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Abstract: The glucocorticoid receptor α (GRα) is a member of the nuclear receptor superfamily and
functions as a glucocorticoid (GC)-responsive transcription factor. GR can halt inflammation and
kill off cancer cells, thus explaining the widespread use of glucocorticoids in the clinic. However,
side effects and therapy resistance limit GR’s therapeutic potential, emphasizing the importance
of resolving all of GR’s context-specific action mechanisms. Fortunately, the understanding of
GR structure, conformation, and stoichiometry in the different GR-controlled biological pathways
is now gradually increasing. This information will be crucial to close knowledge gaps on GR
function. In this review, we focus on the various domains and mechanisms of action of GR, all from a
structural perspective.

Keywords: glucocorticoid receptor; glucocorticoids; structure; nuclear receptor; N-terminal domain;
DNA-binding domain; ligand-binding domain

1. Introduction

Endogenous glucocorticoids (GCs) are steroid hormones synthesized from cholesterol
in the zona fasciculata of the adrenal gland cortex. They act mainly through the glucocorti-
coid receptor α (GRα) but also through the mineralocorticoid receptor (MR), both belonging
to the nuclear receptor (NR) superfamily [1]. These steroid hormones are involved in a
number of physiological processes including development [2], metabolism [3], the immune
response [4], mood and cognitive functions [5,6], cardiovascular function [7–9], water and
electrolyte balance [10,11] and reproduction [12–14].

Cortisol is the endogenous GC in humans, while corticosterone is its rodent counter-
part. GCs are essential for life, and their production is tightly regulated by the hypothalamic–
pituitary–adrenal (HPA) axis in a rhythmic circadian and ultradian fashion [15,16]. An
excess of this hormone results in Cushing’s syndrome, named after the surgeon Harvey
Cushing. Symptoms include but are not limited to hyperglycemia, central obesity, striae,
thin and fragile skin [17,18]. Depending on whether this excess is caused by factors outside
or inside the body, a distinction is made between exogenous and endogenous Cushing’s
syndrome (or Cushing’s disease), respectively. The pathology resulting from GC deficiency
is termed Addison’s disease (named after the physician Thomas Addison) or adrenal insuf-
ficiency. Symptoms include hypoglycemia, weight loss, fatigue and darkened skin [19].

The lipophilic nature of GCs facilitates their diffusion across the cellular membrane,
upon which they can induce non-genomic (rapid) and genomic (slower) effects. For the
latter, the ligand binds to the GR, upon which the ligand-bound GR translocates from the
cytoplasm to the nucleus and regulates gene expression through multiple mechanisms, in a
cell- and gene-dependent fashion, as described in [20–24] and further in this review.

Cells 2023, 12, 1636. https://doi.org/10.3390/cells12121636 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells12121636
https://doi.org/10.3390/cells12121636
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-5059-9718
https://doi.org/10.3390/cells12121636
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells12121636?type=check_update&version=2


Cells 2023, 12, 1636 2 of 38

Rapid ‘non-genomic’ GC effects (within minutes) have been reported, which do not
rely on the function of GR as a transcription factor [25,26]. Non-genomic signaling involves
the interference of membrane-bound or cytoplasmic GR with other pathways such as
the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase
(MAPK) pathways [27,28]. Additionally, rapid effects can occur through interactions of
GCs with the cell membrane (non-specific non-genomic effects) [29]. Here, we focus on the
slower (typically hours) and better-characterized GR-mediated genomic effects.

In 1949, the therapeutic potential of compound E (later known as cortisone) was dis-
covered by the physician Philip Hench when treating a patient suffering from rheumatoid
arthritis [30]. A year later, the 1950 Nobel Prize in Physiology or Medicine was attributed
to Edward Kendall, Tadeus Reichstein and Philip Hench for their discoveries regarding
hormones of the adrenal cortex, their structure and their biological effects [31]. Since then, a
wide variety of synthetic GCs with altered pharmacodynamics and pharmacokinetics have
been synthesized. Examples include dexamethasone, prednisolone and betamethasone.
These small molecules are indicated for the treatment of inflammatory and auto-immune
diseases such as asthma, inflammatory bowel disease, rheumatoid arthritis, multiple scle-
rosis and for the treatment of certain types of cancer [32,33]. While short-term systemic
GC therapy is generally associated with less severe and reversible side effects, long-term
therapy leads to irreversible and more severe side effects, often accompanied by ther-
apy resistance. Nevertheless, both short-term and long-term therapies reduce patients’
quality of life and long-term therapies especially are associated with diminished therapy
adherence [34,35].

Amongst the side effects are weight gain, diabetes [36], psychiatric syndromes [37],
osteoporosis [38,39], an increased risk of cardiovascular disease [40,41], glaucoma [42] and
many more.

2. Glucocorticoid Receptor Gene and Isoforms

The human GR is encoded by the nuclear receptor subfamily 3 group C member 1
(NR3C1) gene, which is located on the long arm of chromosome 5 (5q31.3) and contains
9 exons (Figure 1). There are fourteen exon 1 splice variants. Four of those exons (1A1–3
and 1I) are located within the distal promoter region, while the other ten (1D, 1J, 1E, 1B,
1F, 1G, 1C1–3 and H) are positioned within the proximal promoter region [43]. Exon 1
variants are reported to be expressed in a tissue-specific manner and thought to influence
GR expression in these tissues [44,45]. The remaining exons 2 through 9 code for the GR
protein of which the canonical hGRα-A consists of 777 amino acids (AAs) with a molecular
weight of 97 kDa [46,47].

