missing 1
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A published patient cohort from Iorio et al. [16] was used as an external validation set.
This cohort contained 368 miRNA profiles quantified with microarray chips (KCI version
1.0) of seven normal breast tissue samples and 76 neoplastic breast tissue samples. The raw
miRNA microarray data were available at EMBL’s European Bioinformatics Institute (EBI)
with the accession number E-TABM-23.

2.2. RNA Isolation and Quality Assessment

From the frozen breast cancer tumors and normal breast tissue samples, total RNA
was extracted using the mirVana miRNA Isolation kit following the manufacturer’s initial
protocol. From the frozen blood samples, total RNA was isolated using a modified PAXgene
protocol as described by Beekman et al. [28]. The thawed blood samples were transferred
to PAXgene blood collection tubes, and total RNA extraction was performed using the
PAXgene Blood miRNA kit according to the manufacturer’s instructions. The concentration
of RNA was determined using the NanoDrop 1000 Spectrophotometer, while the quality of
RNA was assessed using the 2100 Bioanalyzer. In the further analysis of this study, samples
that met the quality control criteria were selected, including 52 tissue samples and 9 blood
samples from the patients.

2.3. Microarray Analysis

The miRNA profiling with additional quality controls was conducted by Ocean Ridge
Biosciences utilizing custom microarrays specifically designed with 1087 human miRNA
probes. These miRNA arrays encompassed all 1098 human miRNAs documented in the
Sanger Institute mirBASE version 15. The miRNA profiling analysis incorporated various
quality control features, including negative controls, specificity controls, and spiking probes.
To ensure the reliability of the data, a detection threshold was determined for each array
by calculating the sum of five times the standard deviation of the background signal and
the 10% trim mean of the negative control probes. Probes exhibiting consistently low
signals were eliminated from the subsequent statistical analysis using these threshold
values. The raw and processed miRNA profiles with the aforementioned normalization
method were deposited to the NCBI Gene Expression Omnibus (GEO) with the accession
number GSE37963.

2.4. The Cancer Genome Atlas (TCGA) Breast Cancer Patient Cohort

Prognostic analysis involving miRNA and mRNA data was performed on the breast
cancer (BRCA) patient cohort obtained from The Cancer Genome Atlas (TCGA). The
datasets were procured from the LinkedOmics database [29] (http://www.linkedomics.
org/, accessed on 23 May 2023). This study used the normalized mRNA RSEM data
comprising 1093 patient samples profiled with the Illumina HiSeq platform. Two sets of
gene-level miRNA data were utilized: one derived from the Illumina Genome Analyzer
(GA) platform (n = 324), and the other from the Illumina HiSeq platform (n = 755). Both
miRNA datasets consisted of log2 normalized RPM values.

2.5. Proliferation Assays

Genes functionally involved in breast cancer cell proliferation were identified from
CRISPR-Cas9 knockout and RNAi knockdown screening data. The whole-genome
CRISPR-Cas9 screening data of human breast cancer cell lines (n = 48) were obtained
from the DepMap 22Q4 data release [30–32] (https://depmap.org/portal, accessed on
23 May 2023). Additionally, RNAi screening data of human breast cancer cell lines
(n = 34) were acquired from the project Achilles (https://depmap.org/R2-D2/, accessed
on 23 May 2023). In this study, a normalized dependency score of less than –0.5 in
either the CRISPR-Cas9 or RNAi screening was considered indicative of a significant
knockout/knockdown effect.

http://www.linkedomics.org/
http://www.linkedomics.org/
https://depmap.org/portal
https://depmap.org/R2-D2/
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2.6. Cancer Cell Line Encyclopedia (CCLE)

Genome-scale protein expression data of human breast cancer cell lines (n = 31) were
obtained from the Gygi lab [33] (https://gygi.hms.harvard.edu/publications/ccle.html,
accessed on 25 May 2023). These data were log2 transformed, and their mean expression
levels were centered at 0. The mRNA sequencing data of breast cancer cell lines (n = 63)
were acquired from the DepMap 22Q4 data release [30–32] (https://depmap.org/portal,
accessed on 23 May 2023), and were also log2-transformed. Furthermore, gene mutations
(n = 41,707) and fusion data (n = 2979) were retrieved from the DepMap 22Q4 data release.

2.7. Drug Sensitivity Data of Breast Cancer Cell Lines

The drug sensitivity data of breast cancer cell lines were obtained from two distinct
sources. The first source was the Profiling Relative Inhibition Simultaneously in Mixtures
(PRISM) [34] secondary screen data, which was provided in the DepMap 19Q4 data release
(https://depmap.org/portal, accessed on 23 May 2023). The second source encompassed
the Genomics of Drug Sensitivity in Cancer (GDSC1 and GDSC2) datasets [35–37], which
were made available through CancerRxGene (https://www.cancerrxgene.org/, accessed
on 25 May 2023). In this study, we examined drug sensitivity using various measurements,
including IC50, ln(IC50), EC50, and ln(EC50). Further details regarding the categorization of
drug sensitivity and resistance can be found in our previous work [38,39].

2.8. Bioinformatic Tools

TarBase database v7.0 [40] (https://dianalab.e-ce.uth.gr/html/universe/index.php?
r=tarbase, accessed on 23 May 2023) and v8.0 [41] (https://dianalab.e-ce.uth.gr/html/
diana/web/index.php?r=tarbasev8, accessed on 23 May 2023) was used to find experimen-
tally validated microRNA-target interactions of our selected miRNAs.

ToppGene [42] (https://toppgene.cchmc.org/, accessed on 6 July 2023) is a comprehen-
sive bioinformatics tool designed to facilitate gene list analysis and functional interpretation.
It employs a variety of data mining and statistical techniques to uncover significant bio-
logical associations and gain insights into the functional relevance of gene sets. ToppGene
provides a user-friendly platform for researchers to prioritize genes, unravel biological
pathways, identify key biological functions, and discover potential disease associations. In
this study, ToppGene was utilized to detect the functional enrichment of selected gene lists.

