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Abstract: Chronic HIV infection is characterized by persistent inflammation despite antiretrovi-
ral therapy (ART). Cannabinoids may help reduce systemic inflammation in people with HIV
(PWH). To assess the effects of oral cannabinoids during HIV, ten PWH on ART were random-
ized (n = 5/group) to increasing doses of oral ∆9-tetrahydrocannabinol (THC): cannabidiol (CBD)
combination (2.5:2.5–15:15 mg/day) capsules or CBD-only (200–800 mg/day) capsules for 12 weeks.
Blood specimens were collected prospectively 7–21 days prior to treatment initiation and at weeks 0
to 14. Plasma cytokine levels were determined via Luminex and ELISA. Immune cell subsets were
characterized by flow cytometry. HIV DNA/RNA were measured in circulating CD4 T-cells and
sperm by ultra-sensitive qPCR. Results from both arms were combined for statistical analysis. Plasma
levels of IFN-γ, IL-1β, sTNFRII, and REG-3α were significantly reduced at the end of treatment
(p < 0.05). A significant decrease in frequencies of PD1+ memory CD4 T-cells, CD73+ regulatory CD4
T-cells, and M-DC8+ intermediate monocytes was also observed (p < 0.05), along with a transient
decrease in CD28–CD57+ senescent CD4 and CD8 T-cells. Ki-67+ CD4 T-cells, CCR2+ non-classical
monocytes, and myeloid dendritic cells increased over time (p < 0.05). There were no significant
changes in other inflammatory markers or HIV DNA/RNA levels. These findings can guide future
large clinical trials investigating cannabinoid anti-inflammatory properties.

Keywords: cannabinoids; ∆9-tetrahydrocannabinol (THC); cannabidiol (CBD); systemic inflammation;
immune response; HIV reservoir
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1. Introduction

Despite effective antiretroviral therapy (ART), people with HIV (PWH) continue to
suffer from chronic systemic inflammation and persistent immune activation [1–3]. This
deleterious inflammatory state is thought to result from multifactorial and progressive
events, including CD4 T-cell depletion in gut-associated lymphoid tissue (GALT) during
acute infection, which induces persistent dysregulation of intestinal T-cell homeostasis
and promotes long-lasting disruption of the gut epithelial mucosa [1,4]. Increased gut
mucosal permeability leads to microbial antigen translocation from the gut lumen into
the bloodstream [1–3,5,6]. These antigens, in turn, trigger immune cell activation and
subsequent release of high amounts of pro-inflammatory soluble factors. Gut mucosal
damage in PWH is chronic, hence it persists in PWH despite HIV infection being con-
trolled with ART and regardless of the timing of ART initiation [7,8]. It leads to persistent
T-cell activation and their subsequent exhaustion and immunosenescence [1–3,5,9]. To-
gether, these factors contribute to the establishment of a vicious cycle that fuels a chronic
inflammatory state, leading to early ageing and predisposing PWH to an increased risk of
non-AIDS co-morbidities such as metabolic syndrome, cardiovascular diseases, cancers,
and neurological disorders [1–3,5,6]. In addition, heightened levels of inflammation during
ART are associated with the persistence of HIV reservoirs [10,11], the major obstacle to
HIV eradication. Thus, targeting various players involved in this vicious cycle could help
dampen chronic inflammation, reduce the occurrence rate of non-AIDS comorbidities in
PWH, and facilitate the clearance of HIV reservoirs.

Primary phytocannabinoids ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD)
displayed anti-inflammatory properties in experimental models in both in vitro [12–16]
and in vivo studies involving mice [17], simian immunodeficiency virus (SIV) infection of
non-human primates [18–21] and in humans [22]. Cannabinoids improved experimental
inflammation by suppressing the release of pro-inflammatory cytokines and reactive oxygen
species [23], reducing frequencies of inflammatory T helper (Th) 17 lymphocytes, and
increasing frequencies of regulatory T-cells (Tregs) [24,25]. Cannabinoids also attenuated
SIV-associated intestinal inflammation [18], as well as SIV-induced neuroinflammation, by
reducing gut microbiome dysbiosis [26]. The latter occurred via increased gut bacterial
diversity, decreased expression of pro-inflammatory genes, and increased production of
anti-inflammatory regulatory micro-RNA in the gastrointestinal tract [20,26–28]. THC and
CBD exert their anti-inflammatory properties largely through the activation of receptors of
the endocannabinoid system, particularly the cannabinoid receptor type 1 (CB1R) and 2
(CB2R), which are mainly expressed, although at different levels, in the brain and the central
nervous system (CNS) [29,30], the gastrointestinal tract [25,31,32] and on immune cells [33].
By alleviating gut epithelial damage and systemic inflammation, cannabinoid treatment
could have the potential to reduce systemic inflammation in PWH [34,35]. Furthermore, oral
administration of lipid-based formulations of cannabinoids could substantially facilitate
the exposure of intestinal tissue-resident immune cells to these molecules and promote
their anti-inflammatory effects [36].

Recreational cannabis was legalized in Canada in 2018, making it possible to possess
cannabis without the need for a prescription. Cannabis use is common among PWH for
both recreational and medicinal purposes. Many PWH use it to alleviate various symp-
tomatologies such as anxiety, depression, and chronic pain [37–40]. Similarly to purified
cannabinoids, consumption of the cannabis plant via inhalation has also been associated
with anti-inflammatory outcomes in human observational studies [32,41–45]. However,
because the cannabis plant contains more than 120 bioactive compounds, including phyto-
cannabinoids [46], disentangling the effects of specific compounds, their doses, and their
observed effects is challenging if not impossible. In addition, one of the main phytocannabi-
noids, THC, is well known for its psychotropic effects, which has been associated with
adverse effects [46]. Cannabis consumption has also been associated with some negative
outcomes, such as decreased adherence to ART in older PWH [47,48]. In adolescents,



Cells 2023, 12, 1811 3 of 28

cannabis use has been associated with impaired cognitive abilities, an observation which
has been attributable to CB1R activation in the CNS and the brain by THC [49].

Given the discrepancies across studies and the inherent risk of confounding in observa-
tional studies, it is important to clearly delineate whether cannabinoids may have a role in
reducing systemic inflammation in PWH. In addition, it is necessary to determine whether
cannabinoids, when administered at safe and tolerable doses to PWH, can have an impact
on markers of systemic inflammation. We recently reported that cannabinoids administered
in a randomized, open-label, interventional clinical trial (CTN PT028 study) were generally
safe and well tolerated in PWH with well-controlled HIV on ART [50]. Herein, we report on
the effects of oral cannabinoids on systemic inflammation, markers of gut mucosal damage,
lymphoid and myeloid immune cell subsets, and markers of HIV persistence in PWH under
suppressive ART. Given their synergistic effect, and the fact that CBD tends to improve
the tolerability of THC when administered together [51–54], a THC:CBD combination was
selected for one arm of this study. A formulation containing only CBD was also selected, in
order to document effects related to the use of CBD in isolation.

2. Materials and Methods
2.1. Study Population and Design

This study was part of a randomized, open-label, interventional pilot clinical trial (CIHR
Canadian HIV Trials Network (CTN) PT028, Trial registration number: NCT03550352) aim-
ing to assess the safety and tolerability of oral THC:CBD combined, or CBD-only cap-
sules consumed daily for 12 weeks with an initial target sample size of n = 26 (n = 13
per study arm) [50]. Participants were enrolled between September 2021 and February
2022. PWH (18 years and older) on ART for at least 3 years with suppressed viral loads
(VL < 40 copies/mL) were recruited at the Chronic Viral Illness Service, Royal Victoria
Hospital of the McGill University Health Centre in Montreal, Canada. Participants were
randomized in a 1:1 ratio and received oral capsules of highly purified (>98%) cannabinoid
oil (Tilray Brands, Inc., New York City, NY, USA), consisting of either TN-TC11M2 for-
mulation, a THC:CBD combination in a 1:1 ratio (CBD: 2.5/THC: 2.5 mg), or TN-C200M2
formulation, containing CBD only (200 mg), for a maximum of 12 weeks. The following
up-titration schedule was recommended to participants in THC:CBD study arm: 5 mg
THC/5 mg CBD (1 capsule twice daily) during week 0 and week 1; 10 mg THC/10 mg CBD
(2 capsules twice daily) week 2 and week 3; and 15 mg THC/15 mg CBD (2 capsules three
times daily) week 4 to week 12 (end of treatment). For the CBD-only study arm, participants
were advised to take 200 mg CBD (1 capsule once daily) from week 0 to week 1; 400 mg
CBD (1 capsule twice daily) from week 2 to week 3; and 800 mg CBD (2 capsules twice daily)
from week 4 to week 12. The dosages for the THC/CBD combination (2.5–15 mg/day) and
the CBD-only formulation (200–800 mg/day) have been determined based on other clinical
trials that have shown their safety, tolerability, and efficacy for the management of chronic
pain, epilepsy, schizophrenia or multiple sclerosis [55–58]. The decision to use these specific
formulations was also influenced in part by availability from the supplier. Of note, we
chose a formulation of oral capsules for this study in order to have accurate information
regarding the doses of cannabinoids participants were ingesting, to avoid the pulmonary
toxicity associated with inhalation, and to determine whether oral administration can
have an impact on markers associated with gut mucosal translocation. Participants were
excluded if they used cannabinoid-containing products outside of this study or within
4 weeks before starting this study. Cannabinoids were permanently discontinued when se-
vere adverse events occurred [50]. Further details on study design, participant recruitment,
and inclusion/exclusion criteria can be found in the study protocol [59] and our previous
publication on this trial which reported on safety and tolerability [50].
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2.2. Blood and Semen Specimens Processing

Blood specimens were collected from each participant 7 to 21 days prior to treatment
initiation, at week 0, and weeks 1, 2, 6, 8, 12, and 14 (end of study) for hematologi-
cal/biochemical profile assessment [50], plasma cytokine and gut damage measurements,
characterization of immune cell subsets, and quantification of HIV reservoir markers. Blood
plasma was isolated via centrifugation, and stored at −80 ◦C to be analyzed in one batch
at the end of this study. Peripheral blood mononuclear cells (PBMCs) were isolated using
lymphocyte separation medium (WISENT Inc., Quebec City, QC, Canada) and cryopre-
served in fetal bovine serum (FBS; WISENT Inc., Quebec City, QC, Canada) containing 10%
dimethyl sulfoxide (DMSO) to be analyzed after study completion.

In parallel, semen samples were collected in sterile containers with 10 mL of Roswell
Park Memorial Institute medium (RPMI; WISENT Inc., Quebec City, QC, Canada) with
100 U/mL penicillin and 100 mg/mL streptomycin (WISENT Inc., Quebec City, QC,
Canada) were obtained from male participants (21 to 7 days prior to treatment initia-
tion and at treatment completion at week 12). Upon arrival at the clinic, semen specimens
were sent to the lab and centrifuged. The supernatant and cell pellets were separated and
stored at −80 ◦C until HIV reservoir quantification.