Alternative splicing and alternative translation initiation give rise to a number of GR
isoforms (Figure 1). hGRα results from the end of exon 8 being joined to exon 9α, while
alternative splicing at exon 9 gives rise to isoform hGRβ. In this isoform, an alternative
splice acceptor site joins exon 8 to exon 9β. The resulting proteins are identical up to AA 727,
after which hGRα contains 50 additional AAs, whereas hGRβ contains only 15 additional
non-homologous AAs [46]. The 742 AA hGRβ with a shorter ligand-binding domain is
unable to bind GCs and was originally reported to be constitutively localized in the nucleus.
Recent studies, however, revealed that GRβ localization might be cell type-dependent [48].
This receptor variant acts as a dominant-negative inhibitor of GRα but has also been shown
to have intrinsic, GRα-independent transcriptional activities [49,50].

When an alternative splice donor site in the intron separating exons 3 and 4 is used,
three extra base pairs (GTA) are retained, thereby introducing an Arg in the DNA-binding
domain (DBD) between Gly451 and Gln452. This site is near one of the nuclear localization
signals of GR, i.e., NLS1, and is located in the lever arm which is part of the DBD. The
resulting isoform is referred to as hGRγ (or hGRα-2) (Figure 1). This isoform is more
cytoplasmic in the absence of ligand and has a delayed rate of ligand-induced nuclear
import compared to hGRα [51,52]. In cell-based assays using glucocorticoid response
element-driven (GRE-driven) reporter genes, GRγ exhibited reduced transcriptional activity
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compared to GRα. On endogenous genes, GRγ activity was generally similar and distinct
only at a subset of target genes [53,54]. The GRγ isoform is conserved in mammalian
genomes with mRNA expression levels between 5% and 10% of all NR3C1 transcripts. To
date, it remains unclear whether it has a function that is much distinct from GRα [55].
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Figure 1. Organization of the human glucocorticoid receptor (hGR) gene (NR3C1) and alternative
splice and translation initiation variants of the hGR protein. GR, glucocorticoid receptor; NTD,
N-terminal domain; DBD, DNA-binding domain; H, Hinge region; LBD, Ligand-binding domain.

hGR-P diverges from the GRα at the junction of exons 7 and 8, which is separated by
intron G, and lacks exon 8 and 9. Due to a failure to splice in this region, a small part of
intron G is retained followed by an in-frame stop codon approximately eight base pairs
from the 5′ end of intron G. Consequently, a 676 AA isoform is formed, of which the first
674 AAs match hGRα, and a part of the LBD is missing (Figure 1) [56]. hGR-P mRNA levels
are increased in myeloma plasma cells, acute lymphocytic leukemia (ALL), non-Hodgkin’s
lymphoma (NHL) and, to a lesser extent, in acute myeloid leukemia (AML), compared to
normal peripheral blood lymphocytes [57,58].

An alternate splicing event whereby exons 5, 6 and 7 are excised results in the deletion
of residues Arg490 to Ser674 encompassing the hinge region and part of the LBD. This
results in the 593 AA isoform hGR-A (Figure 1) [56].
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hGR-10 (or hGR∆313-338) arises from a 78 bp deletion in exon 2, resulting in the loss of
AAs Gly313 to Thr338 in the N-terminal domain (NTD), between the activation function 1
(AF1) region and the DBD (Figure 1) [59]. The activity of this isoform is largely maintained
in luciferase reporter assays, for transcriptional activation and repression [60].

Translation initiation from the first AUG start codon is responsible for the main GRα-A
protein product. This first start codon lies within a weak Kozak sequence resulting in
alternative translation initiation via leaky ribosomal scanning [61]. Six additional highly
conserved AUG start codons exist downstream at positions 27, 86, 90, 98, 316 and 336 and,
together with the first AUG start codon, these give rise to seven isoforms with progressively
truncated NTDs: hGRα-A, hGRα-B, hGRα-C1, hGRα-C2, hGRα-C3, hGRα-D1, hGRα-D2
and hGRα-D3 (Figure 1) [62].

3. Glucocorticoid Receptor Structure

The NR superfamily is a large group of transcription factors divided into seven
subfamilies [63]. The GR (NR3C1) belongs to subfamily 3 group C, which is also referred to
as the 3-ketosteroid receptors. The other 3-ketosteroid receptor members, closely related to
GR, are MR (NR3C2), the progesterone receptor (PR, NR3C3) and the androgen receptor
(AR, NR3C4) (Figure 2) [63].
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Figure 2. 3-ketosteroid receptors and their homologies expressed as percent identity to hGR. GR,
glucocorticoid receptor; MR, mineralocorticoid receptor; PR-A, progesterone receptor A; PR-B, pro-
gesterone receptor B; AR-B, androgen receptor B; NTD, N-terminal domain; DBD, DNA-binding
domain; H, hinge region; LBD, ligand-binding domain.

With the exception of the atypical receptors DAX (NR0B1) and SHP (NR0B2), all
members of the NR superfamily share a common modular domain organization: A–E
(Figure 3) [63].

A/B or the NTD is heterogeneous in size, the least conserved among the different
NRs and mostly disordered in solution. This domain contains the majority of the known
post-translational modification (PTM) sites and contains the AF1 region, which is important
for the interaction with different coregulators [63].

C or the DBD is smaller than the NTD in the case of the 3-ketosteroid receptors and
is the most conserved domain among the NRs. Two zinc finger motifs in this domain
determine DNA binding specificity and receptor dimerization [63].
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Figure 3. Linear domain structure of the hGR protein. Domains from left to right: N-terminal domain
(NTD), DNA-binding domain (DBD), hinge region (H) and ligand-binding domain (LBD). Three
additional regions are shown: activation function 1 (AF1), tau1 core (τ1C), tau2 (τ2), activation
function 2 helix (AF2-H or helix 12).