For drug repositioning analysis, we employed the bioinformatic tool Connectivity
Map (CMap, https://clue.io/cmap, accessed on 23 May 2023) [26,27]. CMap utilizes gene
expression profiles to determine connectivity scores based on drug-induced transcriptional
profiles. The connectivity scores range from –1 to 1, with 1 indicating the highest degree of
expression similarity. In this study, we considered a raw connectivity score higher than 0.9
with a p-value < 0.05 as a significant result.

Cytoscape version 3.9.1 [43] (https://cytoscape.org/, accessed on 15 June 2023) was
utilized to visualize the network results of miRNAs and their target genes.

2.9. Statistical Analysis

The Significance Analysis of Microarrays (SAM) method was used to identify miRNA
markers displaying differential expression patterns in breast cancer samples. The following
criteria were used to select statistically significant differentially expressed miRNAs: (1) an
expression change threshold of >2 or <0.5 between normal and tumor tissues, or between
blood samples from normal and cancer patients; (2) p-values less than 0.05 (unpaired or
paired t-tests depended on the specific sample set being analyzed); and (3) a false discovery
rate (FDR) below 0.05. Comparisons between two groups were assessed using two-sample
t-tests. Survival analysis was conducted utilizing the Kaplan-Meier method implemented
in the “survival” package (version 3.5.3). In the survival analysis, the log-rank test p-value
was used to evaluate the difference in survival probabilities. Prognosis analysis was carried
out employing the univariate Cox model. RStudio (version 2023.03.1 Build 446) with R
version 4.2.1 was the primary statistical analysis tool throughout this study.

https://gygi.hms.harvard.edu/publications/ccle.html
https://depmap.org/portal
https://depmap.org/portal
https://www.cancerrxgene.org/
https://dianalab.e-ce.uth.gr/html/universe/index.php?r=tarbase
https://dianalab.e-ce.uth.gr/html/universe/index.php?r=tarbase
https://dianalab.e-ce.uth.gr/html/diana/web/index.php?r=tarbasev8
https://dianalab.e-ce.uth.gr/html/diana/web/index.php?r=tarbasev8
https://toppgene.cchmc.org/
https://clue.io/cmap
https://cytoscape.org/
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3. Results
3.1. Differential MiRNA Expression in Breast Cancer Tissue and Blood

Using our patient cohort, we identified a collection of 86 miRNAs exhibiting significant
differential expression when comparing tumor and normal breast tissue samples. To
provide a visual representation of the expression patterns, Figure 1 showcased a heatmap
illustrating the clustering results of patient samples based on the expression profiles of
these 86 miRNAs. In Figure 1, four breast cancer samples were mistakenly classified into
the normal breast tissue group, and one normal breast tissue sample was misclassified
into the breast cancer group. The overall accuracy in the unsupervised classification was
90.4% using the expression profiles of 86 miRNAs. Here the denoted breast cancer in
Figure 1 referred to the cases with histology of ductal adenocarcinoma, invasive ductal
carcinoma, invasive lobular carcinoma, metaplastic carcinoma, mucinous carcinoma, and
predominantly lobular listed in Table 1. The detailed fold changes of these 86 miRNAs in
patient tumor tissues were provided in Supplementary File S1.
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Subsequently, we investigated the prognostic significance of the identified 86 mark-
ers. Notably, 12 specific miRNAs shown in Table 2 displayed consistent diagnostic and
prognostic relevance within both our patient cohort and TCGA breast cancer patients. In
this analysis, miRNAs sharing the same prefix were analyzed together, i.e., the results
were not miRNA isoform specific. Our findings revealed that five miRNAs exhibited
potential oncogenic characteristics (i.e., over-expression in tumors and survival hazard),
while seven miRNAs demonstrated potential tumor suppressor properties in breast cancer
(i.e., under-expression in tumors and survival protective).

Table 2. Potential oncogenic and potential tumor suppressive miRNAs with consistent diagnostic
and prognostic relevance within both our patient cohort and TCGA breast cancer cohort.

miRNA in
Our Dataset

Fold
Change

(Unpaired)

Fold
Change
(Paired)

miRNA in
TCGA

Logrank
p-Value

Hazard Ratio
(95% Confidence

Interval)

TCGA
Dataset

Potential
Function
Category

hsa-miR-100 0.316 0.295 hsa-miR-100 0.0195 0.766 [0.613,
0.9576] GA, n = 324 tumor

suppressor

hsa-miR-101 0.474 0.278
hsa-miR-101-1 0.0021 0.691 [0.546,

0.8741] HiSeq, n = 755 tumor
suppressor

hsa-miR-101-2 0.0278 0.805 [0.6626,
0.9769] HiSeq, n = 755

hsa-miR-
193a-3p 2.070 2.244 hsa-miR-193a 0.0060 1.481 [1.1219,

1.9555] HiSeq, n = 755 oncogene

hsa-miR-204 0.241 0.148 hsa-miR-204 0.0233 0.819 [0.6905,
0.9725] HiSeq, n = 755 tumor

suppressor

hsa-miR-205 0.246 0.180 hsa-miR-205 0.0335 0.871 [0.7667,
0.9904] GA, n = 324 tumor

suppressor

hsa-miR-
301b 2.118 1.948 hsa-miR-301b 0.0100 1.410 [1.0837,

1.8342] GA, n = 324 oncogene

hsa-miR-30a 0.406 0.324
hsa-miR-30a 0.0176

0.843 [0.7324,
0.9711]