2.3. Measurements of Soluble Markers and Cytokines in Plasma

Tumor necrosis factor alpha (TNF-α), interferon-gamma (IFN-γ), interleukin 1-beta
(IL-1β), IL-6, IL-8, interferon gamma inducible protein-10 (IP-10) and IL-10 were measured
in 25 µL of plasma using the MILLIPLEX® Human Cytokine/Chemokine/Growth Factor
Panel A according to the manufacturer’s instructions (MilliporeSigma, Burlington, MA,
USA). ELISA kits were used to quantify lipopolysaccharide (LPS) (Cusabio Technology LLC,
Houston, TX, USA), soluble CD14 (sCD14) (Hycult Biotech, Uden, Netherlands), soluble
CD27 (sCD27) (Thermo Fisher Scientific, Waltham, MA, USA), soluble receptor for tumor
necrosis factor type II (sTNFRII) (R&D Systems, Inc., Minneapolis, MN, USA), intestinal
fatty acid binding protein (I-FABP) (Hycult Biotech, Uden, Netherlands), and human
regenerating islet derived protein 3 alpha (REG-3α) (R&D Systems, Inc., Minneapolis,
MN, USA) according to the manufacturer’s protocols. All measurements were performed
in duplicate.

2.4. Ex Vivo Immunophenotyping of T-Cells, Monocytes, and Dendritic Cells

Multiparametric flow cytometry was used for the immunophenotyping of T-cells,
monocytes, and dendritic cells. 1 × 106 PBMCs were stained with extracellular antibodies
in phosphate-buffered saline (PBS) + 2% FBS for 1 h at 4 ◦C protected from light. For
intracellular staining, cells were fixed and permeabilized using the Transcription Factor
Buffer Set according to the manufacturer’s instructions (BD Bioscience, ON, Canada), and
incubated with the appropriate antibodies for 1 h at 4 ◦C protected from light. Antibody-
labeled cells were acquired on a 3-laser BD Fortessa-X20. Antibodies used for phenotyping
are listed in Table S1, and fluorochrome minus one control (FMO) were used for some
markers such as CCR6, CCR4, CXCR3, CX3CR1, CD163, and CCR2. All flow cytometric
data were analyzed using FlowJo V10.8.1 (FlowJo LLC, Ashland, OR, USA).

2.5. HIV DNA and Cell-Associated HIV RNA Quantification

Prior to quantification, genomic DNA and cellular RNA were extracted from PBMCs
and semen cell pellets using the QIAamp DNA mini kit and QIAamp RNA mini kit
(Qiagen, Hilden, Germany), respectively. Total HIV DNA and cell-associated HIV RNA
targeting the LTR-gag region were measured in blood CD4 T-cells and sperm cells by ultra-
sensitive nested real-time PCR, as previously described [60,61]. Cell-free viral RNA was
also measured in semen supernatant by ultra-sensitive qPCR [60,61]. Detailed methodology
is provided in Supplementary Material S1.
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2.6. Statistical Analyses

Descriptive statistics of quantitative variables were presented as the means with stan-
dard deviations and medians with interquartile range (IQR). The Wilcoxon matched-pairs
signed-rank test was used to compare paired repeated measurements between two visits.
Due to the small number of participants who have completed the full treatment course
(n = 8), and because each participant underwent a personalized cannabinoid titration
schedule according to their tolerability, study results from both arms were pooled together
for non-parametric paired statistical analysis. The primary analysis has been performed
between the initiation of the cannabinoid treatment (week 0) versus the treatment interrup-
tion (week 12) as well as two weeks after treatment interruption (week 14) to assess the
persistence of cannabinoid effects. Secondly, a week-to-week comparison is also provided
as a supplementary analysis. GraphPad Prism Software (version 9.0.0, San Diego, CA,
USA) was used for statistical analyses.

3. Results
3.1. Study Participants

Despite the initial sample size target of n = 26, this study was ended prematurely due
to the rupture of cannabinoid capsules stock, the impossibility of renewing the stock of
capsules with the same manufacturing criteria, and enrolment challenges as previously
reported [50]. Thus, 10 PWH (median age: 57.5 years, IQR: 55–62), 8 males and 2 females,
were included over a 6-month period, randomized in a 1:1 ratio to either TN-TC11M2 (arm
1) or TN-C200M2 (arm 2) [50]. Their baseline characteristics are summarized in Table 1.
Eight study participants successfully completed the treatment and 2 were withdrawn for
safety reasons as described previously [50]. CD4 T-cell count and CD4/CD8 ratio were
stable and HIV viral load remained suppressed throughout the study [50]. All participants
abstained from cannabis smoking and cannabis edibles for at least 4 weeks before study
initiation and over time of the study duration. The majority (8/10) of participants reported
at least one adverse event, and most of them were of mild to moderate severity. The
frequently reported were somnolence (50%), diarrhea (20%), difficulty concentrating (20%),
transaminitis (20%), and worsened diabetes type 2 (20%). A complete list of adverse event
that have occurred during this study was previously reported [50]. Somnolence, difficulty
concentrating, cognitive impairment, and increased appetite were considered definitively
related to cannabinoids intake.

Table 1. Demographic and biological characteristics of study participants at inclusion.

Total
Population

(n = 10)

Age (Years), median (±IQR) 57.5 (54.75–61.75)

Sex assigned at birth (n (%))

Male 8 (80%)

Female 2 (20%)

Ethnicity (n (%))

White-North American 6 (60%)

Black-African 1 (10%)

Asian 1 (10%)

Mixed ethnicity 2 (20%)

Antiretroviral regimens (n (%))

Biktarvy® (Bictegravir/Tenofovir alafenamide/Emtricitabine) 5 (50%)
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Table 1. Cont.

Total
Population

(n = 10)

Triumeq® (Dolutegravir/Abacavir/Lamivudine) 1 (10%)

Truvada®/Viramure® (Tenofovir/Emtricitabine/Nevirapine) 1 (10%)

Raltegravir/Kivexa®/Biktarvy®

(Raltegravir/Abacavir/Lamivudine/Bictegravir/Tenofovir
alafenamide/Emtricitabine)

1 (10%)

Genvoya® (Elvitegravir/Cobicistat/Emtricitabine/Tenofovir alafenamide) 1 (10%)

Delstrigo® (Doravirine/Lamivudine/Tenofovir disoproxil fumarate) 1 (10%)

Oral cannabinoids regimens (n (%))

TN-TC11M2 formulation (CBD: 2.5/THC: 2.5 mg) 5 (50%)

TN-C200M2 formulation (CBD: 200 mg) 5 (50%)

Cannabis use in the past 6 months before study initiation (n (%))

No 3 (30%)

Yes 7 (70%)

Monthly 5 (72.43%)

Weekly 2 (28.57%)

Daily 0 (0%)

Alcohol use in the past 6 months (n (%))

No 5 (50%)

Yes 5 (50%)

Drug use in the past 6 months (n (%))

No 3 (30%)

Yes 7 (70%)

History of infectious diseases (n (%))

Syphilis (treated) 2 (20%)

Hepatitis B (Anti-HBc Antibodies) 4 (40%)

Hepatitis C (Anti-HCV Antibodies) 0 (0%)

3.2. Effect of Oral Cannabinoids on Plasma Markers of Gut Epithelial Damage, Microbial
Translocation, and Systemic Inflammation
Reduced Levels of Soluble Markers of Gut Epithelial Damage, Microbial Translocation,
Immune Activation, and Pro-Inflammatory Cytokines

The effects of cannabinoid treatment on the integrity of the gut mucosal barrier were
evaluated through changes in plasma levels of I-FABP and REG-3α as markers of gut
epithelial damage in PWH [7,62]. The overall plasma levels of REG-3α were significantly
lower after treatment completion (week 0 vs. week 12: p = 0.04, Figure 1a). Following
treatment initiation, a significant decrease in levels of REG-3α was observed at week 2
(week 0 vs. week 2: p = 0.001), which increased transiently at week 6 (week 2 vs. week
6: p = 0.004), and then continued to drop until the end of treatment (week 6 vs. week 12:
p = 0.008). No significant changes in levels of I-FABP were observed (Table 2).

Plasma levels of bacterial LPS did not significantly change from baseline until treat-
ment completion. However, plasma levels of LPS showed a transient increase at week 8
(week 0 vs. week 8: p = 0.008), followed by a significant drop up until treatment termination
(week 8 vs. week 12: p = 0.02) (Table 2). Plasma markers of immune activation (sCD14,
sCD27, sTNFRII) were also assessed. sCD14 is shed by activated monocytes and serves as
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a marker of monocyte activation and inflammation during HIV infection [7,62]. As with
LPS, no significant changes in the plasma level of sCD14 were observed from baseline until
treatment completion. sCD14 also followed a biphasic pattern with a slight increase after
cannabinoid treatment initiation (week 1 vs. week 6 p = 0.02), followed by a significant drop
in its plasma concentration until the end of treatment (week 6 vs. week 8: p = 0.02; week 6
vs. week 12: p = 0.02). sTNFRII is a soluble form of the TNF-α receptor and serves also as a
marker of inflammation in HIV infection [63]. Levels of sTNFRII dropped significantly at
week 8 (week 0 vs. week 8: p = 0.04) and remained low until the end of treatment (week 0
vs. week 12: p = 0.04, Figure 1b). Lastly, we have assessed plasma levels of sCD27, which is
shed from the surface of activated lymphocytes, and serves as a marker of T-cell–mediated
inflammation [64]. There were no significant changes in levels of sCD27 over the course of
treatment (Table 2). Plasma levels of pro-inflammatory (TNF-α, IFN-γ, IL-1β, IL-6, IL-8,
IP-10) and anti-inflammatory (IL-10) cytokines were measured by Luminex. A significant
decrease in plasma levels of TNF-α (week 0 vs. week 14; p = 0.02), IFN-γ (week 0 vs. week
12: p = 0.03, Figure 1c), IL-1β (week 1 vs. week 12; p = 0.02), and IL-8 (week 8 vs. week 14;
p = 0.03) was observed (Table 2). Other soluble markers showed a biphasic pattern with
an early increase followed by a reduction until the end of the treatment. Plasma levels of
IP-10 showed a transient drop at week 6 (week 1 vs. week 6: p = 0.01) and a subsequent
rebound at week 8 (week 6 vs. week 8: p = 0.04), with no overall significant change between
initiation and end of treatment. No significant changes in levels of IL-6 or IL-10 were
observed (Table 2).

Altogether, over the treatment period, the dynamic of most of the soluble plasma
markers showed a biphasic pattern, with a transient increase during the first weeks of
cannabinoids uptake, followed by a significant reduction until treatment completion.