D or the hinge region is poorly conserved in size and sequence among the NRs. It is a
flexible linker between the DBD and LBD which is also prone to PTMs. This region can
contain a nuclear localization signal (NLS) [63].

E or the LBD is a structured domain and contains a hydrophobic ligand-binding pocket
(LBP). Variation in the LBP determines the NR ligand-binding specificity. Ligand binding
leads to structural stabilization of the second region for the interaction with coregulators,
termed activation function 2 (AF2) [63].

3.1. N-Terminal Domain (NTD)

As stated above, the NTD is the least-conserved domain amongst the NR family, hence
also the least-conserved domain in GR. A secondary structure prediction revealed a large
portion as having a random coil configuration and a small portion as having a helix and
sheet structure [64]. This is unlike the DBD and LBD, where significantly more secondary
structure elements are found [64]. No single NR NTD crystal structure has been determined,
owing to this domain’s intrinsically disordered nature.

3.1.1. Secondary Structure

In hGRα, the NTD encompasses AAs 1 to 421 and makes up the largest part of the
receptor. A subregion within this large domain termed the activation function 1 (AF1),
also called tau1 (τ1), spans residues 77 to 262. This region acts as a hub for the interaction
with certain coregulatory proteins and is therefore required for full transcriptional activity
of GR [65–68]. Consequently, isoforms hGRα-D1, -D2 and -D3, which lack AF1, display
diminished transcriptional activity [62]. Additionally, coregulatory proteins differentially
interact with the AF1 and AF2 (in the LBD) regions [69]. A 41-AA core region (τ1C or
AF1C) within τ1 (hGRα residues 187–244) was identified as the most important part for
transcriptional activity [70]. In an aqueous solution and at variable pH, this τ1C region was
mostly unstructured [71]. In the presence of a secondary structure-promoting agent, trifluo-
roethanol (TFE), the τ1C region acquired three regions with alpha-helical character (helix
1: 189–201; helix 2: 216–226; helix 3: 234–239). The disruption of these helical structures
through helix-breaking Pro substitutions reduced GR’s transcriptional activity [71]. By
making combinations of these helical regions, it was found that a single helical segment is
incapable of establishing transcriptional activity, whereas any combination of two or three
segments is sufficient [72]. A more recent study [73] investigated whether τ1C contains
transient secondary structures, also called Pre-Structured Motifs (PreSMos [74]), in aqueous
solution. They found three helical PreSMos, in concordance with [71], but at slightly shifted
positions (helix 1′: 185–202; helix 2′: 206–225; helix 3′: 232–244) [73].

A thermodynamics study using the protective osmolyte trimethylamine N-oxide
(TMAO) to induce folding transitions in the NTD of hGRα-A, and two of its translational
isoforms (hGRα-C2 and hGRα-C3) identified at least two thermodynamically coupled
regions [75]. The first was a functional region containing the AF1 site, the second a
regulatory region (hGRα residues 1–97) acting as an inhibitory domain. Shortening the
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regulatory region as seen in the translational isoforms (Figure 1) increased the stability and
activity of the receptor. Thus, the most truncated isoform included in the study, hGRα-
C3, showed the highest stability and doubled activity, followed by hGRα-C2 and, lastly,
hGRα-A [62,75].

3.1.2. Phosphorylation

GR contains at least seven experimentally confirmed phosphorylation sites conserved
among humans, rats and mice. In hGR, these sites are located at Ser113, Ser134, Ser141,
Ser203, Ser211, Ser226 and Ser404 (See Figure 4 for cross-species sequence alignment) [22,76–81].
Remarkably, all sites are situated within the intrinsically disordered NTD, and it has been
shown that phosphorylation at Ser211 induces a functionally active folded conformation of
tau1c. The phosphorylation-deficient S211A mutant did not show any significant structural
rearrangements, whereas the S211E mutation (to mimic the phosphate group negative
charge) only moderately increased helical content. Additionally, Ser211 phosphorylation of
AF1 led to a significantly increased interaction with the coregulators TATA-box binding
protein (TBP), CREB binding protein (CBP) and nuclear receptor coactivator 1 (NCOA1 or
SRC-1) [78].

Luciferase reporter assays using GR500, a receptor lacking the LBD and transcription-
ally active in the absence of ligand, revealed that GR500-S211A lost 75% of its transcriptional
activity compared to wild-type GR500, which was only partially recovered by GR500-S211E.
The activity of GR500-S203A was reduced by ~50%, and this was mostly recovered by
GR500-S203E. Similar results were observed for GR500-S226A and GR500-S226E, respec-
tively [82]. The double-mutant GR500-S203A/S226A showed an approximately 50% de-
crease in transcriptional activity, comparable to the GR500-S203A and GR500-S226A single
mutants. On the other hand, when GR500 contained the S211A mutation in combination
with either S203A or S226A, most of its transcriptional activity was lost. Similarly, nearly all
activity was lost in the GR500-S203A/S211A/S226A triple mutant [82]. In conclusion, these
data indicate that SER211 phosphorylation is most crucial for the transcriptional activity
of GR500.

When the AF1C peptide was phosphorylated at Ser203, Ser211 or Ser226, unique
structural rearrangements were observed in silico via energy minimization [82]. Hydro-
gen bonds were detected between P-Ser203 and Lys206 and also between P-Ser211 and
Arg214 [82]. Experiments with individually phosphorylated AF1C peptides suggested
that P-Ser203 and P-Ser211 prefer to interact with Lys206, whereas P-Ser226 makes a weak
contact with Arg214 [82]. Furthermore, it appears that P-Ser203 and P-Ser226 induce local
structural rearrangements, while P-Ser211 promotes both local structural rearrangements as
well as an overall more compact structure in the AF1C peptide [82]. It is proposed that the
region surrounding Ser211 is critical in GR transcriptional activation, and this is supported
by the reduced transcriptional activity observed upon mutating the close-by Trp213 [82,83].