HiSeq, n = 755
tumor

suppressorhsa-miR-30a* 0.351 0.250

hsa-miR-379 0.478 0.418 hsa-miR-379 0.0480 0.797 [0.6369,
0.9981] GA, n = 324 tumor

suppressor

hsa-miR-615-
3p 1.8673 2.531 hsa-miR-615 0.0068 1.332 [1.0804,

1.6414] GA, n = 324 oncogene

hsa-miR-7 2.4657 3.994
hsa-miR-7-2 0.0393 1.464 [1.0182,

2.1057] GA, n = 324
oncogene

hsa-miR-7-3 0.0106 1.543 [1.1036,
2.1582] GA, n = 324

hsa-miR-720 4.2969 5.964 hsa-miR-720 0.0179 2.867 [1.189,
6.9117] HiSeq, n = 755 oncogene

hsa-miR-99a 0.2919 0.242 hsa-miR-99a 0.0128 0.744 [0.5901,
0.939] GA, n = 324 tumor

suppressor

Out of the initial set of 86 markers, a total of 33 miRNAs exhibited statistically signif-
icant differential expression between matched tumors and normal breast tissue samples
from the same patients. The clustering analysis of matched samples demonstrated a distinct
separation with an overall classification accuracy of 100%, wherein all tumor tissues and all
normal tissues were observed to cluster in different groups, as depicted in Figure 2. This
clustering pattern indicated a clear delineation between the gene expression profiles of
breast cancer and normal samples. The fold changes of these 33 miRNAs in patient blood
samples were provided in Supplementary File S1.
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Figure 2. Heatmap of matched tumors and normal tissue samples from the same four breast cancer
patients, showing separation of expression profiles in tumors and normal tissues (FDR < 0.05 in SAM,
fold change > 2 or <0.5; in paired t-tests).

Among the analyzed miRNA markers, a subset of six markers exhibited concordant
differential expression between breast cancer vs. normal in both tissues and blood samples.
Utilizing these six markers, the breast cancer and normal blood samples could be effectively
distinguished with an overall classification accuracy of 100%, as illustrated by the heatmap
depicted in Figure 3. This finding further underscored the potential of these markers
in accurately discriminating between breast cancer and normal patient samples using
minimally invasive blood tests. Detailed fold change information in blood samples was
provided in Supplementary File S1.
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Figure 3. Heatmap of blood samples showing clustering analysis of six miRNAs concordantly
expressed between breast cancer and normal samples in tissues and blood (FDR < 0.05 in SAM,
p < 0.05 in unpaired t-tests). Blood samples from breast cancer patients (n = 3) can distinctly separate
from those from normal individuals (n = 6).
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Next, we examined the miRNAs that displayed consistent differential expression
patterns in our samples as well as in the cohort from Iorio et al. [16]. A total of four miRNAs
(up-regulated miR-155, and down-regulated miR-204, miR-145, and miR-143) demonstrated
statistically significant differential expression between tumors vs. normal breast tissues
(FDR < 0.05 in SAM, p < 0.05; unpaired t-tests) in both the Iorio dataset (n = 83) and
our cohort (n = 52). MiRNAs showing concordant expression patterns in breast cancer
initiation and progression among our cohort, Iorio et al. [16], and TCGA were depicted in
Figure 4. MiR-204 was a potential tumor suppressor based on the results from all three
patient cohorts. These findings emphasized the robustness and reproducibility of the
observed miRNA expression changes across different datasets and further supported the
potential relevance of these miRNAs in breast cancer pathogenesis. The detailed fold
change information was provided in Supplementary File S1.
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Figure 4. Venn diagram of selected miRNAs (isoform-specific) across different patient cohorts. The
miRNA selection in the Iorio cohort and the MBRCC/CHTN breast cancer cohort was based on the
statistically significant differential expression observed between breast cancer tumors and normal
breast tissue samples. In TCGA, miRNA expression association with breast cancer progression was
indicated with a hazard ratio (HR). HR > 1: survival hazard miRNA; HR < 1: survival protective
miRNA. Detailed information was provided in supplementary file S1.

3.2. Association with Drug Sensitivity

Among the 86 miRNAs identified in this study, a subset of 23 miRNAs was found in
TarBase (v7 or v8) with experimentally validated target genes. These miRNAs collectively
targeted a total of 4117 genes, with published experimental evidence that was curated and
stored in TarBase (Supplementary File S2). To gain further insights into the clinical relevance
of these miRNAs and their respective target genes, we investigated their associations with
drug sensitivity in breast cancer treatment.

For drug sensitivity analysis, we classified the breast cancer cell lines as sensitive or
resistant to each drug based on the measurements of IC50, ln(IC50), EC50, and ln(EC50),
following the classification method described in our previous publications [38,39]. Both
mRNA and protein expression levels were considered in determining the association with
drug sensitivity. A gene was deemed sensitive to a drug if it exhibited significantly higher
expression (p < 0.05; two-sample t-tests) in the sensitive cell line group. Conversely, a
gene was classified as resistant to a drug if it demonstrated significantly higher expression
(p < 0.05; two-sample t-tests) in the resistant cell line group.

Additionally, we defined pan-sensitive genes as those exhibiting sensitivity or non-
resistance to all 19 breast cancer drugs selected according to the NCCN guidelines (shown
in Table 3), in the PRISM, GDSC1, and GDSC2 data. Conversely, pan-resistant genes were
defined as those displaying resistance or non-sensitivity to all 19 breast cancer drugs in the
aforementioned datasets. Table 3 presented the pan-sensitive and pan-resistant genes at
both mRNA and protein levels, along with the pan-sensitive and pan-resistant miRNAs.
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Table 3. Pan-sensitive and pan-resistant genes and miRNAs to 19 NCCN-recommended breast cancer
(BRCA) drugs with concordant expression at both mRNA and protein levels. mRNA level–italic font;
protein level–normal font; both levels–bold font. Genes harboring at least one non-silent mutation in
any of the BRCA cell lines were highlighted in blue font. Genes associated with fusions only in BRCA
cell lines were marked in green font, while genes exhibiting both fusions and non-silent mutations
in BRCA cell lines were specifically highlighted in red font. The miRNAs that were also selected in
Table 2 were highlighted in yellow.