3.3. Effect of Oral Cannabinoids on Blood T-Cell, Monocyte, and Dendritic Cell Subsets
3.3.1. Changes in Circulating CD4 T-Cell Subsets

While no significant changes in frequencies of naïve (CD45RA+CD28+CCR7+), central
memory (CD45RA−CD28+CCR7+), and transitional memory (CD45RA−CD28+CCR7−)
CD4 T-cells were observed, levels of effector memory (CD45RA−CD28−CCR7−) CD4
T-cells were significantly lower at weeks 6 and 8 following treatment initiation (week 0 vs.
week 6; p = 0.04, week 1 vs. week 8; p = 0.02) (Table 3, Figure S1). Similarly, frequencies of
terminally differentiated (CD45RA+CD28−CCR7−) CD4 T-cells were significantly lower
at week 8 (week 1 vs. week 8: p = 0.02). However, in both cases, the overall change in these
memory subsets between week 0 and week 12 was not significant.

Frequencies of senescent (CD28−CD57+) CD4 T-cells dropped significantly between
weeks 1 and 8 (p = 0.04). Levels of PD1+ CD45RA−CD4 T-cells also decreased significantly
over the treatment course (week 0 vs. week 14: p = 0.02, week 1 vs. week 12: p = 0.02, week
1 vs. week 14: p = 0.01, week 2 vs. week 12: p = 0.03, week 2 vs. week 14: p = 0.01, week 6 vs.
week 14: p = 0.02; Table 3). We observed a significant increase in frequencies of proliferating
Ki67+ CD45RA−CD4 T-cells at the end of treatment (week 0 vs. week 12: p = 0.047,
Figure 2a). Frequencies of CCR6+ CD45RA−CD4 T-cells, as well as expression of both
ectonucleotidases CD39/CD73 by CD4 T-cells, were significantly lower after treatment
termination (CCR6: week 1 vs. week14 p = 0.02; CD39: week 6 vs. week 14 p = 0.04;
CD73 week 0 vs. week 14 p = 0.02). No significant differences in expression levels of
HLA-DR/CD38, CTLA-4, and chemokine receptors CCR4/CXCR3 were observed (Table 3,
Figure S1).
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Table 2. Dynamic of plasma soluble markers of gut mucosal damages (REG-3α, I-FABP), microbial translocation and immune activation (LPS, sCD14, and sCD27,
sTNFRII), and pro-inflammatory (TNF-α, IFN-γ, IL-1β, IL-6, IL-8, IP-10) and anti-inflammatory (IL-10) cytokines during cannabinoids treatment, from treatment
initiation to study termination.

Plasma Markers

Study Time-Line

Week 0
Treatment Initiation n = 10

Week 1
n = 10

Week 2
n = 10

$ Week 6
n = 9

$ Week 8
n = 8

$ Week 12
End of Treatment

n = 8

$ Week 14
Study Termination

n = 8

Gut mucosal damage

REG-3α (pg/mL)
[Mean (SD)] 5621 (3299) b,e 5390 (3294) g 4663 (2970) b,g,l,m 5610 (3403) l,q,r 5315 (3140) m,s,t 4950 (3018) e,q,s 4757 (3366) r,t

[Median (IQR)] 5608 (2617–7039) b,e 5157 (2533–6751) g 4893 (2220–5740) b,g,l,m 5620 (2582- 6762) l,q,r 5784 (2451–6430) m,s,t 5612 (2074–6013) e,q,s 4834 (1705–6048) r,t

I-FABP (pg/mL)
[Mean (SD)] 895.6 (774.2) 1129 (1026) 1117 (1160) 794.5 (455.6) 887.4 (768.6) 802.3 (581.7) 709.3 (526.4)

[Median (IQR)] 660.6 (436.6–1275) 731.1 (422.2–2001) 717.8 (549.3–1174) 557.5 (354.6–1202) 665.8 (316.6–1368) 658.0 (288.6–1338) 517.6 (388.1–916.1)

Microbial translocation and immune activation

LPS (pg/mL)
[Mean (SD)] 98.7 (47.76) d 99.75 (54.67) i 89.3 (45.11) m 104.7 (43.97) p 138.3 (63.09) d,i,m,p,s,t 112.2 (45.7) s 94.73 (37.82) t

[Median (IQR)] 88.29 (60.6–144.0) d 93.18 (55.7–139.7) i 76.56 (56.2–142.3) m 102.8 (64.8–146.4) p 131.9 (98.8–197.7) d,i,m,p,s,t 115.8 (80.7–136.2) s 98.78 (72.6–125.4) t

sCD14 (ng/mL)
[Mean (SD)] 2583 (536.9) 2446 (447.3) h 2605 (472.9) 2855 (676.3) h,p,q 2407 (399.2) p 2491 (449.7) q 2650 (602.7)

[Median (IQR)] 2472 (2166–2825) 2344 (2110–2877) h 2493 (2248–2995) 2766 (2371–3257) h,p,q 2327 (2034–2797) p 2371 (2181–2800) q 2523 (2144–2945)

sCD27 (U/mL)
[Mean (SD)] 110.9 (22.73) 113.3 (31.55) 111.4 (26.81) 113.3 (28.88) 112.8 (35.98) 109.3 (35.76) 108.6 (28.85)

[Median (IQR)] 114.6 (87.3–127.2) 110.5 (93.4–122.3) 105.7 (88.2–135.2) 103.4 (88.8–137.8) 108.6 (79.5–136.2) 91.20 (83.5–141.9) 106.3 (80.6–132.8)

sTNFRII (pg/mL)
[Mean (SD)] 2297 (665.4) d,e 2279 (713.7) i,j 2329 (800.1) n 2631 (1076) 2096 (481.1) d,i 2027 (410.0) e,j,n 2215 (740.8)

[Median (IQR)] 2202 (1708–2823) d,e 2037 (1680–3061) i,j 2115 (1639–3158) n 2608 (1752–3321) 1971 (1727–2626) d,i 1938 (1674–2353) e,j,n 1957 (1719–3002)

Pro-inflammatory cytokines

TNF-α (pg/mL)
[Mean (SD)] 2.61 (1.64) f 2.18 (1.19) 2.57 (2.17) o 2.06 (1.10) 2.27 (0.77) 2.03(0.71) 2.13 (1.48) f,o

[Median (IQR)] 2.38 (1.38–3.63) f 2.16 (0.87–3.21) 1.82 (0.89–3.58) o 1.93 (1.27–2.69) 2.09 (1.54–2.91) 1.94 (1.39–2.67) 1.56 (0.95–3.78) f,o

INF-γ (pg/mL)
[Mean (SD)] 10.98 (18.11) e 8.24 (11.43) 14.31 (24.62) 9.9 (13.52) q 9.26 (11.73) 8.55 (11.63) e,q 9.93 (15.35)

[Median (IQR)] 3.38 (0.53–13.63) e 3.2 (0.53–13.28) 2.28 (0.48–21.01) 1.63 (0.52–21.62) q 2.79 (0.54–18.82) 3.32 (0.54–20.81) e,q 2.66 (0.67–21.74)

IL-1β (pg/mL)
[Mean (SD)] 0.52 (0.45) 0.62 (0.64) h,j 0.58 (0.58) 0.43 (0.34) h 0.40 (0.20) 0.40 (0.24) j 0.62 (0.72)

[Median (IQR)] 0.44 (0.24–0.59) 0.47 (0.18–0.68) h,j 0.46 (0.26–0.59) 0.38 (0.14–0.65) h 0.46 (0.17–0.60) 0.44 (0.15–0.52) j 0.42 (0.19–0.66)
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Table 2. Cont.

Plasma Markers

Study Time-Line

Week 0
Treatment Initiation n = 10

Week 1
n = 10

Week 2
n = 10

$ Week 6
n = 9

$ Week 8
n = 8

$ Week 12
End of Treatment

n = 8

$ Week 14
Study Termination

n = 8

IL-6 (pg/mL)
[Mean (SD)] 1.44 (1.00) 1.11 (0.75) 1.36 (0.97) 1.36 (0.91) 1.40 (1.15) 1.22 (0.97) 1.29 (1.13)

[Median (IQR)] 1.14 (0.51–2.30) 0.91 (0.41–1.91) 1.30 (0.55–1.86) 0.92 (0.63–2.30) 0.87(0.63–1.92) 0.88 (0.47–1.69) 1.07 (0.38–1.72)

IL-8 (pg/mL)
[Mean (SD)] 5.50 (3.5) 5.79 (5.6) 5.12 (3.18) 5.53 (2.88) 6.20 (2.41) t 5.61 (2.99) 4.21 (1.42) t

[Median (IQR)] 4.97 (3.05–7.38) 3.88 (2.08–8.10) 4.89 (2.80–7.67) 5.94 (2.74–7.92) 5.84 (4.00–8.37) t 5.76 (2.66–7.59) 4.68 (2.86–5.32) t

IP-10 (pg/mL)
[Mean (SD)] 55.99 (36.72) 55.5 (33.47) h 51.26 (24.24) 50.55 (26.04) h,p 61.80 (35.97) p 56.68 (25.52) 52.59 (28.58)

[Median (IQR)] 43.74 (30.11–77.91) 43.18 (31.62–76.80) h 42.97 (32.30–74.06) 41.51 (35.77–69.95) h,p 50.05 (36.14–95.64) p 48.65 (42.49–81.62) 41.80 (33.77–75.17)

Anti-inflammatory cytokine

IL-10 (pg/mL)
[Mean (SD)] 1.26 (1.37) 0.92 (0.54) 1.0 (0.68) 0.93 (0.44) 1.1 (0.85) 1.1 (0.74) 0.93 (0.49)

[Median (IQR)] 0.77 (0.49–1.55) 0.79 (0.51–1.28) 0.85 (0.47–1.26) 0.86 (0.53–1.29) 0.82 (0.50–1.36) 0.87 (0.60–1.52) 0.90 (0.52–1.18)

Results are shown as the mean and standard deviation (SD) and as the median and interquartile range (IQR). Significant differences (p < 0.05) following the Wilcoxon matched-pairs
signed-rank test are mentioned as follows: a: week 0 vs. week 1; b: week 0 vs. week 2; c: week 0 vs. week 6; d: week 0 vs. week 8; e: week 0 vs. week 12; f: week 0 vs. week 14; g: week 1
vs. week 2; h: week 1 vs. week 6; i: week 1 vs. week 8; j: week 1 vs. week 12; k: week 1 vs. week 14; l: week 2 vs. week 6; m: week 2 vs. week 8; n: week 2 vs. week 12; o: week 2 vs.
week 14; p: week 6 vs. week 8; q: week 6 vs. week 12; r: week 6 vs. week 14; s: week 8 vs. week 12; t: week 8 vs. week 14; u: week 12 vs. week 14. Significant values are presented in bold.
$: Two participants from CBD-only were excluded from analyses at week 6 (one participant) and weeks 8, 12, and 14 (two participants) because they were withdrawn for safety concerns.