In line with the importance of P-Ser211 reported above, phosphorylation at this
site was found to be a more reliable predictor of GR ligand effects on endogenous GR
target genes than luciferase reporters evaluating GR-driven gene activation and gene
repression [84]. This advocates for the inclusion of this important parameter when assessing
the effect of ligand on gene regulation and when screening for ligands with improved
therapeutic benefit [84].
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Uniprot ID P06537). The letters S in red mark the Serines listed in referral to this Figure.
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3.1.3. Intrinsic Disorder of the NTD

It has long been hypothesized that the intrinsically disordered nature of NTD enables
it to acquire distinct structures upon binding different cofactors. Indeed, a folded func-
tional conformation can be induced in the NTD in vitro by the osmolyte TMAO, and this
conformation selectively binds TBP, CBP and NCOA1 [68]. AF1 can also acquire structure
through binding events outside of this region, as was demonstrated in early studies using
binding of a two-domain GR, lacking the LBD, to a palindromic glucocorticoid response
element (GRE) [85]. Additionally, the interaction of TBP and nuclear receptor coactivator 2
(NCOA2, also known as SRC-2, TIF2 or GRIP1) to GR AF1 induced a significant amount
of helical structure in the latter, suggesting that coregulator binding increases the amount
of structure in AF1 [86–88]. Lastly, accumulating evidence shows that proteins use their
intrinsically disordered regions (IDRs) to form phase-separated condensates to drive the
transcription of genes [89–92]. Phase separation is a process by which molecules in a
solution or mixture spontaneously separate into two or more distinct phases, such as liquid
droplets or solid aggregates. It has been shown that GR forms such condensates both
in vitro and in vivo [91,92]. Single-molecule analysis of the GR in the nuclei of murine
mammary 3617 adenocarcinoma cells revealed two distinct states of reduced mobility [92].
The first state accounts for specific binding to chromatin and is DBD-dependent [92]. The
second state is an IDR-dependent ‘confinement state’, whereby the localization of GR
is restricted to a confined area in the nucleus by means of phase separation, promoting
binding events that are highly specific [92].

3.2. DNA-Binding Domain (DBD)
3.2.1. DBD Structure

The DBD is located C-terminally from the NTD and encompasses residues 421 to
486 in the hGR. The rat homologue of this domain in complex with DNA was the first
to be structurally resolved in 1991 (see Table 1 for an overview of all GR DBD crystal
structures) [93]. The DBD can be divided into two highly conserved zinc finger subdomains,
separated by a flexible lever arm (Figure 5). Each zinc finger comprises four cysteine
residues coordinating a single Zn2+ ion, an amphipathic helix and peptide loop [93]. The
first subdomain contains the proximal box (P-box; residues 439–443), required for DNA-
specific contacts. Helix 1 of the first subdomain (H1, residues 438–451) is positioned in the
DNA major groove and assists in DNA-binding via base-specific contacts. For this reason,
H1 is often referred to as the DNA-recognition helix. The lever arm (residues 450–456) is a
flexible loop whose conformation is allosterically regulated by the sequence of the bound
DNA, yielding different transcriptional responses [54,94]. The second subdomain contains
the distal-loop (D-loop or D-box, residues 458–462) involved in GR dimerization [95].
A distorted helix 2 (H2, residues 468–472) in the second subdomain was described by
Luisi et al. but has not been unambiguously observed in NMR experiments [93,96,97].
Recently, however, Frank et al. reported the same conformation for the distorted helix in
DNA-bound and DNA-free GR DBD (PDB ID: 3G99 and 6CFN, respectively), both resolved
using X-ray diffraction [54,98]. Lastly, helix 3 (H3, residues 473–485) from the DBD and
helix 4 (H4, residues 489–495), located in the hinge region, make contact with the DNA
minor groove [54,94].
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Table 1. Overview of available crystal structures of the GR DBD, retrieved from the Protein Data
Bank (PDB).

PDB ID GR Region +
Mutations Species GRE Sequence Method Ref.

1GDC 439–510
/ R. norvegicus / Solution NMR [96]

1GLU 440–525
/ R. norvegicus CCAGAACATCGATGTTCTG

(Consensus GRE with 4 nt spacer) XRD [93]

1LAT

440–515
G458E, S459G,
V462A, A477K,
G478Y, R479E,
N480G, D481K

R. norvegicus TTCCAGAACATGTTCTGGA XRD [99]

1R4O 440–525
/ R. norvegicus CCAGAACATCGATGTTCTG

(Consensus GRE with 4 nt spacer) XRD [93]

1R4R 440–525
/ R. norvegicus TCAGAACATGATGTTCTCA XRD [93]

1RGD 440–510
/ R. norvegicus / Solution NMR [97]

2GDA / R. norvegicus / Solution NMR [96]

3FYL 440–525
/ R. norvegicus AAGAACATTTTGTCCG XRD [54]

3G6P 440–525
/ R. norvegicus CCAGAACACCCTGTTCTG

(FKBP5 18 bp) XRD [54]

3G6Q 440–525
/ R. norvegicus TAGAACAGGGTGTTCT

(FKBP5 binding site complex 9) XRD [54]

3G6R 440–525
/ R. norvegicus CCAGAACAGGGTGTTCTG

(FKBP5 complex-52 18 bp) XRD [54]

3G6T
440–525

G470ˆQ471insR
(GRγ)

R. norvegicus AAGAACAGGGTGTTCT
(FKBP5 16 bp complex-34) XRD [54]

3G6U 440–525
/ R. norvegicus AAGAACACCCTGTTCT

(FKBP5 16 bp complex-49) XRD [54]