Drug Pan-Sensitive Genes Pan-Resistant Genes

5-fluorouracil

GALM, HELLS, RBM14, DUOX1, RBM25, NOP56,
DHX15, BAZ1B, DGCR8, CD276, SNX13, PTPRF,

PHIP, TAOK1, SUZ12, PLEK, hsa-miR-1246,
hsa-miR-617

KIF3A, KAT2B, MYADM, DDX3Y, PTMS, EPHA7,
EMC4, IRAK4, hsa-miR-33a, hsa-miR-1260

alpelisib
DUOX1, PTPRF, ZBED6, DGCR8, TRABD, NOP56,

RBM25, SUZ12, GALM, WDR82, CDS2, hsa-miR-617,
hsa-miR-933

KAT2B, EPHA7, BCL6, MTX3, IRGQ, TXNL1, IRAK4,
GSK3A, APOD, KIF3A, MYADM, hsa-miR-1274a,

hsa-miR-1280, hsa-miR-335, hsa-miR-376a,
hsa-miR-720

capecitabine GSK3A, ZC3H4, IRGQ, BCL6, MGST2, LZTS2

carboplatin WDR82

cisplatin
SNX13, GATB, PRDM2, MFSD9, PHIP, TBRG1, CBX3,

RPRD2, RBM14, PTPRF, EGR1, DHX15, PDE3A,
ATG4D, HERC6, DUOX1

PTMS, PEG10, IRGQ, APOD, MTX3, PTEN, STX3,
ZNF24, LZTS2, KIF3A, FRYL, MYADM,
hsa-miR-301a, hsa-miR-497, hsa-miR-335,

hsa-miR-1260

cyclophosphamide DHX15, RBM25, PHIP, DGCR8, PRDM2, RPRD2,
PTPRF, hsa-miR-1246 LZTS2, PTEN, FRYL, MYADM

docetaxel PDE3A, TBRG1, BAZ1B, DHX15, TBRG1, RBM25,
RPRD2, hsa-miR-1246, hsa-miR-142-5p

GSK3A, ZC3H4, STX3, STMN3, IRAK4, APOD,
KAT2B, EPHA7, PEG10

doxorubicin
CDS2, HERC6, NOP56, CD276, TRABD, MFSD9, PHIP,
HELLS, GATB, BAZ1B, NKTR, RBM25, SUZ12, CBX3,

CHD9, RBM14
KIF3A, PTMS, IRGQ, GSK3A, TTC26, hsa-miR-301a

epirubicin NKTR, RBM25, TRABD, GATB, LSAMP, DHX15, PLEK PTEN, ZNF24, LZTS2, EMC4, ZC3H4, MGST2,
hsa-miR-1260, hsa-miR-21, hsa-miR-301a

fulvestrant

BAZ1B, PRDM2, RBM25, CBX3, SUZ12, RBM14,
HELLS, DHX15, NKTR, DGCR8, TAOK1, GATB,
TRABD, LSAMP, RPRD2, CD276, hsa-miR-1976,

hsa-miR-378, hsa-miR-766, hsa-miR-1246

MGST2, IRGQ, PSG6, APOD, IRAK4, GSK3A,
MYADM, hsa-miR-33a

gemcitabine TBRG1, NOP56, MFSD9, RBM25, BAZ1B APOD, PTMS, MAVS, ZC3H4, hsa-miR-301a

ixabepilone DUOX1, TBRG1, ZBED6, RBM14, LSAMP, BAZ1B LZTS2, STX3, PTEN, PEG10, KIF3A

lapatinib DUOX1, HERC6, PLEK, PRDM2, CD276, hsa-miR-933 ZNF24, TTC26, KAT2B, PTMS, IRGQ, TXNL1,
IRAK4, KIF3A, MYADM, PSG6

methotrexate MFSD9, PHIP, RPRD2, CBX3, hsa-miR-1246 MYADM, LZTS2, hsa-miR-497

neratinib SNX13, ZBED6, PRDM2, hsa-miR-378, hsa-miR-10b TXNL1, MTX3, IRGQ, TTC26, EMC4, ZNF24,
STMN3, hsa-miR-21

olaparib PTPRF, CHD9, GATB, PRDM2, BAZ1B, CBX3, PDE3A,
PHIP, ZBED6, MFSD9, TBRG1, CD276, SNX13

MTX3, FRYL, BCL6, KAT2B, LZTS2, APOD, DDX3Y,
MYADM

paclitaxel GALM, DHX15, LSAMP, SNX13
MAVS, BCL6, ZC3H4, STX3, KAT2B, MTX3, KIF3A,

STMN3, PEG10, MYADM, PTMS, hsa-miR-21,
hsa-miR-497

tucatinib CDS2, ATG4D, SNX13, PLEK, DUOX1, GATB, CHD9,
hsa-miR-205, hsa-miR-378, hsa-miR-933, hsa-miR-376c MTX3, PTEN, ZNF24, APOD, GSK3A, hsa-miR-301a

vinorelbine
PRDM2, DGCR8, TRABD, EGR1, BAZ1B, CD276,
PTPRF, GATB, ATG4D, TBRG1, TAOK1, WDR82,

SUZ12, RBM14, NKTR, PDE3A, RPRD2

MTX3, MAVS, TTC26, EPHA7, hsa-miR-21,
hsa-miR-199b-5p
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Among all the miRNAs and genes included in Table 3, we depicted miRNA-target
genes and their association with pan-sensitivity/pan-resistance to 19 NCCN-recommended
breast cancer drugs in Figure 5. Furthermore, significantly enriched cytobands and gene
families for pan-sensitive and pan-resistant genes were analyzed with ToppGene (Figure 6).
There were no significantly represented gene families for pan-sensitive genes. No significant
pathways were enriched for either pan-sensitive or pan-resistant genes (Table 3). Through
these comprehensive analyses, we aimed to uncover potential associations between the
identified miRNAs, their target genes, and drug sensitivity, providing valuable insights
into their roles in breast cancer biology and therapeutic response.
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recommended breast cancer drugs. The miRNAs and their experimentally validated target genes
were included in Table 3.