Table 3. Dynamic of CD4 and CD8 T-cells, monocytes and dendritic cells populations during cannabinoids treatment.

Cellular Immune Markers

Study Time-Line

Week 0
Treatment Initiation n = 10

Week 1
n = 10

Week 2
n = 10

$ Week 6
n = 9

$ Week 8
n = 8

$ Week 12
End of Treatment

n = 8

$ Week 14
Study Termination

n = 8

CD4 T-Cells

Memory T-Cell Subsets

Naïve (CD45RA+CD28+CCR7+) %
[Mean (SD)] 78.2 (13.1) 79.6 (11.0) 79.4 (12.5) 78.0 (14.3) 76.7 (13.5) 76.2 (13.6) 73.9 (15.6)

[Median (IQR)] 83.4 (66.3–87.4) 83.8 (74.2–86.6) 82.0 (74.4–87.4) 86.2 (65.4–87.7) 81.9 (63.1–85) 80.7 (63.9–84.8) 78.7 (59.1–85.4)

Central Memory (CD45RA−CD28+CCR7+) %
[Mean (SD)] 32.9 (11.7) 33.6 (10.6) 35.3 (12.7) 34.4 (12.7) 32.5 (11.5) 32.7 (12.8) 32.7 (12.4)

[Median (IQR)] 36.6 (22.3–39.6) 33.3 (28.3–40.1) 34.5 (29.3–42.2) 34.4 (25.8–44.1) 34.7 (24.8–38.6) 34.5 (21.1–40.9) 33.8 (22.8–39.7)
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Table 3. Cont.

Cellular Immune Markers

Study Time-Line

Week 0
Treatment Initiation n = 10

Week 1
n = 10

Week 2
n = 10

$ Week 6
n = 9

$ Week 8
n = 8

$ Week 12
End of Treatment

n = 8

$ Week 14
Study Termination

n = 8

Transitional Memory (CD45RA−CD28+CCR7−) %
[Mean (SD)] 64.1 (11.1) 63.8 (10.6) 62.4 (12.5) 63.0 (12.6) 64.9 (11.4) 64.4 (12.7) 63.6 (13.3)

[Median (IQR)] 62 (57.2–71.7) 63.4 (57.6–69.6) 62.6 (52.2–68.3) 60.9 (52.2–73.2) 63.6 (56.6–73.0) 61.5 (55.3–77.4) 62.3 (50.7–75.7)

Effector Memory (CD45RA−CD28−CCR7−) %
[Mean (SD)] 2.6 (3.2) c 2.3 (2.8) i 2.1 (2.5) 2.3 (2.7) c 2.4 (2.7) i 2.6 (2.3) 3.2 (3.9)

[Median (IQR)] 1.0 (0.3–5.9) c 1.0 (0.4–4.6) i 1.1 (0.3–3.7) 0.8 (0.3–4.5) c 1.2 (0.4–5.1) i 1.4 (0.8–5.3) 1.6 (0.5–5.6)

Terminally Differentiated (CD45RA+CD28−CCR7−) %
[Mean (SD)] 2.1 (4.4) b 2.1 (4.6) g,i 1.6 (3.9) b,g 2.1 (4.4) 1.8 (4.2) i 1.8 (3.6) 2.4 (5.6)

[Median (IQR)] 0.2 (0.04–1.9) b 0.2 (0.04–1.6) g,i 0.1 (0.03–1.1) b,g 0.2 (0.05–2.2) 0.1 (0.09–1.3) i 0.2 (0.07–1.8) 0.1 (0.05–1.8)

T-cell functions

HLADR+CD38+ (%)
[Mean (SD)] 3.1 (1.6) 4.0 (3.1) 3.8 (4.1) 2.8 (1.7) 2.7 (1.7) 3.6 (2.7) 3.2 (3.6)

[Median (IQR)] 2.9 (1.6–4.8) 3.8 (1.6–4.9) 2.3 (1.6–4.6) 1.7 (1.3–4.4) 2.2 (1.5–4.6) 2.5 (1.3–6.5) 1.8 (1.2–4.2)

CD45RA−Ki-67+ (%)
[Mean (SD)] 0.8 (0.3) e 0.9 (0.4) 0.9 (0.4) 1.0 (0.5) 1.0 (0.6) 1.0 (0.4) e 0.8 (0.3)

[Median (IQR)] 0.7 (0.5–1.0) e 0.8 (0.5–1.3) 0.8 (0.5–1.2) 1.0 (0.6–1.2) 0.8 (0.6–1.2) 0.9 (0.7–1.2) e 0.7 (0.7–0.9)

CD45RA−PD-1+ (%)
[Mean (SD)] 32.3 (9.5) f 32.4 (9.5) j,k 31.4 (9.5) n,o 32.2 (10.1) r 32.6 (10.3) 30.6 (11.0) j,n 30.8 (9.2) f,k,o,r

[Median (IQR)] 30.5 (26.3–39.0) f 30.7 (24.9–38.3) j,k 30.6 (23.8–37.5) n,o 32.2 (23.0–37.8) r 31.2 (24.5–41.7) 31.3 (22.6–39.2) j,n 30.5 (22.6–37.8) f,k,o,r

CD45RA−CTLA-4+ (%)
[Mean (SD)] 3.0 (1.4) 3.2 (1.5) 3.3 (1.7) 3.6 (2.4) 3.9 (2.2) 3.6 (1.4) 3.8 (1.6)

[Median (IQR)] 3.1 (1.8–4.2) 2.5 (2.0–4.9) 2.5 (2.0–4.9) 3.2 (1.7–5.0) 3.2 (2.4–5.4) 3.8 (2.3–5.1) 3.9 (2.2–4.7)

Senescent (CD28−CD57+) (%)
[Mean (SD)] 1.8 (2.5) 1.5 (2.1) i 1.3 (1.7) 1.5 (2.0) 1.4 (1.6) i 1.3 (1.2) 2.1 (3.2)

[Median (IQR)] 0.5 (0.07–4.0) 0.7 (0.05–3.0) i 0.7 (0.04–2.3) 0.7 (0.1–2.6) 0.7 (0.2–2.2) i 0.8 (0.5–2.0) 0.9 (0.3–2.2)

CD4+CD39+ (%)
[Mean (SD)] 6.1 (4.7) 6.3 (5.1) g 5.9 (4.8) g 6.4 (5.1) r 6.4 (5.3) t 5.9 (5.7) 5.5 (4.8) r,t

[Median (IQR)] 5.1 (2.1–9.0) 5.0 (1.9–9.0) g 4.9 (1.8–8.1) g 5.8 (1.5–10.3) r 5.0 (1.8–11.4) t 5.1 (1.3–7.9) 4.8 (1.3–7.8) r,t

CD4+CD73+ (%)
[Mean (SD)] 6.9 (3.1) d,f 6.4 (2.6) 6.6 (2.8) o 6.2 (3.0) 6.1 (2.8) d 6.3 (3.7) 5.8 (2.9) f,o

[Median (IQR)] 7.1 (4.6–9.2) d,f 6.8 (4.5–7.9) 6.5 (4.9–7.9) o 6.2 (3.9–7.3) 6.6 (3.6–7.0) d 6.1 (3.4–6.8) 5.6 (3.3–6.9) f,o

Chemokine receptors expression

CD45RA−CCR4+ (%)[Mean (SD)] 29.7 (11.4) 29.2 (10.2) 30.1 (10.8) 31.4 (9.5) 30.5 (9.8) 29.4 (10.1) 29.1 (10.4)
[Median (IQR)] 31 (20.5–36.6) 31.6 (21.1–36.0) 31.7 (20.8–38.0) 34.4 (23.2–36.1) 31.8 (20.3–36.6) 30.1 (18.6–38.4) 30.6 (18.3–38.1)
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Table 3. Cont.

Cellular Immune Markers

Study Time-Line

Week 0
Treatment Initiation n = 10

Week 1
n = 10

Week 2
n = 10

$ Week 6
n = 9

$ Week 8
n = 8

$ Week 12
End of Treatment

n = 8

$ Week 14
Study Termination

n = 8

CD45RA−CCR6+ (%)
[Mean (SD)] 9.8 (6.1) 12.6 (7.1) k 11.7 (5.0) 15.0 (10.8) 12.0 (7.2) 10.9 (4.3) 9.7 (6.4) k

[Median (IQR)] 8.8 (5.7–12.4) 11.8 (7.1–19.0) k 11.2 (8.3–16.2) 10.6 (7.4–20.8) 11.4 (8.3–13.3) 10.3 (8.5–13.2) 6.7 (5.7–15.5) k

CD45RA−CXCR3+ (%)
[Mean (SD)] 2.6 (2.9) 3.8 (5.2) 4.1 (3.8) 5.7 (3.6) 2.4 (3.1) 3.5 (3.2) 3.1 (4.7)

[Median (IQR)] 1.7 (0.3–4.1) 2.4 (0.4–4.1) 3.0 (1.8–6.1) 4.9 (3.0–9.1) 0.8 (0.5–5.2) 2.3 (1.7–5.3) 1.2 (0.9–3.5)

Th subsets

Th17 (CD45RA−CCR4+CCR6+ CXCR3−) (%)
[Mean (SD)] 5.2 (3.0) 6.8 (4.0) k 6.4 (2.8) 8.0 (5.9) 6.3 (3.6) 5.8 (2.5) 5.2 (3.5) k

[Median (IQR)] 5.2 (2.8–7.2) 5.5 (4.4–10.3) k 6.0 (4.8–9.2) 6.9 (3.4–10.7) 5.7 (4.8–7.1) 5.4 (5.0–6.7) 3.8 (2.4–8.2) k

Th1-Th17 (CD45RA−CCR4−CCR6+CXCR3+) (%)
[Mean (SD)] 0.36 (0.6) c 0.62 (0.9) k 0.6 (0.9) 1.0 (1.1) c 0.5 (0.9) 0.3 (0.3) 0.2 (0.3) k

[Median (IQR)] 0.2 (0.02–0.4) c 0.3 (0.05–0.8) k 0.3 (0.1–0.7) 0.4 (0.3–1.7) c 0.06 (0.03–0.9) 0.2 (0.1–0.4) 0.1 (0.04–0.2) k

Th2 (CD45RA−CCR4+CCR6−CXCR3−) (%)
[Mean (SD)] 23.0 (10.5) c 20.7 (7.6) 21.9 (8.9) 20.9 (6.5) c 22.9 (10.4) 22.1 (8.9) 22.6 (8.5)

[Median (IQR)] 21.9 (13.7–32.6) c 20.0 (14.6–29.1) 20.7 (14.7–30.7) 20.9 (14.7–26.9) c 21.7 (13.4–31.9) 20.9 (14.0–30.0) 23.7 (13.6–29.6)