3G8U 440–525 R. norvegicus AAGAACATTGGGTTCC
(GILZ 16 bp complex-5) XRD [54]

3G8X 440–525 R. norvegicus AAGAACATTGGGTTCC
(GILZ 16 bp complex-65) XRD [54]

3G97 440–525 R. norvegicus TGGAACCCAATGTTCT
(GILZ 16 bp complex-9) XRD [54]

3G99 440–525 R. norvegicus AAGAACATTTTGTTCT
(Pal complex-9) XRD [54]

3G9I 440–525 R. norvegicus AAGAACATTTTGTTCT
(Pal complex-35) XRD [54]

3G9J 440–525 R. norvegicus CCAGAACAAAATGTTCTG
(Pal, 18 bp complex-36) XRD [54]

3G9M 440–525 R. norvegicus AAGAACATTTTGTCCG
(Sgk, 16 bp complex-44) XRD [54]

3G9O 440–525 R. norvegicus AAGAACATTTTGTCCG
(Sgk, 16 bp complex-9) XRD [54]
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Table 1. Cont.

PDB ID GR Region +
Mutations Species GRE Sequence Method Ref.

3G9P 440–525
/ R. norvegicus AAGAACATTTTGTCCG

(Sgk 16 bp complex 7) XRD [54]

4HN5 417–506 Homo sapiens CGCCTCCGGGAGAGCT
(TSLP IR-nGRE) XRD [100]

4HN6 417–506
R460D, D462R H. sapiens CGCCTCCGGGAGAGCT

(TSLP IR-nGRE) XRD [100]

5CBX 412–495 Ancestral CCAGAACAGAGTGTTCTG XRD [101]

5CBY 412–495 Ancestral CCAGAACAGAGTGTTCTG XRD [101]

5CC1 412–495
S425G Ancestral CCAGAACAGAGTGTTCTG XRD [101]

5E69 417–506 H. sapiens ATCGTGGAATTTCCTC
(IL-8 κB-RE) XRD [102]

5E6A 417–506 H. sapiens ATCAGGAAATTCCCAG
(PLAU κB-RE) XRD [102]

5E6B 417–506 H. sapiens CCGGGGAATTCCGCCG
(RelB κB-RE) XRD [102]

5E6C 417–506 H. sapiens AGTGGAAATTCCCACT
(CCL2 κB-RE) XRD [102]

5E6D 417–506 H. sapiens GCTCCGGAATTTCCAA
(ICAM-1 κB-RE) XRD [102]

5EMC 411–500 H. sapiens CCAGAA(methyl)CATCATGTTCTG XRD [103]

5EMP 411–500 H. sapiens CCAGAACATGATGTTCTG XRD [103]

5EMQ 411–500 H. sapiens CCAGAACATCATGTTCTG XRD [103]

5VA0 419–490 H. sapiens CGGCTGACTCATCAAG
(VCAM-1 TRE) XRD [104]

5VA7 419–488 H. sapiens AGGGTGAGTCAGGATG
(IL-11 TRE) XRD [104]

6BQU 421–490 H. sapiens AAGCTAGTACATTTGC
(monomeric DNA binding site) XRD /

6BSE 420–505 S. oedipus ACCACGTGTACTTTTT XRD /

6BSF 418–507 H. sapiens AAGCTAGTACATTTGC XRD /

6CFN 418–506 H. sapiens / XRD [98]

6 × 6D 417–490 H. sapiens CCAGAACGGAGCGTTCTG
(pre-GRE) XRD [105]

6X6E 417–491 H. sapiens CCAGAACGGAG(methyl)CGTTCTG
(methylated pre-GRE) XRD [105]

XRD, X-ray diffraction; NMR, nuclear magnetic resonance.
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Figure 5. Sequence of the hGR DBD and part of the hinge region (residues 421–503). The DBD
contains two zinc fingers, the proximal box (P-box), helix 1 (H1), the lever arm, the D-box or D-loop,
a distorted helix 2 (H2), helix 3 (H3) and helix 4 (H4). Helix positions are based on the PDB ID 3G99
crystal structure and are estimates as these are of dynamic nature [54].

The GR is able to activate and repress its target genes through various mechanisms,
either by direct binding to DNA or by binding to and modulating the function of other DNA-
bound transcription factors (tethering). The best-described mechanism is gene activation
through binding to a canonical GRE [93]. Similarly, the GR can also bind to inverted-repeat
GREs (IR-GREs) for the repression of genes [100,106]. Binding of monomeric GR to a canon-
ical half-site with consensus sequence AGAACA (or the inverse complement TGTTCT) has
also been reported and can lead to both up- and downregulation of target genes [107,108].
In specific cases, GR has been shown to repress the pro-inflammatory transcription factors
activator protein 1 (AP-1) and nuclear factor-κB (NF-κB) by binding to DNA sequences
interspersed with binding sites for those factors [102,104]. For the former, GR binds directly
to a GRE-like half-site located within a canonical AP-1 TRE (TGA(G/C)TC) [104]. For
the latter, GR binds a cryptic response element (AATTY, Y = pyrimidine base) between
the binding footprints of NF-κB subunits within κBREs [102]. In addition, the GR DBD is
capable of binding biological and synthetic RNAs of which Gas5 is the most thoroughly
researched [109–113]. The final mechanism, referred to as tethering, does not involve direct
DNA contacts but is mediated by various protein–protein interactions [114–118].