3.3. Discovery of Potential Therapeutic Targets and Repositioning Drugs

Since no significantly enriched pathways were found for pan-sensitive or pan-resistant
genes (Table 3), we further included patient survival genes and in-vitro proliferation
genes to refine the gene list. To identify therapeutic targets and candidate compounds
for treating breast cancer, we designed the mechanism of drug action to maintain the
expression of non-proliferative survival-protective/pan-sensitive genes and suppress the
survival-hazard/pan-resistant genes (Figure 7A). Among the 4117 genes targeted by our
diagnostic miRNAs, we performed a refined selection to identify 28 up-regulated and
28 down-regulated gene lists for input into the CMap analysis. The 28 up-regulated genes
met the following criteria: (1) exhibited a significant hazard ratio < 1 (log-rank p < 0.05)
in survival analysis of TCGA-BRCA; (2) were classified as pan-sensitive genes for all
19 NCCN breast cancer drugs at both the mRNA and protein levels in CCLE BRCA cell
lines; (3) did not display significant dependency scores (<–0.5) in more than 50% of the
BRCA cell lines in both CRISPR-Cas9 and RNAi screening data. The 28 down-regulated
genes met the following criteria: (1) demonstrated a significant hazard ratio > 1 (log-rank
p < 0.05) in survival analysis of TCGA-BRCA; (2) were classified as pan-resistant genes for
all 19 NCCN breast cancer drugs at both the mRNA and protein levels in CCLE BRCA cell
lines. Detailed information was provided in Supplementary File S3.
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Figure 6. Significantly enriched cytobands and gene families of pan-sensitive and pan-resistant genes.
(A) The –log10(p-value) of the significantly enriched cytobands of the pan-sensitive genes. (B) The
–log10(p-value) of the top 10 significantly enriched cytobands of the pan-resistant genes. (C) The
–log10(p-value) of the top 10 significantly enriched gene families of the pan-resistant genes. Details
were provided in supplementary file S3.
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We input the selected 28 up-regulated genes and the 28 down-regulated genes into
CMap. From the CMap output, we selected significant (raw connectivity score > 0.9,
p < 0.05) pathways and compound sets as heuristic therapeutic targets. We further ex-
amined the half-maximal inhibitory concentration (IC50) and half-maximal effective con-
centration (EC50) of the significant compounds in the PRISM dataset, which led to the
identification of 20 potential new or repurposed drugs with available IC50/EC50 measure-
ments in the PRISM dataset. Our pipeline for repositioning drug discovery was shown in
Figure 7A. Figure 7B displayed the boxplots of IC50/EC50 values of our discovered drugs
in BRCA cell lines. Some of the drugs contained some outliers with extremely large values.
The outliers were removed from the analysis and were not shown in the plot. These drugs
belonged to 11 compound sets. In addition, three pathways were identified in shRNA
knockdown experiments in breast adenocarcinoma MCF7 cells that matched our CMap in-
put 56-gene expression signature (connectivity score > 0.9, p < 0.05), including knockdown
of heat shock 70 (Hsp70) proteins (KD_HEAT_SHOCK_70KDA_PROTEINS:MCF7:TRT_SH.
CGS) including HYOU1, HSPA5, HSPA9, and HSPA14 genes, SOD pathway (BIOCARTA_SO
DD_PATHWAY:MCF7:TRT_SH.CGS) including BAG4, BIRC3, CASP8, FADD, RIPK1, TNF,
TNFRSF1A, TNFRSF1B, TRADD, and TRAF2, and knockdown of A-Kinase-Anchoring-
Proteins (AKAPs; KD_A_KINASE_ANCHORING_PROTEINS:MCF7:TRT_SH.CGS) in-
cluding AKAP9, AKAP13, and AKAP11. Details were provided in Supplementary File S3.

Cells 2023, 12, x FOR PEER REVIEW 15 of 25 
 

 

 
Figure 7. Discovery of potential new and repositioning drugs for treating breast cancer. (A) The 
flowchart of our AI pipeline for drug discovery. (B) The distribution of drug concentrations 
(IC50/EC50) of the 20 selected drugs in the PRISM data. All selected compounds had average IC50 and 
EC50 < 7 µM in the tested human breast cancer cell lines after excluding outliers. . 

Furthermore, we explored the genome-scale resistant and sensitive genes associated 
with our discovered drugs. Table 4 presented the selected sensitive and resistant genes 
for each drug, which had concordant expression at both mRNA and protein levels in the 
studied human breast cancer cell lines. Additionally, we identified gene fusions and mu-
tations associated with the categorized sensitive and resistant cell lines to the correspond-
ing drugs, highlighting the top fusion/mutation genes in each cell line (Supplementary 
File S3). By integrating CMap analysis with our comprehensive multi-omics and drug sen-
sitivity investigation, we unveiled potential novel therapeutic options and characterized 
patient responders/non-responders for these new breast cancer drugs (Figure 7A). 

  

Figure 7. Discovery of potential new and repositioning drugs for treating breast cancer. (A) The
flowchart of our AI pipeline for drug discovery. (B) The distribution of drug concentrations
(IC50/EC50) of the 20 selected drugs in the PRISM data. All selected compounds had average
IC50 and EC50 < 7 µM in the tested human breast cancer cell lines after excluding outliers.
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Furthermore, we explored the genome-scale resistant and sensitive genes associated
with our discovered drugs. Table 4 presented the selected sensitive and resistant genes
for each drug, which had concordant expression at both mRNA and protein levels in the
studied human breast cancer cell lines. Additionally, we identified gene fusions and muta-
tions associated with the categorized sensitive and resistant cell lines to the corresponding
drugs, highlighting the top fusion/mutation genes in each cell line (Supplementary File S3).
By integrating CMap analysis with our comprehensive multi-omics and drug sensitivity
investigation, we unveiled potential novel therapeutic options and characterized patient
responders/non-responders for these new breast cancer drugs (Figure 7A).

Table 4. Sensitive and resistant genes with concordant mRNA and protein expression associated
with response to the new/repositioning drugs identified with CMap. Genes harboring at least one
non-silent mutation in any of the BRCA cell lines were highlighted in blue font. Genes associated
with fusions only in BRCA cell lines were marked in green font, while genes exhibiting both fusions
and non-silent mutations in BRCA cell lines were specifically highlighted in red font.