Th1 (CD45RA−CCR4−CCR6−CXCR3+) (%)
[Mean (SD)] 1.7 (1.7) 2.4 (3.6) 2.7 (2.5) 3.2 (1.8) p 1.4 (1.6) p 2.5 (2.3) 2.4 (3.8)

[Median (IQR)] 1.3 (0.3–3.0) 1.3 (0.3–2.5) 2.0 (1.0–4.5) 3.6 (1.9–4.7) p 0.6 (0.4–2.9) p 1.8 (1.0–4.4) 0.9 (0.7–2.5)

Regulatory T-cells

Treg (CD25hi CD127lo FoxP3+) (%)
[Mean (SD)] 2.9 (1.6) 2.7 (1.4) 2.9 (1.2) 3.2 (1.6) 3.4 (1.7) 2.6 (1.1) 2.9 (1.1)

[Median (IQR)] 2.0 (1.5–4.5) 2.6 (1.5–3.6) 2.5 (1.9–3.9) 2.7 (1.8–4.4) 3.7 (1.6–4.8) 2.0 (1.8–3.8) 2.6 (2.2–4.1)

CD73+ Treg (%)
[Mean (SD)] 5.0 (2.4) f 4.9 (2.6) j,k 4.8 (2.5) 4.2 (2.2) 4.5 (2.1) 4.2 (1.7) j 4.2 (1.7) f,k

[Median (IQR)] 4.9 (3.0–7.4) f 4.1 (3.3–7.3) j,k 4.4 (2.9–7.2) 3.5 (3.0–5.8) 4.3 (3.0–6.6) 3.9 (3.5–5.7) j 3.9 (3.4–5.9) f,k

CD39+ Treg (%)
[Mean (SD)] 45.1 (21.1) 45.4 (23.0) 44.0 (22.2) n 44.1 (24.5) 41.3 (23.3) 41.3 (21.7) n 41.0 (20.4)

[Median (IQR)] 41.5 (28.5–62.5) 46.3 (23.4–65.6) 43.4 (25.2–65.4) n 43.2 (24.1–69.2) 36.5 (21.5–66.6) 37.4 (23.3–59.8) n 38.1 (25.1–63.3)

CD8 T-cells

Memory T-cell subsets

Naïve (CD45RA+CD28+CCR7+) %
[Mean (SD)] 50.4 (25.3) b,d 52.3 (24.7) i 54.6 (25.3) b 51.8 (24.7) 52.8 (26.8) d,i 48.2 (25.9) 52.8 (25.6)

[Median (IQR)] 48.7 (24.4–77.7) b,d 53.4 (26.5–77.4) i 55.3 (29.8–80.1) b 51.2 (27.4–74.2) 57.5 (25.9–77.7) d,i 47.0 (24.0–67.5) 56.2 (28.9–77.8)
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Table 3. Cont.

Cellular Immune Markers

Study Time-Line

Week 0
Treatment Initiation n = 10

Week 1
n = 10

Week 2
n = 10

$ Week 6
n = 9

$ Week 8
n = 8

$ Week 12
End of Treatment

n = 8

$ Week 14
Study Termination

n = 8

Central Memory (CD45RA−CD28+CCR7+) %
[Mean (SD)] 9.7 (6.1) 10.0 (4.7) k 10.8 (5.3) 12.1 (6.3) 11.8 (4.5) 11.5 (4.5) 12.1 (5.3) k

[Median (IQR)] 7.6 (4.9–15.9) 8.6 (5.7–14.6) k 8.2 (6.5–17.4) 9.5 (5.8–18.4) 12.9 (6.8–16.0) 10.8 (7.3–15.1) 12.6 (6.4–17.6) k

Transitional Memory (CD45RA−CD28+CCR7−) %
[Mean (SD)] 66.7 (12.0) 67.3 (11.1) 67.5 (10.7) 65.2 (9.7) 67.4 (9.5) 66.3 (8.1) 64.7 (13.1)

[Median (IQR)] 70.5 (58.7–75.2) 72.0 (58.5–74.7) 69.4 (58.0–74.7) 69.2 (59.0–72.8) 72.1 (61.3–73.6) 70.7 (59.2–72.0) 70.6 (57.0–72.5)

Effector Memory (CD45RA−CD28−CCR7−)%
[Mean (SD)] 22.8 (15.6) 21.9 (13.9) 21.0 (13.6) 21.7 (14.2) 19.8 (12.8) 21.2 (10.6) 21.8 (15.8)

[Median (IQR)] 17.1 (9.8–35.7) 15.6 (9.8–33.8) 14.8 (9.3–34.5) 19.2 (7.9–32.2) 14.1 (9.9–30.9) 16.9 (13.3–33.4) 14.1 (10.7–35.3)

Terminally Differentiated (CD45RA+CD28−CCR7−) %
[Mean (SD)] 31.2 (22.2) 30.0 (22.7) 28.5 (22.0) 31.4 (21.6) 29.8 (23.4) 33.0 (23.9) 29.6 (22.5)

[Median (IQR)] 35.5 (5.7–49.3) 32.1 (4.4–54.1) 29.5 (4.2–51.6) 30.6 (9.7–53.1) 26.5 (6.4–55.4) 38.4 (6.5–55.4) 28.6 (6.9–48.2)

T-cell functions

HLA-DR+CD38+ (%)
[Mean (SD)] 4.9 (4.1) 5.3 (4.3) 5.2 (5.0) 5.1 (3.8) 6.1 (6.7) 6.1 (5.7) 5.4 (5.0)

[Median (IQR)] 3.6 (2.0–7.4) 4.3 (2.6–6.9) 3.5 (1.6–8.2) 4.4 (2.2–7.8) 3.5 (1.8–9.0) 3.4 (2.7–11.1) 3.8 (2.1–8.5)

CD45RA−Ki-67+ (%)
[Mean (SD)] 0.39 (0.19) a 0.51 (0.25) a 0.49 (0.27) 0.55 (0.40) 0.58 (0.63) 0.52 (0.18) 0.58 (0.46)

[Median (IQR)] 0.41 (0.25–0.56) a 0.47 (0.33–0.73) a 0.47 (0.32–0.74) 0.42 (0.35–0.54) 0.36 (0.28–0.49) 0.53 (0.34–0.68) 0.36 (0.30–0.96)

CD45RA−PD-1+ (%)
[Mean (SD)] 37.9 (13.1) 37.9 (11.9) k 37.7 (14.9) 35.2 (10.8) 37.1 (11.6) t 34.9 (12.8) 34.7 (10.2) k,t

[Median (IQR)] 37.0 (31.0–45.3) 38.1 (29.5–46.5) k 35.3 (27.5–47.8) 35.9 (27.1–45.7) 36.4 (29.4–49.2) t 37.2 (25.1–47.1) 36.7 (27.2–42.9) k,t

CD45RA−CTLA-4+ (%)
[Mean (SD)] 1.0 (0.7) 1.3 (1.0) 1.4 (0.9) 2.1 (3.1) 1.1 (1.0) 1.0 (0.6) 1.3 (0.9)

[Median (IQR)] 0.9 (0.5–1.2) 1.0 (0.6–1.7) 1.2 (0.6–2.2) 0.8 (0.5–2.7) 0.9 (0.4–1.4) 1.0 (0.6–1.1) 1.0 (0.7–2.0)

Senescent (CD28−CD57+) (%)
[Mean (SD)] 18.5 (14.5) c,d 17.0 (13.5) 16.4 (12.6) m 17.9 (13.5) c 16.2 (12.5) d,m 17.0 (11.1) 18.1 (15.4)

[Median (IQR)] 16.1 (4.9–31.8) c,d 13.6 (4.5–31.4) 12.5 (4.6–29.6) m 16.8 (5.7–31.6) c 10.6 (6.4–27.7) d,m 14.9 (5.8–28.2) 11.4 (7.2–29.9)

CD8+CD39+ (%)
[Mean (SD)] 2.3 (1.4) 2.6 (1.9) 2.5 (1.9) 2.6 (2.2) r 2.3 (1.9) 2.2 (1.6) 2.0 (1.6) r

[Median (IQR)] 2.8 (0.5–3.4) 2.6 (0.6–3.9) 2.7 (0.4–3.8) 2.8 (0.3–4.5) r 2.1 (0.4–3.8) 2.1 (0.6–3.4) 2.2 (0.3–3.3) r

CD8+CD73+ (%)
[Mean (SD)] 36.6 (24.4) b 36.9 (24.6) 38.1 (24.7) b 32.9 (19.8) 32.9 (20.7) 30.9 (21.4) 32.1 (21.3)

[Median (IQR)] 35.3 (10.4–54.4) b 35.8 (10.5–54.3) 39.5 (11.7–55.6) b 36.6 (10.8–50.2) 36.6 (10.8–51.8) 30.6 (9.2–52.9) 34.8 (9.3–50.1)

CD8+FoxP3+ (%)
[Mean (SD)] 0.29 (0.23) 0.28 (0.19) 0.40 (0.29) n 0.39 (0.35) q 0.42 (0.51) 0.20 (0.19) n,q 0.28 (0.16)

[Median (IQR)] 0.19 (0.13–0.56) 0.21 (0.17–0.35) 0.37 (0.12–0.60) n 0.29 (0.11–0.67) q 0.14 (0.08–0.80) 0.12 (0.09–0.29) n,q 0.25 (0.13–0.44)
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Table 3. Cont.