3.2.2. GR Binding to Glucocorticoid Response Elements (GREs)

NR DBDs bind to specific DNA sequences termed nuclear receptor response ele-
ments (NREs), and small differences between RE sequences can guide receptor speci-
ficity [119]. The canonical GRE is 15 base pairs long and composed of two hexameric
inverted-repeat half-sites, separated by a three-base-pair spacer. Its consensus sequence is
5′-A1GAACAnnnTGTTCT15-3′ [120]. GREs from the same gene were shown to be highly
conserved between four mammalian species (human, mouse, dog and rat), but GREs from
different genes show distinctive differences in 10 out of 15 base pairs [121]. However, six
GRE bases are contacted directly by the GR dimer and show a significant nucleotide prefer-
ence (Figure 6, underlined positions) [95]. Remarkably, nucleotides that are not directly
contacted by GR also show pronounced nucleotide preference, as demonstrated for the
spacer nucleotides at positions 7–9, which are usually pyrimidines (C and T). Depending
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on the GRE context, changing spacer sequence can impact transcriptional activity [95].
The nucleotides adjacent to the spacer, at positions 6 and 10, are preferably A and T,
respectively [95]. Almost no base preference was identified for positions 3 and 13 [95].
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Figure 6. Sequence logo for the observed GR binding motif by Watson et al. Underlined positions
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Additionally, reversing the sequence of asymmetric GREs from Sgk and GILZ relative
to the transcription start site (TSS) negatively impacted transcriptional activation but not
affinity for the GR DBD [54]. In addition, luciferase reporter assays with GREs derived
from endogenous target genes displayed significant differences in activity when their
first hexameric half-site (AGAACA) was identical but their spacer and second half-site
(XGTYCN, X = T/G, Y = A/T/C, N = any nucleotide) varied [54]. A later study involving
GREs that differ only at nonspecific bases of the spacer or at half-site positions 13 and 15
concluded that the spacer sequence, within the context of the whole GRE, does influence
GR activity [95].

In a study from the Yamamoto team in 2009, rat GR DBD was found to bind the GRE
as a head-to-head dimer with their D-loops facing each other, whereby the first monomer
contacts the first hexameric half-site, and the second monomer contacts the second half-
site (Figure 7) [54]. The head-to-head arrangement was also observed in the recent hGR
multidomain crystal structure [122]. The recognition helix of the first monomer involving
rGR Lys461, Val462 and Arg466 (see Figure 4 for cross-species sequence alignment) makes
specific major groove contacts [54,113]. This is similar for the second monomer but with a
stronger Lys461 contact and lacking the Val462 contact [54,113]. Residues 509–515 form the
C-terminal helix 4 (H4, residues hGR 489–495, mGR 506–512) which lies across the minor
groove [54]. A non-specific contact between the minor groove backbone 3 bp upstream
of the GRE and H4 is mediated by Arg510 (hGR Arg491, mGR Arg507). Mutating this
residue to an alanine (R510A) reduced the affinity for DNA by ~three-fold yet increased
transcriptional activation [54]. Several crystal structures revealed that differences in GRE,
including those that do not directly contact GR, conferred changes in the lever arm [54].
Notably, residue His472 (hGR His453, mGR His469) in the lever arm adopted distinct
conformations. In the first GR monomer contacting the first invariable half-site (AGAACA),
His472 was packed in the core of the protein fold, whereas in the lever arm of the sec-
ond monomer, contacting the second variable half-site (XGTYCN, X = T/G, Y = A/T/C,
N = any nucleotide), it was flipped out (Figure 7). Additionally, the conformation of the
lever arm in the second monomer was more variable across structures with different GREs,
especially when spacer length varied [54]. A comparison of the Pal-F (spacer = AAA) and
Fkbp5 (spacer = GGG) GREs revealed a more narrow minor groove for the former [95]. It
was proposed that the width of the minor groove imposes structural constraints on lysine-
and specifically Lys490 (hGR Lys471, mGR Lys487)-mediated backbone contacts with
DNA [95]. [1H,15N]-heteronuclear single-quantum coherence spectroscopy (15N-HSQC)
was employed to identify which regions of the DBD are affected by differences in spacer
sequence vs. those in half-site positions 13 and 15 [95]. Changes in the spacer sequence



Cells 2023, 12, 1636 13 of 38

affected Ala477 (hGR Ala458, mGR Ala474), Gly478 (hGR Gly459, mGR Gly475), the DNA-
recognition helix (H1) and the lever arm, whereas changes at positions 13 and 15 influenced
outward-facing surfaces of the DBD near the DNA, as well as the DNA-recognition helix
and lever arm [54,95]. Importantly, changes in the DNA-binding interface are communi-
cated to the lever arm and to the other dimer partner via the D-loop [95]. On top of this, an
NMR study of the GR LBD revealed allosteric communication between the LBP and the
N-terminal end of DBD H1, implying inter-domain communication [123]. Consistently, the
first GR multidomain (DBD and LBD) crystal structure described an interface between the
H1 from the LBD of the first monomer (LBD1) and the DBD D-loops of both monomers,
suggesting a path for allosteric communication between the bound DNA sequence and the
ligand within the LBP [122].
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Figure 7. Crystal structure of the rat GR DBD and the Pal complex-9 GRE (PDB ID: 3G99) [54].
Residues Lys461, Val462 and Arg466 from the first GR monomer and residues Lys461 and Arg466
from the second monomer make specific DNA major groove contacts. Arg510 mediates a non-specific
contact in the DNA minor groove. In the first monomer, His472 is seen packed in the core of the
protein fold, while in the second monomer, it is flipped out. Hydrogen bonds are shown as blue
dashed lines; zinc ions are depicted as purple spheres. H1, helix 1; H2, helix 2; H3, helix 3; H4, helix 4.