Drug Sensitive Gene Resistant Gene

Lestaurtinib FHL1, FKBP7, LAMA4, LAMB3, LAMC1, MMP14 ARRB1

BRD-K12244279 ACSL4, ASPH, CAV1, CAV2, EHD2, FMNL2, FSTL1,
FYN, IFIT1, IFIT2, LDHB, SAMD9, UPP1, WLS ENPP1

PD198306 ICAM1, IFIT3

Pilocarpine SDC2

TG101348 VLDLR ANXA8, APOL1, FBLN1, ICAM1, MX2

Tremorine CRIP1, GPC4

U0126 DKK3, FSD1, KYNU, LRP12

Y-27632 C1R, CASP1, FOSL1, GSDMD CLIC3, CPLX1, SYAP1

MiR-204 was identified as a potential tumor suppressor as under-expressed in tumors
in our patient cohort and samples from Iorio et al. [16] as well as patients with a poor
prognosis in TCGA-BRCA (Table 2 and Figure 4). MiR-204 was associated with drug
sensitivity to carboplatin and tucatinib, and drug resistance to docetaxel, ixabepilone,
paclitaxel, and vinorelbine. In addition, miR-204 was associated with resistance to RITA, a
potential new drug option for treating breast cancer (Supplementary File S2). MiR-204-3p
and miR-204-5p targeted genes were provided in Supplementary File S2. Among these
target genes, those that were pan-sensitive or pan-resistant to 19 NCCN-recommended
breast cancer drugs (Table 3) were shown in Figure 8. MiR-204 targeted genes (ACSL4 and
WLS, Table 4) that were sensitive to BRD-K12244279 discovered for treating breast cancer
in this study were also shown in Figure 8.
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K12244279 were shown.
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4. Discussion

This study identified 86 miRNAs differentially expressed between tumors and normal
breast tissue samples in molecular classification. Four miRNA isoforms were confirmed in
an external patient cohort as potential tissue-based breast cancer diagnostic biomarkers.
Six miRNAs had concordant differential expression between breast cancer and normal
samples in both tissue and blood, with miR-30a*, miR-224*, miR-154 downregulated
and miR-155, miR-1972, miR-3172 upregulated in breast cancer. Twelve miRNAs had
concordant expression patterns in our collected tumors vs. normal breast tissues and
TCGA-BRCA patient survival hazard ratios, with five as potential oncogenes and seven as
potential tumor suppressors. These results warranted further independent validation to
substantiate the clinical utility of the identified miRNAs for breast cancer diagnosis using
biopsies and/or liquid biopsies.

Among seven potential tumor-suppressing miRNAs identified in this study, high ex-
pression of miR-100 was associated with better outcomes in women with luminal A tumors
treated with adjuvant endocrine therapy and was inversely linked to mRNA expression
of PLK1, FOXA1, mTOR, and IGF1R [44]. By targeting FOXA1, miR-100 suppressed the
migration, invasion, and proliferation of breast cancer cells [45]. MiR-101-5p, a tumor
suppressor, triggered apoptosis in HER2+ breast cancer and sensitized initially resistant
cells to lapatinib and trastuzumab [45,46]. MiR-101 targeted Janus kinase 2 (JAK2) in
inhibiting proliferation and promoting apoptosis of breast cancer cells [47]. MiR-204 was
significantly under-expressed in breast cancer tumors in our patient cohort and samples
from Iorio et al. [16], as well as breast cancer patients with a poor survival outcome in
TCGA-BRCA (Figure 4). MiR-204-5p-regulated PI3K/Akt signaling inhibited tumor growth,
metastasis, and immune cell reprogramming in breast cancer [48]. By inhibiting miR-204-5p
and enhancing RRM2 expression, DSCAM-AS1 promoted proliferation and suppressed
apoptosis of breast cancer cells, indicating the therapeutic potential of DSCAM-AS1/miR-
204-5p/RRM2 [49]. MiR-204-5p targets pan-sensitive genes (HELLS and BAZ1B), and
multiple pan-resistant genes, including MAVS, GSK3A, and PEG10 identified in this study.
MiR-204-3p targets a pan-resistant gene ZNF24 (Figure 8). MiR-205 is a recognized tumor
suppressor in breast cancer, with decreasing expression in breast cancer initiation, progres-
sion, metastasis, increased stemness [50], and more aggressive molecular subtypes [51].
MiR-205 was also identified as pan-sensitive to 19 NCCN-recommended breast cancer
drugs in this study. MiR-30 family attenuated breast cancer invasion and bone metastasis as
a promising therapeutic target for triple-negative breast cancer [52]. In this study, miR-30a*
was under-expressed in both breast cancer tumors and blood samples compared with the
corresponding normal controls, indicating its potential as a diagnostic biomarker. MiR-379
potently suppressed breast cancer formation and growth, partly through the regulation of
COX2 [53] and inhibition of proliferation [54]. MiR-379 and miR-204, both identified in this
study as potential oncosuppressors, are key regulators of TGF-β-induced IL-11 production,
important in breast cancer bone metastasis [55]. MiR-99a inhibited breast cancer tumori-
genesis and progression by targeting the mTOR/p-4E-BP1/p-S6K1 pathway [56] and the
cell-cycle pathway through downregulating CDC25A [57]. MiR-99a-5p sensitized breast
cancer cells to doxorubicin by regulating the COX-2/ABCG2 axis [58]. Our identified seven
miRNAs are supported by the literature as BRCA tumor suppressors.