Cellular Immune Markers

Study Time-Line

Week 0
Treatment Initiation n = 10

Week 1
n = 10

Week 2
n = 10

$ Week 6
n = 9

$ Week 8
n = 8

$ Week 12
End of Treatment

n = 8

$ Week 14
Study Termination

n = 8

Chemokine receptors expression

CD45RA−CCR4+ (%)
[Mean (SD)] 15.8 (10.6) 15.2 (7.5) 15.6 (8.4) 18.2 (10.3) 17.6 (9.5) 17.7 (11.4) 18.2 (9.3)

[Median (IQR)] 13.7 (8.1–21.9) 13.2 (8.6–21.6) 13.9 (9.0–20.9) 15.5 (8.1–28.8) 17.2 (10.2–26.8) 14.1 (9.4–31.0) 17.0 (9.6–26.0)

CD45RA−CCR6+ (%)
[Mean (SD)] 4.4 (4.2) 4.9 (3.8) 4.5 (3.0) 5.3 (4.2) 5.1 (4.4) t 4.0 (2.4) 4.0 (3.8) t

[Median (IQR)] 3.8 (1.4–5.5) 3.5 (1.6–6.7) 3.0 (2.1–7.5) 4.5 (2.4–6.8) 3.9 (2.1–6.2) t 3.2 (2.5–5.7) 3.1 (1.9–3.8) t

CD45RA−CXCR3+ (%)
[Mean (SD)] 4.1 (3.1) b 6.0 (4.7) 7.1 (5.5) b 9.3 (6.4) 4.7 (4.1) 6.4 (5.2) 5.9 (4.2)

[Median (IQR)] 4.0 (1.5–6.3) b 5.1 (1.8–9.2) 5.6 (3.2–11.8) b 8.7 (3.7–14.7) 2.7 (2.1–8.6) 4.6 (2.8–10.3) 3.9 (2.7–10.0)

Monocytes

Classical monocytes

Classical (CD14++CD16−) (%)
[Mean (SD)] 78.0 (13.0) 78.2 (11.8) 77.5 (10.8) 75.1 (16.7) 74.9 (14.5) 74.7 (14.6) 73.0 (16.0)

[Median (IQR)] 78.6 (69.7–90.9) 80.3 (65.4–86.2) 80.4 (65.5–87.1) 83.5 (57.6–89.2) 77.1 (58.4–89.1) 69.2 (62.6–91.8) 80.4 (59.9–86.1)

Classical CD163+ (%)
[Mean (SD)] 46.4 (19.2) 44.7 (23.3) 54.1 (26.7) 50.8 (19.3) 56.0 (20.4) t 43.5 (19.0) 46.1 (21.0) t

[Median (IQR)] 40.0 (32.0–62.2) 39.3 (31.6–64.8) 56.5 (30.3–79.1) 48.2 (33.8–62.1) 57.2 (41.0–73.5) t 49.2 (24.7–53.3) 41.1 (32.0–64.0) t

Classical CX3CR1+ (%)
[Mean (SD)] 51.2 (14.3) b 52.7 (14.4) 60.3 (15.8) b 51.5 (13.4) 52.3 (11.9) 52.1 (11.9) 55.7 (12.9)

[Median (IQR)] 53.8 (38.3–61.3) b 56.6 (40.8–62.3) 59.7 (54.3–69.0) b 56.5 (38.1–63.1) 51.9 (44.8–64.4) 56.4 (41.6–61.8) 57.4 (47.1–66.7)

Classical M-DC8+ (%)
[Mean (SD)] 2.56 (3.72) 3.24 (6.73) k 3.53 (6.94) o 1.61 (2.00) 3.18 (6.28) t 2.11 (2.93) 2.64 (5.78) k,o,t

[Median (IQR)] 0.61 (0.42–4.26) 0.75 (0.48–2.62) k 0.64 (0.56–3.90) o 0.72 (0.41–2.31) 0.74 (0.46–2.42) t 0.61 (0.38–4.86) 0.49 (0.33–1.43) k,o,t

Classical CCR2+ (%)
[Mean (SD)] 91.6 (3.1) 92.6 (2.6) 92.9 (3.2) 92.1 (3.6) 93.5 (2.9) 92.5 (4.6) 92.2 (5.7)

[Median (IQR)] 92.3 (89.9–93.3) 92.3 (90.8–94.8) 93.4 (91.1–95.7) 91.1 (89.7–95.0) 94.0 (91.6–95.1) 93.4 (91.0–95.2) 94.4 (89.0–95.3)

Intermediate monocytes

Intermediate (CD14+CD16+) (%)
[Mean (SD)] 11.0 (4.9) 10.4 (4.6) 10.5 (4.4) 12.0 (7.2) 12.0 (5.0) 12.9 (6.7) 12.7 (5.7)

[Median (IQR)] 11.0 (6.0–15.3) 10.5 (6.4–14.9) 12.0 (6.2–13.7) 9.1 (6.5–21.0) 14.3 (6.4–15.2) 14.4 (5.5–18.9) 11.5 (8.1–18.0)

Intermediate CD163+ (%)
[Mean (SD)] 66.2 (11.7) 66.7 (15.5) 74.0 (17.6) 70.4 (12.5) 73.5 (12.4) t 64.5 (14.2) 65.9 (15.0) t

[Median (IQR)] 65.2 (59.4–72.2) 69.7 (58.1–76.2) 74.0 (60.4–88.1) 69.4 (60.3–77.5) 71.4 (64.9–84.2) t 59.6 (54.2–78.9) 64.7 (54.6–78.6) t
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Table 3. Cont.

Cellular Immune Markers

Study Time-Line

Week 0
Treatment Initiation n = 10

Week 1
n = 10

Week 2
n = 10

$ Week 6
n = 9

$ Week 8
n = 8

$ Week 12
End of Treatment

n = 8

$ Week 14
Study Termination

n = 8

Intermediate CX3CR1+ (%)
[Mean (SD)] 86.1 (8.2) 86.8 (8.4) 88.3 (8.6) 88.3 (7.3) p 86.0 (10.5) p 85.8 (9.8) 88.8 (7.2)

[Median (IQR)] 87.0 (84.7–91.2) 87.2 (83.6–94.1) 89.3 (83.6–94.9) 91.3 (85.7–92.8) p 89.3 (84.5–92.2) p 89.3 (78.6–91.6) 90.6 (85.9–93.4)

Intermediate M-DC8+ (%)
[Mean (SD)] 15.5 (7.7) 17.9 (10.6) j 18.8 (13.0) 15.2 (6.5) 17.2 (11.2) 13.4 (7.7) j 14.6 (6.6)

[Median (IQR)] 11.9 (9.1–23.6) 15.7 (7.8–26.6) j 16.1 (9.3–26.1) 14.1 (11.1–21.1) 16.0 (7.1–25.5) 13.4 (6.7–20.0) j 14.7 (8.3–19.1)

Intermediate CCR2+ (%)
[Mean (SD)] 89.3 (2.9) 88.6 (2.1) 89.0 (5.5) 89.6 (1.6) 90.1 (3.4) 89.6 (4.5) 89.6 (4.3)

[Median (IQR)] 88.8 (87.8–91.2) 88.8 (87.2–90.6) 91.3 (86.5–92.4) 90.0 (88.3–91.1) 90.6 (87.7–92.9) 91.0 (87.9–92.2) 89.4 (88.9–93.2)

Non classical monocytes

Non classical (CD16++CD14−) (%)
[Mean (SD)] 11.0 (8.8) 11.4 (7.5) 12.1 (7.6) 12.9 (10.2) 13.0 (10.9) 12.3 (9.5) 14.3 (12.2)

[Median (IQR)] 9.3 (3.7–16.5) 10.7 (5.2–19.9) 10.2 (5.0–19.4) 7.1 (5.4–23.1) 8.3 (4.7–25.7) 12.2 (3.3–18.7) 8.6 (6.7–19.1)

Non classical CD163+ (%)
[Mean (SD)] 31.2 (7.2) d 33.7 (9.1) 38.3 (15.9) 35.3 (8.2) r 35.7 (9.5) d 32.6 (6.3) 30.9 (6.8) r

[Median (IQR)] 29.7 (26.3–38.0) d 35.0 (25.8–41.4) 31.6 (29.3–42.8) 35.7 (30.0–40.0) r 31.7 (30.2–46.4) d 31.8 (27.6–38.5) 30.2 (25.6–35.7) r

Non classical CX3CR1+ (%)
[Mean (SD)] 75.6 (11.5) 74.8 (14.0) 76.3 (14.8) 76.9 (12.2) 74.6 (15.5) 75.5 (12.4) 77.6 (14.9)

[Median (IQR)] 74.7 (71.6–84.0) 73.7 (67.2–85.9) 81.9 (61.1–87.6) 78.9 (65.5–86.6) 81.0 (57.4–83.8) 75.5 (63.6–87.9) 84.5 (60.3–88.7)

Non classical M-DC8+ (%)
[Mean (SD)] 28.4 (10.3) 30.8 (15.3) 31.3 (18.6) 25.6 (7.5) 28.8 (10.8) 23.2 (7.0) 26.8 (10.5)

[Median (IQR)] 24.7 (21.5–39.8) 28.5 (17.8–37.7) 25.1 (20.5–34.4) 27.2 (19.1–32.5) 31.0 (17.9–37.6) 23.4 (17.6–26.8) 24.7 (18.7–37.5)

Non classical CCR2+ (%)
[Mean (SD)] 7.2 (3.3) e 8.1 (2.4) 8.1 (4.7) 7.2 (5.9) 7.9 (3.3) 12.1 (8.2) e 7.9 (3.8)

[Median (IQR)] 6.3 (4.5–10.5) e 7.8 (6.8–9.6) 8.3 (5.4–9.3) 5.0 (3.9–8.8) 6.8 (5.7–11.3) 9.3 (6.7–18.1) e 7.9 (5.1–11.2)

Dendritic cells (DC)

Plasmacytoid DC (CD123+CD11c−) (%)
[Mean (SD)] 4.4 (2.1) 3.6 (1.1) 3.8 (1.3) 3.6 (1.5) 4.2 (1.1) 3.8 (1.7) 4.1 (1.1)

[Median (IQR)] 3.7 (2.7–5.5) 3.8 (2.5–4.4) 3.7 (3.1–5.1) 3.7 (2.4–4.4) 4.1 (3.2–5.0) 3.8 (2.5–4.7) 4.2 (3.3–4.9)

Myeloid DC (CD123−CD11c+) (%)
[Mean (SD)] 8.8 (3.2) b,e 11.5 (2.7) 12.3 (4.0) b 10.3 (7.9) 8.8 (3.9) s 12.5 (4.8) e,s 12.6 (6.6)

[Median (IQR)] 8.1 (7.0–10.4) b,e 11.2 (9.4–14.1) 11.8 (9.9–13.7) b 7.8 (5.4–12.0) 8.1 (5.7–10.5) s 11.5 (9.4–15.6) e,s 13.0 (6.4–17.7)

Results are shown as the mean and standard deviation (SD) and as the median and interquartile range (IQR). Significant differences (p < 0.05) following the Wilcoxon matched-pairs
signed-rank test are mentioned as follows: a: week 0 vs. week 1; b: week 0 vs. week 2; c: week 0 vs. week 6; d: week 0 vs. week 8; e: week 0 vs. week 12; f: week 0 vs. week 14; g: week 1
vs. week 2; h: week 1 vs. week 6; i: week 1 vs. week 8; j: week 1 vs. week 12; k: week 1 vs. week 14; l: week 2 vs. week 6; m: week 2 vs. week 8; n: week 2 vs. week 12; o: week 2 vs.
week 14; p: week 6 vs. week 8; q: week 6 vs. week 12; r: week 6 vs. week 14; s: week 8 vs. week 12; t: week 8 vs. week 14; u: week 12 vs. week 14. Significant values are presented in bold.
$: Two participants from CBD-only were excluded from analyses at week 6 (one participant) and weeks 8, 12, and 14 (two participants) because they were withdrawn at week 6 for
safety concerns.
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Figure 1. Fold change expression over 12 weeks versus weeks 0 of CBD-only (red square) and 
THC/CBD combination (blue circle), (a) Regenerating islet derived protein 3 alpha (REG-3α), (b) 
Soluble receptor for tumor necrosis factor type II (sTNFRII), and (c) Interferon-gamma (IFN-γ). * p 
< 0.05. 
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(CD45RA−CD28+CCR7−) CD4 T-cells were observed, levels of effector memory 
(CD45RA−CD28−CCR7−) CD4 T-cells were significantly lower at weeks 6 and 8 following 
treatment initiation (week 0 vs. week 6; p = 0.04, week 1 vs. week 8; p = 0.02) (Table 3, 
Figure S1). Similarly, frequencies of terminally differentiated (CD45RA+CD28−CCR7−) 
CD4 T-cells were significantly lower at week 8 (week 1 vs. week 8: p = 0.02). However, in 
both cases, the overall change in these memory subsets between week 0 and week 12 was 
not significant.  