GRγ represents a pre-eminent isoform to study the lever arm due to an arginine
insertion in this region. Relative to the GRα, this isoform showed reduced activation
in GRE-dependent reporter assays [53,54] yet almost equal repression of the osteocalcin
promoter-derived reporter [124]. The regulation of endogenous GR targets by GRγ was
mostly similar to that by GRα with a few exceptions [54]. Again, DNA-bound GRα and
GRγ crystal structures were similar except for the lever arm [54]. In the crystal structure of
hGRγ, it appears that R471 forms a weak hydrogen bond with the DNA backbone at one of
the half-sites, which can explain the relatively higher affinity of GRγ for DNA compared to
GRα [125]. Changes in the DNA-recognition helix (H1) uncovered by NMR studies support
this idea [125]. Lastly, it is remarkable that the difference in binding affinity between GRα
and GRγ is smallest for the Pal GRE (with the narrowest spacer) and largest for the FKBP5
GRE (with the widest spacer). A possible explanation could be that the introduction of a
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residue in the lever arm might relieve strain imposed on the dimer interface spanning the
spacer [125].

Seven additional rGR lever arm mutants analyzed (E469A, G470A, Q471A, H472A,
H472R, N473A and Y474A; see Figure 4 for cross-species sequence alignment) produced
GRE-specific transcriptional effects suggesting that subtle differences in the lever arm can
indeed yield quite distinct GR activities [54].

The GR monomer–dimer paradigm, in which monomer-driven anti-inflammatory
effects of GR were believed to be separable from the dimer-driven side effects, originates
from experiments involving GR DBD mutants. In 1994, the importance of hGR Ala458 was
experimentally tested by mice carrying a substitution in this D-loop, termed GRdim [126].
The D-loop is involved in GR dimerization due to reciprocal hydrogen bonds between the
carbonyl of rGR Ala477 (hGR Ala458, mGR Ala474) of one monomer and the amide of Ile483
(hGR Ile464, mGR Ile480) of the other [95]. The activity of the GRdim mutant in GRE-driven
reporter assays is reported to be lower, equal or higher than the WT depending on the
GRE [95,127,128]. This mutant was also shown to have reduced affinity for DNA, which can
be attributed to diminished cooperativity between the mutant’s monomers. The rGR A477T
mutation causes local structural changes in the D-loop and residues surrounding Ile483 as
well as reorganizations in the N-terminal part of the lever arm and the DNA recognition
helix [95]. Later on, it was shown that GRdim is still able to dimerize [128], suggesting the
existence of an additional dimerization interface. In line herewith, dimerization is heavily
impaired for the double-mutant hGR A458T/I628A (GRmon) [129].

3.2.3. GR Binding to Inverted-Repeat Negative Glucocorticoid Response Element (IR-nGRE)

Agonist-bound GR, but not antagonist-bound GR, is also able to repress genes through
direct DNA binding at so-called inverted-repeat negative GREs (IR nGREs) and subsequent
assembly of corepressor complexes which consist of SMRT/NCOR corepressors and histone
deacetylases (HDACs) [106,130]. The GR is the only 3-ketosteroid receptor able to bind
the TSLP IR-nGRE with nanomolar affinity, in vitro [101]. Three key substitutions in
GR lineage (I420L, G425S and F478Y) interacted epistatically and enhanced repression
at IR-nGREs [101]. The consensus IR-nGRE sequence was defined as 5′-CTCC (N)0–2
GGAGA-3′ [100,106]. In the thymic stromal lymphopoietin (TSLP) gene, the inverted-
repeat motifs are separated by 1 bp, but in vitro work revealed that the lack of a spacer or a
2 bp spacer was also tolerated [106]. Structural analysis revealed that two GR monomers
bind to nonidentical everted half-sites, a high-affinity and a low-affinity half-site, in a
head-to-tail fashion and on opposite sides of the DNA, with their D-loops facing away
from each other (Figure 8) [100]. The high-affinity half-site maintains relatively constant
binding affinity between different IR-nGREs, whereas the low-affinity half-site displays
substantial variation amongst IR-nGREs [100].

GR binding to the TSLP IR-nGRE (5′-AGC-1T0 C1T2CC4 G GGAG9G10C11G-3′) re-
vealed that the GR monomer bound to the high-affinity half-site made three base-specific
contacts in the DNA major groove (Figure 8) [100]. Val443 is responsible for two hydropho-
bic contacts with C1 and T2 [100]. Lys442 donates a hydrogen bond to N7 of G4 of the
opposite strand and mutating this guanine (G4) to adenine attenuates binding of GR [100].
Similarly, mutating Lys442 to Ala is detrimental for IR-nGRE binding [100]. Arg447 makes
base-specific contacts on a positive GRE, which is impossible on the IR-nGRE due to a
steric clash with T0. Instead, Arg447 makes hydrophobic interactions with T0 and ionic
interactions with the C-1 backbone phosphate. Mutating T0 to guanine enables Arg447 to
make base-specific contacts, but repression functionality is lost [106].
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Figure 8. Crystal structure of the hGR DBD and the TSLP IR-nGRE (PDB ID: 4HN5) [100]. Residues
Lys442, Val443 and Arg447 from the first GR monomer and residue Arg447 from the second monomer
make specific DNA major groove contacts. His453 is flipped out from the core of the protein fold in
both monomers and stabilized by Tyr455 and Arg447. Hydrogen bonds are shown as blue dashed
lines; zinc ions are depicted as purple spheres. H1, helix 1; H3, helix 3.

The low-affinity half-site only involves an Arg447 residue making a sequence-specific
contact with G11 on the opposite strand and outside the IR-nGRE consensus sequence
(Figure 8) [100]. Mutating G11 did not affect the GR monomer binding to the high-affinity
site. Lys442 and Val443 from the monomer binding to the low-affinity half-site do not reach
far enough into the DNA major groove to make base-specific contacts [100]. The low-affinity
half-site is far more resistant to mutations, and its function remains unclear [100].