For the five identified potential oncomiRs, miR-193a-3p promoted tumor progression
by targeting GRB7, ERK1/2, and FOXM1 signaling pathways [59] and PTP1B [60] in
HER2-positive breast cancer cells. MiR-301b promoted cell proliferation by regulating
PRKD3 in ER-mutant breast cancer, accounting for up to 30% of metastatic ER-positive
breast cancer [61]. MiR-301b exerted tumor-promoting effects through co-regulation with
its target gene NR3C2 in breast cancer MCF7 and BCAP-37 cells [62]. A miRNA in the
same family, miR-301a, was identified as pan-resistant to 19 NCCN-recommended breast
cancer drugs in this study. MiR-615-3p contributed to epithelial-to-mesenchymal transition
and metastasis in breast cancer by regulating a negative feedback loop involving the
PICK1/TGFBRI axis [63]. Despite the association between miR-7 expression and patient
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poor survival, miR-7 inhibited breast cancer spreading and tumor-associated angiogenesis
in metastatic breast cancer [64]. By modifying KLF4, miR-7 prevented breast cancer stem-
like cells from metastasizing to the brain [65]. Via activating the ERK signaling pathway,
ADAM8 induced miR-720 expression, which in turn promoted the aggressive phenotype of
triple-negative breast cancer cells [66]. Overall, the literature supports our identified breast
cancer oncomiRs, except for miR-7.

Upon the validation of our identified 86 miRNAs in multiple public patient cohorts,
their experimentally validated target genes were retrieved with TarBase. Further analy-
sis of these target genes pinpointed pan-sensitive and pan-resistant genes to 19 NCCN-
recommended drugs for treating breast cancer. In the integrative analysis of the public
in-vitro proliferation screening assay data of CCLE and TCGA-BRCA patient survival, a
56-gene expression signature was constructed to discover new and repositioning drugs
for improving breast cancer treatment and survival outcomes using CMap. Through the
CMap analysis, compounds that can inhibit the input down-regulated genes and maintain
the expression of the input up-regulated genes in breast cancer cells were identified. The
significant pathways and compound sets (raw connectivity score > 0.9, p < 0.05) were
considered valid hypotheses worthy of further investigation. From these significant results,
we further examined the compounds with average IC50/EC50 measurements less than
7 µM in human breast cancer cell lines as potential drugs for breast cancer treatment and
were discussed as follows.

PI3K inhibitor SAR245409 combined with MEK inhibitor AS703026 (pimasertib) syner-
gistically magnified anti-proliferative effects in TNBC [67]. Lestaurtinib, a tyrosine kinase
inhibitor, enhanced the in-vitro drug effects of the PARP1 inhibitor AG14361 in breast cancer
treatment, partly by suppressing NF-κB signaling [68]. Midostaurin is an FDA-approved
multi-targeted protein kinase inhibitor for the treatment of both solid and non-solid tu-
mors [69]. Midostaurin preferentially suppressed the proliferation of TNBC cells among
breast cancer cell lines by inhibiting the Aurora kinase family [70]. Nilotinib (Tasigna) is an
approved chronic myelogenous leukemia drug. Nilotinib can reduce doxorubicin-induced
cardiac impairment [71]. Breast cancer cells resistant to tamoxifen therapy were resensitized
by a combination of sorafenib and nilotinib via the estrogen receptor [72]. MEK inhibitor
CI-1040 (PD184352) exhibited notable antitumor activity in preclinical models, specifically
against pancreatic, colon, and breast cancers, and was well tolerated in Phase I clinical
trials [73] but had insufficient efficacy in Phase II clinical studies [74]. A second-generation
MEK inhibitor PD0325901 was also selected using machine learning methods as a drug
for breast cancer treatment [75] and amplified anti-proliferative and anti-clonogenic ef-
fects of gefitinib and AT7867 by activating apoptosis in TNBC cells [76]. PD0325901 has
much improved pharmacologic and pharmaceutical properties compared with CI-1040
and has also entered clinical development [74]. Combination therapy of MEK inhibitor
PD98059 and anti-diabetic drug Rosiglitazone caused invasive and spreading cancer cells to
transform into post-mitotic adipocytes, which inhibited the invasion of the primary tumor
and the development of metastases [77]. U0126 is a highly potent and selective inhibitor
specifically targeting MAPK, MEK1, and MEK2 signaling pathways and plays a pivotal
role in maintaining cellular homeostasis [78]. U0126 reduced hyperpolarized pyruvate to
lactate conversion, a non-imaging method for detecting tumors and treatment response,
in breast cancer cells [79]. U0126 can reduce breast cancer cell content in the S phase,
suggesting anti-proliferative effects by blocking the cell cycle [80]. ERK phosphorylation in
T47D breast cancer cells exhibited resistance to MEK inhibition by U0126, PD98059, and
PD198306 [81]. PD198306 has not been reported as a breast cancer drug that can prolong
patient survival outcomes.

RITA small-molecule anticancer drug specifically targeting p53 [82] has been exten-
sively studied in breast cancer [83]. MEK inhibitor Selumetinib demonstrates clinical
benefits in treating pediatric neurofibromatosis type I in phase II clinical trials [84].
Selumetinib inhibits cell proliferation/migration, induces apoptosis/G1 arrest [85], and
prevents lung metastasis [86] in TNBC. Serdemetan (JNJ-26854165) is a small-molecule
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antagonist of MDM2, exhibiting antiproliferative activity in a range of tumor cell lines
characterized by wild-type p53 [87]. In a Phase I clinical study, Serdemetan was well
tolerated by patients with advanced solid tumors with exposure-related QTc liability,
and partial response was observed in a breast cancer patient [88]. Sunitinib is an FDA-
approved oral inhibitor of multi-target receptor tyrosine kinases and has demonstrated
efficacy in the treatment of renal cell carcinoma and imatinib-resistant gastrointesti-
nal stromal tumor [69]. Sunitinib achieved an overall response rate of 11% in treating
metastatic breast cancer in a Phase II clinical trial [89]. Y-27632, a rho-kinase inhibitor,
attenuates breast cancer cell migration, proliferation, and bone metastasis [90]. MEK
inhibitors BRD-K12244279 and PD98059 were identified as repurposing drug agents
for treating vestibular schwannoma [91]. Pilocarpine is a cholinergic parasympathetic
stimulant, generally used to treat xerostomia and oral cavities [92]. Tremorine was
utilized to induce tremors and replicate symptoms resembling Parkinson’s disease in
animal models [93]. Overall, 16 protein kinase inhibitors selected by our AI pipeline are
promising targeted therapies for treating breast cancer, substantiating the effectiveness
of our AI/ML methods. We discovered experimental agents, including MEK inhibitors
PD19830 and BRD-K12244279, pilocarpine, and tremorine as potential new drug options
for improving breast cancer survival outcomes, which were previously unknown.