Frequencies of senescent (CD28−CD57+) CD4 T-cells dropped significantly between 
weeks 1 and 8 (p = 0.04). Levels of PD1+ CD45RA−CD4 T-cells also decreased significantly 
over the treatment course (week 0 vs. week 14: p = 0.02, week 1 vs. week 12: p = 0.02, week 

Figure 1. Fold change expression over 12 weeks versus weeks 0 of CBD-only (red square) and
THC/CBD combination (blue circle), (a) Regenerating islet derived protein 3 alpha (REG-3α), (b) Sol-
uble receptor for tumor necrosis factor type II (sTNFRII), and (c) Interferon-gamma (IFN-γ). * p < 0.05.

Levels of Th and Treg subsets showed significant alterations after treatment termina-
tion. We observed a significant decrease in levels of pro-inflammatory Th17 cells (week
1 vs. week 14: p = 0.02) and Th1Th17 cells (week 1 vs. week 14: p = 0.04). Frequencies of
Th1 showed a significant decrease between weeks 6 and 8 (p = 0.04) but with no significant
change between the start and end of treatment. Frequencies of Th2 cells decreased signifi-
cantly at week 6 (week 0 vs. week 6: p = 0.04). Lastly, we observed no significant changes
in Treg frequency, but their expression levels of CD39+ (week 2 vs. week 12; p = 0.008) and
CD73+ (week 0 vs. week 14; p = 0.008, week 1 vs. week 12, p = 0.05) decreased throughout
the treatment (Table 3, Figure S2).
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Figure 2. Fold change expression over 12 weeks versus weeks 0 of CBD-only (red square) and
THC/CBD combination (blue circle), (a) Ki-67+ memory CD4 T-cells, (b) CCR2+ non-classical mono-
cytes, and (c) Myeloid dendritic cells. * p < 0.05.

3.3.2. Changes in Circulating CD8 T-Cell Subsets

Significant increases in frequencies of naïve and central memory CD8 T-cells were
observed after treatment initiation (naïve: week 0 vs. week 8 p = 0.04; central memory: week
1 vs. week 14: p = 0.008) with no significant changes in other memory CD8 T-cell subsets
over the course of treatment (Table 3). Similar to CD4 T-cells, frequencies of senescent
CD8 T-cells showed a significant decrease over the treatment period, reaching statistical
significance at week 8 (week 0 vs. week 8: p = 0.04). Frequencies of PD-1+CD45RA−CD8
T-cells were also significantly reduced after treatment termination (week 1 vs. week
14: p = 0.02). In line with the decrease in CD8 T-cell senescence and exhaustion, we
observed an increase in Ki67 expression during the first week of treatment (week 0 vs.
week 1: p = 0.047). There were no significant changes in frequencies of HLA-DR+CD38+
and CTLA4+CD45RA−CD8 T-cells between the start and the end of treatment (Table 3,
Figure S3a,b).
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Within CD45RA−CD8 T-cells, expression levels of CCR6 decreased between weeks 8
and 14 (p = 0.02), while levels of CXCR3 increased at week 2 (week 0 vs. week 2: p = 0.049)
with no overall significant change between the start and the end of treatment. There were
no significant alterations in CCR4 over the treatment period. Frequencies of FoxP3+ CD8
T-cells decreased significantly between weeks 2 and 12 (p = 0.02). Levels of CD73+ CD8
T-cells increased significantly at week 2 (week 0 vs. week 2: p = 0.03). No significant
changes in CD39 expression were observed (Table 3, Figure S3c).

3.3.3. Changes in Monocyte Subsets and Dendritic Cell Frequencies

Levels of classical (CD14++CD16−), intermediate (CD14+CD16+), and non-classical
(CD14-CD16++) monocytic subsets remained stable over time (Table 3, Figure S4). Within
these subsets, we observed differences in the expression of CD163, CX3CR1, CCR2, and
M-DC8 over the treatment duration (Table 3, Figure S5). Expression levels of CD163 in non-
classical monocytes showed a significant increase at week 8 (week 0 vs. week 8: p = 0.03),
followed by a return to baseline after treatment termination (week 6 vs. week 14: p = 0.008).
Frequencies of CX3CR1+ classical monocytes increased significantly during the first two
weeks of treatment (week 0 vs. week 2: p = 0.04) but with no overall significant changes
before and after treatment course completion. Levels of intermediate and non-classical
monocytes expressing CX3CR1 remained stable over time. Expression levels of CCR2 in
classical and intermediate monocytes also remained unchanged. In contrast, a significant
increase in CCR2+ non-classical monocytes was observed at the end of the treatment period
(week 0 vs. week 12: p = 0.04, Table 3) with a trend in their fold change increase (Figure 2b).
Levels of M-DC8+ cells remained unchanged in non-classical monocytes, whereas in both
classical and intermediate monocytes this subpopulation was significantly reduced at the
end of treatment (classical: week 1 vs. week 14: p = 0.04; intermediate: week 1 vs. week 12:
p = 0.02, Table 3).

A significant increase in frequencies of myeloid dendritic cells (mDC: CD123−CD11c+),
was observed after 12 weeks of oral cannabinoid treatment (week 0 vs. week 12: p = 0.04,
Table 3) with trend in their fold-change increase (Figure 2c), while no significant changes
were observed in levels of plasmacytoid dendritic cells (pDC: CD123+CD11c−) (Table 3,
Figure S4).

3.4. Effect of Oral Cannabinoids on Total HIV DNA and Cell-Associated HIV RNA in CD4 T-Cells
from Blood and Semen

The impact of oral cannabinoids on HIV reservoir markers was assessed by quantifying
total HIV DNA and cell-associated HIV RNA in PBMCs over the treatment period as
presented in Table 4. Levels of HIV DNA and cell-associated HIV RNA remained overall
stable in circulating CD4 T-cells, although some modest variations were observed between
weeks 8 and 12 (Table 4). In only two individuals, HIV DNA was detectable in sperm
cells and remained unchanged after study completion. HIV RNA was not detected in the
seminal supernatant (not shown).
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Table 4. Dynamic of HIV DNA and cell-associated RNA levels in CD4 T-cells isolated from blood and semen during cannabinoids treatment.

HIV DNA and RNA

Study Timeline

Week 0
Treatment Initiation n = 10

Week 1
n = 10

Week 2
n = 10

$ Week 6
n = 9

$ Week 8
n = 8

$ Week 12
End of Treatment

n = 8

$ Week 14
Study Termination

n = 8

Total HIV DNA
(copies/106 CD4)

[Mean (SD)]
1016 (1081) 908.1 (817.3) 920.4 (816.5) 1053 (1121) 1292 (1310) 979.1 (1015) 1143 (1318)

[Median (IQR)] 708.1 (125.1–1679) 765.3 (239.3–1449) 819.8 (176.2–1529) 911.9 (141- 1886) 790.3 (165.6–2843) 629.9 (155.5–2156) 658.5 (152.3–2317)

LTR-gag cell-associated
RNA (copies/106 CD4)

[Mean (SD)]
493.5 (557.3) 593.9 (817.3) i 529.2 (630.3) 476.3 (479.6) 1370 (1687) i,s 572.9 (752.8) s 751.9 (858.3)

[Median (IQR)] 308.8 (4.9–915.8) 224.3 (3.5–1088) i 271.2 (13.4–1081) 281.1 (21.9–938.8) 142 (10.1–3151) i,s 283.9 (2.1–1290) s 386.9 (26.0–1770)

RNA/DNA ratio
[Mean (SD)] 0.47 (0.45) 0.56 (0.55) 0.43 (0.41) 0.43 (0.37) 0.62 (0.62) s 0.44 (0.53) s 1.85 (3.53)

[Median (IQR)] 0.3 (0.2–1.0) 0.46 (0.08–0.87) 0.37 (0.08–0.76) 0.33 (0.12–0.84) 0.44 (0.05–1.26) s 0.17 (0.01–1.07) s 0.50 (0.28–1.54)

Results are shown as the mean and standard deviation (SD) and as the median and interquartile range (IQR). Significant differences (p < 0.05) following the Wilcoxon matched-pairs
signed-rank test are mentioned as follows: a: week 0 vs. week 1; b: week 0 vs. week 2; c: week 0 vs. week 6; d: week 0 vs. week 8; e: week 0 vs. week 12; f: week 0 vs. week 14; g: week 1
vs. week 2; h: week 1 vs. week 6; i: week 1 vs. week 8; j: week 1 vs. week 12; k: week 1 vs. week 14; l: week 2 vs. week 6; m: week 2 vs. week 8; n: week 2 vs. week 12; o: week 2 vs.
week 14; p: week 6 vs. week 8; q: week 6 vs. week 12; r: week 6 vs. week 14; s: week 8 vs. week 12; t: week 8 vs. week 14; u: week 12 vs. week 14. Significant values are presented in bold.
$: Two participants from CBD-only were excluded from analyses at week 6 (one participant) and weeks 8, 12, and 14 (two participants) because they were withdrawn at week 6 for
safety concerns.
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4. Discussion

To our knowledge, we report for the first time on in vivo anti-inflammatory effects of
orally administrated cannabinoid-based treatment in humans in an interventional pilot
clinical trial in PWH on ART. Pooled results from eight participants who successfully
completed the oral cannabinoid treatment course showed a significant reduction in surro-
gate markers of gut mucosal damage, systemic inflammation, as well as cellular immune
activation, exhaustion, and senescence. These preliminary findings support the use of
further evaluation of orally administrated cannabinoid capsules in larger clinical trials as a
potential strategy to help alleviate chronic inflammation experienced by PWH despite ART.

In this pilot clinical trial, our primary objective was the assessment of safety and toler-
ability, as previously reported [50]. In the current set of analyses, we assessed the effects of
oral cannabinoids on the integrity of the gut mucosal barrier by measuring the dynamics of
REG-3α and I-FABP over the treatment period. I-FABP is an intracellular protein expressed
by enterocytes that is released upon cell death, while REG-3α is an antimicrobial peptide se-
creted by Paneth cells in the gut lumen that is crucial for the regulation of interplay between
the microbiota and the host [65,66]. Notably, our team has previously reported that plasma
levels of both markers are known to be elevated in PWH despite ART [7,62]. In the present
study, REG-3α plasma levels decreased after 12 weeks of oral cannabinoid treatment. These
results are promising since increased gut mucosal permeability is one of the major contrib-
utors to chronic inflammation in PWH [5,6]. These findings are also in line with previous
observations on the effects of CBD on aspirin-induced gut mucosal permeability where
participants treated with CBD and palmitoylethanolamide (an endocannabinoid-like fatty
acid) showed significant improvement in gut epithelial integrity [22]. The authors have
attributed this effect to the activation of the endocannabinoid system mediated by CBD
and the CB1R [22]. Other evidence put forth by in vitro and animal studies also supports
the CB1R-mediated reduction in gut epithelial permeability induced by CBD [23,67–71].
It is worth noting that the CB1R signaling cascade is highly complex, where THC acts as
a partial CB1R agonist and CBD as a CB1R antagonist [72]. Furthermore, THC and CBD
can also bind to other endocannabinoid receptors to exert their anti-inflammatory proper-
ties [73]. While we do observe measurable anti-inflammatory effects of oral cannabinoids
in our study, the exact mechanism of action remains to be elucidated.

In our study, plasma levels of LPS and sCD14 showed a transient increase during the
first weeks of treatment, followed by a significant reduction later during the treatment
course. This observation was unexpected since other groups have reported that CB1R
antagonists, such as CBD, reduce plasma LPS levels in diet-induced-obesity models [74].
Cannabidiol-rich cannabis extracts can alter gut microbial composition [75]. Furthermore,
diarrhea and abdominal pain are common oral cannabinoid-related adverse effects, in-
dicative of gastrointestinal imbalances that may occur when intake of cannabinoids is first
initiated, as it also occurred in our study participants [50]. Furthermore, CBD has been
shown to reduce peristalsis via modulation of motor and sensory pathways of the peristaltic
reflex [76]. It is plausible that transient gut dysbiosis along with increased retention time of
colonic contents may contribute to a temporary increase in LPS absorption that we observe.
However, an in-depth analysis of gut microbiome changes over the course of treatment is
required to validate this hypothesis.

Over the treatment course, we also observed a gradual, significant decrease in the
sTNFRII inflammatory marker. Interestingly, similar observations on sTNFRII have been
reported in PWH after recent cannabis use, although the authors report no change in
microbial translocation makers [41]. We also observed a significant reduction in plasma
levels of pro-inflammatory cytokines IFN-γ and IL-1β following 12 weeks of treatment
which is in line with previous studies that reported a direct inhibitory effect of cannabinoids
on pro-inflammatory cytokine production by immune cells in vitro [15] and in animal
models [77]. This effect is likely driven by CB2R activation, which is highly expressed in
immune cells, including monocytes [16].
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We further report a significant decrease in frequencies of senescent and PD1+ CD
memory T-cells. This was further accompanied by an increase in proliferative memory
Ki-67+ CD4 T-cells and lower levels of terminally differentiated CD4 T-cells. Our find-
ings support previous observations made in SIV-infected monkeys, where early THC
treatment was associated with decreased levels of PD-1-expressing T-cells [20]. This is of
particular importance since T-cell exhaustion and senescence during chronic inflammation,
characterized by increased PD1 and CD57 expression, reduced proliferative capacity, and
antiviral functions, have been extensively characterized in PWH [5,9,78–80]. Tregs are a
highly immunosuppressive cell subset that is known to be increased during HIV infection,
which has also been linked to disease progression [4,81–86]. One way that these cells exert
their anti-inflammatory properties is through CD39 and CD73 ectonucleotidases, which
convert pro-inflammatory extracellular adenosine triphosphate into immunosuppressive
adenosine [87]. Importantly, we previously showed that Tregs-expressing ectonucleotidases
are involved in HIV pathogenesis and disease progression, and even early ART initiation
could not reverse their increased frequencies and their migration into the gut lymphoid
tissues [8,88–90]. In our study, we did not observe any significant changes in CD4+ Treg
frequencies over the treatment course. However, we do report a significant decrease in
CD73+ Tregs, suggesting their decreased immunosuppressive activity.

Activated monocytes are among the first sources of pro-inflammatory cytokines during
HIV infection and are one of the main contributors to chronic inflammatory complications
in PWH [6,91]. In our study, we did not observe any changes in intermediate, classical,
or non-classical monocytic subsets. Previous studies have reported that cannabis use
in HIV-infected individuals is associated with lower levels of inflammatory CD16+ (i.e.,
intermediate and non-classical) monocytes and lower expression of CD163, indicative
of their decreased migration potential toward the brain [42,43]. Notably, those studies
looked at cannabis smokers, where THC and CBD were inhaled, whereas in our study
these compounds were ingested. It is also known that the bioavailability of inhaled THC
and CBD is several fold higher than if they are administered orally [92]. Thus, it is likely
that THC/CBD plasma concentrations were insufficient to have a measurable effect on
CD16+ monocytes in this clinical trial. However, we did observe a decrease in intermediate
M-DC8+ monocytes which are known to be a major source of TNF-α during their response
to microbial translocation [91]. Furthermore, oral cannabinoids also significantly increased
CCR2-expressing non-classical monocytes, a loss of this subpopulation had been associated
with cognitive impairment in PWH not taking ART [93]. The increase in these non-classical
monocyte subpopulations during the course of the treatment would be indicative of a
potential neuroprotective effect of oral cannabinoids in PWH. Furthermore, we also noticed
a significant increase in the frequencies of mDCs during cannabinoid treatment, while
the frequency of plasmacytoid dendritic cells remained stable. Although mDCs are well
known for promoting the activation and expansion of effector T-cells during inflammatory
conditions [94,95], these cells also play an immuno-regulatory role in the maintenance of
tissue homeostasis and immune tolerance [94,95].

Lastly, given that cannabinoids were reported to be associated with decreased SIV and
HIV viral replication [19,48,96–99], and since an observational study previously reported
that cannabis use was associated with intermittent HIV shedding in the semen of men who
have sex with men on ART [100], we explored if oral cannabinoids impact HIV reservoir
size. While we found no significant changes in HIV DNA/RNA levels neither in blood or
semen, larger clinical trials are required to decipher the impact of oral cannabinoids on HIV
reservoir dynamics along with the changes in immune cells.

It is evident that there are several limitations in this pilot clinical trial. First, our
initial target sample size included 26 participants randomized in a 1:1 ratio in two arms.
Because the production of oral cannabinoid capsules used in this study was permanently
discontinued, we were forced to stop the recruitment process prematurely [50]. Further-
more, 2 of the 10 participants were withdrawn from the trial due to adverse events [50].
Thus, unfortunately we lacked the statistical power to compare the different cannabinoid
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formulations (CBD:THC versus CBD-only), and therefore we had to pool the results of both
study arms. However, since each study participant underwent a personalized tolerability
titration, and the fact that each study participant was in her/his own control to assess the
overtime changes, we believe a nonparametric paired statistical comparison between each
two time-points was the only way to analyze our overtime data based on the limited sample
size. Potential confounding effects related to the open-label design of this study may also
have occurred. Some reports show that an open-label study design has been associated
with increased chance of bias and potential overestimation of treatment-related adverse
event occurrence rate compared to blinded studies [101,102]. Indeed, since the participants
were aware of the formulation they were taking and the possible associated side effects,
it might have affected their ability to reach and/or maintain the highest target dose until
the end of the treatment period, leading to individual-dependent dosage variations in
cannabinoid intake in this study. Moreover, oral cannabinoids have low bioavailability and
there is high variability across studies depending on the vehicle of administration [103].
Cannabinoid bioavailability is also heavily impacted by food intake, and consumption
of CBD with a high-fat meal can increase its bioavailability [104,105]. Another limitation
is the fact that our observations are made on circulating immune cells from peripheral
blood, which could underestimate the real effects of cannabinoids on tissue-resident im-
mune cells in the GALT, one of the main sites permanently affected by HIV. Future studies
using distal colon pinch biopsies could address the effect of cannabinoids on cytokine and
immune cell dynamics in the gastrointestinal tract [106,107]. Finally, we were not able to
provide a measure of the replication-competent HIV reservoir. The new intact proviral
DNA assay (IPDA) would be a good strategy to measure and discriminate between intact
replication-competent, defective, and total HIV genomes. However, we previously showed
that total and integrated HIV DNA measures and IPDA measures correlate well with each
other [108].

5. Conclusions

In summary, our findings further support the anti-inflammatory effects of oral cannabi-
noid capsules in PWH on ART. Oral cannabinoids show promise in improving the gut
mucosal barrier, alleviating immune activation, and decreasing T-cell exhaustion and
immunosenescence. These findings constitute supplemental evidence of cannabinoids’
therapeutic potential in combination with ART for PWH that could help reduce the rates
of non-AIDS-related morbidity and mortality in this population. These findings suggest
that larger clinical trials are warranted to further evaluate the role of oral cannabinoids as a
strategy to reduce systemic inflammation and gut microbial translocation in PWH on ART.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells12141811/s1, Table S1. List of antibodies used for ex vivo phe-
notyping of T-cell monocytes and dendritic cell subsets. Material S1. Detailed methodology for total
HIV DNA and cell-associated and cell-free RNA quantification. Figure S1: Examples of gating on CD4
T-cell memory subsets (naïve: CD45RA+CD28+CCR7+, central memory: CD45RA−CD28+CCR7+,
transitional memory: CD45RA−CD28+CCR7−, effector memory: CD45RA−CD28−CCR7−, and
terminally differentiated: CD45RA+CD28−CCR7−) and markers involved in CD4 T-cell function.
Figure S2: Examples of gating on (a) CD4 helper T-cell subsets (Th17: CD45RA−CCR4+CCR6+
CXCR3−, Th1-Th17: CD45RA−CCR4−CCR6+CXCR3+, Th2: CD45RA−CCR4+CCR6−CXCR3−,
Th1: CD45RA−CCR4−CCR6−CXCR3+) and (b) regulatory T-cells (CD25hi CD127lo FoxP3+).
Figure S3: Examples of gating on markers involved in CD8 T-cell function. (c) Examples of gating on
CD8 T-cell memory subsets (naïve: CD45RA+CD28+CCR7+, central memory: CD45RA−CD28+CCR7+,
transitional memory: CD45RA−CD28+CCR7−, effector memory: CD45RA−CD28−CCR7−, and
terminally differentiated: CD45RA+CD28−CCR7−) and regulatory CD8 T-cells (FoxP3+). Figure S4:
(Examples of gating on classical (CD14++CD16−), intermediates (CD14+CD16+) and non-classical
(CD14−CD16++) monocytes and myeloid (HLA-DR+CD123−CD11c+) and plasmacytoid (HLA-
DR+CD123+CD11c−) dendritic cells. Figure S5: Examples of gating on markers of cell migration and
function in (a) classical, (b) intermediate, and (c) non-classical monocytes.
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