Characterization of patient responders/non-responders is essential in designing clin-
ical trials to test the efficacy of new and repositioning drugs. HCC1143 is a top in-vitro
model to investigate TNBC and its transcriptional profiles are suitable to study the In-
terferon, IGF1, and MET signaling pathways [94]. HCC1143 was sensitive to PD0325901,
PD184352, PD198306, pilocarpine, RITA, serdemetan, tremorine, and Y-27632, and resis-
tant to lestaurtinib, midostaurin, and nilotinib. HCC1806, another TNBC cell line with
multi-drug resistance [95], was sensitive to midostaurin, nilotinib, PD0325901, PD198306,
PD98059, pilocarpine, RITA, sorafenib, TG101348, tremorine, and Y-27632, and was resistant
to AS703026, dasatinib, and lestaurtinib. HCC1937, a TNBC line derived from a 24-year-old
woman with a family history of breast cancer and a germline mutation in BRCA1 [96,97],
was sensitive to pilocarpine, RITA, TG101348, and tremorine, and resistant to AS703026,
dasatinib, midostaurin, nilotinib, PD0325901, PD198306, and PD98059. TNBC HCC38
cell line was sensitive to PD98059, pilocarpine, RITA, serdemetan, sorafenib, tremorine,
and Y-27632, and resistant to dasatinib, lestaurtinib, midostaurin, nilotinib, PD0325901,
PD184352, and PD198306. Luminal A MCF7 cells were sensitive to PD184352, PD198306,
PD98059, RITA, TG101348, and U0126, and resistant to dasatinib, BRD-K12244279, and
PD0325901. These results are useful for the clinical development of these drugs for treating
breast cancer, especially TNBC.

Top occurring gene fusions and non-silent mutations in the above cell lines were
pinpointed. The top fusion genes in HCC1143 were PPP2R5A and ZNRD1ASP, both having
8 fusions, and the top mutated gene is MUC3A with 6 mutations. SMURF2 had 6 fusions
and TTN had 10 non-silent mutations in HCC1806. MUC3A had 7 mutations in HCC1937.
COL24A1 had 12 fusions, and MUC3A and MUC5AC both had 6 mutations in HCC38.
In MCF7, the top fusion genes were ATXN7 and VMP1, both having 6 fusions, and the
top mutated gene was MUC3A with 7 mutations. MUC3A was the top mutated gene in
multiple BRCA cell lines and promoted the progression of colorectal cancer through the
PI3K/Akt/mTOR pathway [98]. RAD51C-ATXN7 fusion gene expression was associated
with functional damage of DNA repair and its fusion transcript generated a fusion protein
in colorectal tumors [99]. RAD51C-ATXN7 fusion was also present in MCF7. More details
were provided in Supplementary File S3. The multimodal information presented in this
study is important for future research and clinical management of breast cancer. The
AI pipeline presented in this study can also be applied to model other data types for
new/repositioning drug discovery, such as DNA copy number variation, transcriptomic,
and proteomics profiles in bulk tumors and single cells for other cancer types as we
previously published [100–102]. In the future, we will also apply this pipeline to model
other structural variants for the discovery of biomarkers and therapeutic targets.
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This study has several limitations. First, our patient cohort has a small sample size.
The identified tissue-based 86 miRNAs and six blood-based miRNAs can separate breast
cancer and normal samples with an overall accuracy of 90.4% and 100%, respectively.
Nevertheless, due to the small sample size, their clinical utility in breast cancer diagnosis
needs to be substantiated with the following studies: (1) an independent external patient
cohort with a larger sample size; (2) high overall accuracy, specificity, and sensitivity in the
external validation with the classification model fixed in the training-validation process;
and (3) prospective validation of clinical benefits showing improved patient outcomes by
using the diagnostic miRNA tests. Fulfilling these tasks will be time-consuming and require
a vast amount of resources. Second, the functions of the identified potential oncomiRs
and potential tumor-suppressing miRNAs need to be investigated in future research.
Following the mechanistic characterization, the development of miRNA-based drugs needs
to overcome technical challenges in achieving the optimal delivery route, intracellular
efficacy, tissue specificity, and in-vivo stability. Finally, the identified compounds as new
or repositioning drugs for breast cancer treatment were based on bioinformatics analysis
and in-vitro IC50/EC50 measurements in human breast cancer cell lines. Their efficacy
in treating breast cancer needs to be tested in future animal studies and/or clinical trials
before obtaining regulatory approvals for clinical applications.

5. Conclusions

This study identified a set of 86 miRNAs to distinguish breast cancer tumors from
normal breast tissues. Six miRNAs had concordant expression in both tumors and breast
cancer patient blood samples compared with the normal control samples, with implications
for the development of minimally-invasive diagnostic tests using liquid biopsies. Twelve
miRNAs had concordant expression patterns in breast cancer initiation and progression,
with seven as potential tumor suppressors and five as potential oncomiRs. From experi-
mentally validated target genes of these 86 miRNAs, pan-sensitive and pan-resistant genes
with concordant mRNA and protein expression associated with in-vitro drug response to
19 NCCN-recommended breast cancer drugs were selected. These genes, combined with
in-vitro proliferation assays and patient survival analysis, led to the discovery of MEK
inhibitors PD19830 and BRD-K12244279, pilocarpine, and tremorine as potential new drug
options for treating breast cancer. Multi-omics biomarkers for response to the discovered
drugs were identified using CCLE breast cancer cell lines. The presented AI pipeline
utilizing multi-omics data analysis for the discovery of biomarkers and drug development
can be applied to many human cancers.

6. Patents

The results in this manuscript were included in a provisional patent with the serial
number US 63/515,087.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/cells12141917/s1: Supplementary File S1: MiRNA expression in tumor
initiation and progression.Supplementary File S2: MiRNA targeted genes and pathway analysis.
Supplementary File S3: Drug discovery with CMap.
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