Binding of the first GR monomer to a GRE narrows the minor groove thereby facilitat-
ing dimerization. In contrast, GR binding to IR-nGRE widens the minor groove and narrow
the major groove [100]. Moreover, the dimerization loops of both GR monomers are rotated
180◦ from the DNA axis facing away from each other [100]. Together, these changes result
in the strong negative binding cooperativity observed.

A major role was ascribed to the lever arm for translating GRE sequence differences
into GR structural differences [54]. For GRE-bound GR, residue His472 (hGR His453, mGR
His469) of the lever arm adopted a packed configuration for the first monomer and a
flipped-out configuration for the second monomer [54]. At IR-nGRE, this configuration
was flipped for both monomers and stabilized by hGR Arg447 and Tyr455 (Figure 8) [100].

The dimerization-compromising mutant hGR A458T (GRdim) binds to GREs less
cooperatively compared to wild-type GR [100]. At IR-nGRE sites, binding to the low-affinity
site was increased, and binding to the high-affinity site was decreased with an overall
three-fold reduction in binding affinity [100]. Consequently, GRdim exhibited slightly lower
repressive capabilities compared to wild-type GR [100].
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3.2.4. GR Binding to Half-Sites

The α-amylase 2 gene and the CYP3A5 member of the cytochrome P450 gene family
are examples of genes harboring just two isolated GR half-sites in their regulatory region
and which are crucial for gene expression [131,132]. A survey of GREs bound by rGRdim,
revealed a half-site motif and suggested that rGRdim binds as a monomer in vivo and is able
to regulate many genes. The subsequent analysis of rGRα GREs suggested two modes of
binding: the first to consensus half-sites (AGAACA), most likely bound by monomers, and
the second to degenerate full sites, most likely bound by dimers [107]. In mice, GR ChIP-exo
on liver after endogenous corticosterone exposure revealed that monomeric GR binding
to a half-site motif is more frequent than homodimer binding to canonical GREs and that
the former also drives transcription [108]. Treatment with exogenous GCs (prednisolone),
led to an increase in GR dimers at ligand-activated genes and a decrease in GR at half-site
motifs [108]. At the time of writing, the Protein Data Bank contains three PDB IDs (6BQU,
6BSE, and 6BSF) for GR binding to a half-site [133]. However, the corresponding literature
describing the work has not yet been published.

3.2.5. GR Binding to TRE

The activator protein-1 (AP-1) proteins are an extensive family of dimeric leucine
zipper transcription factors that bind to 12-O-tetradecanoylphorbol-13-acetate (TPA) re-
sponsive elements (TREs) and are known to activate a wide variety of genes, including
many encoding inflammatory cytokines and chemokines [134]. The GR was shown to
directly bind particular TREs through an embedded GRE-like half-site and consequently
repress transcription at these sites [104].

The crystal structures of GR DBD bound to the IL11 (T1GACTC6) and the VCAM1
(T1GAGTC6) TREs were determined (Figures 9 and 10, respectively) (see also Table 1) [104].
In both structures, the first GR monomer recognizes a hexameric TGA(G/C)TC of which the
degenerate fourth base is not directly contacted by GR. In both the GR DBD:IL11 and the
GR DBD:VCAM1 TRE complexes, the DNA-reading helix is positioned in the major groove;
however, three side chains (Val443, Lys442 and Arg447) make base-specific contacts in the
former complex, whereas only two side chains (Val443 and Arg447) are involved in base-
specific contact in the latter complex. In both, Arg447 makes a hydrogen bond to the N7
position on G2 and van der Waals contacts to the methyl on T1, while Val443 makes van der
Waals contacts to G2. In the GR DBD:IL11 TRE complex, Lys442 makes additional hydrogen
bonds to the N7 position on A5 on the opposite strand. This base-specific interaction is
not observed in the GR DBD:VCAM1 TRE complex, where GR makes contacts with the
backbone of A5 on the opposite strand instead. The second GR DBD monomer was bound
to the opposite side of the TRE DNA in an everted fashion and does not make base-specific
contacts. It is likely that this GR DBD monomer is important for efficient crystal packing
but unlikely to be relevant in vivo, as corroborated by the cell-based reporter and NMR
footprinting assays [104].

3.2.6. GR Binding to κBRE

Nuclear factor-κB (NF-κB) encompasses the Rel family of dimeric transcription factors,
which are central effectors of the inflammatory gene expression program [135]. NF-κB
subunits bind to specific DNA sequences termed κB response elements (κBRE) and activate
transcription of numerous pro-inflammatory genes. GR represses inflammatory gene
expression by NF-κB through a variety of mechanisms, with GR tethering to DNA-bound
p65/RelA as the most well-described mechanism. However, it was recently reported that in
some cases, GR can recognize an evolutionary conserved cryptic response element located
between the binding sites of the NF-κB subunits [102].
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The crystal structures of GR DBDs bound to κBREs from five genes, CCL2, ICAM1,
IL8, PLAU and RELB, were solved (Figure 11 and Table 1). The study describes a GR dimer
in which the second monomer is unlikely to be relevant in vivo, analogous to GR binding
to TRE. In each structure, GR DBD recognized an A1ATTY5 (Y = pyrimidine base) sequence
through contacts mediated by Lys442, Val443 and Arg447. Lys442 makes a hydrogen bond
to the purine residue on the opposite strand of the terminal base, Y5. Val443 makes van
der Waals contacts with T3 on the opposite strand, and their distances are rather constant
across all structures. Finally, the guanidino group of Arg447 makes van der Waals contacts
with adenine A1, whereas its terminal amine forms a hydrogen bond with A2 [102].
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Figure 11. Crystal structure of the human GR DBD and the IL-8 κBRE (PDB ID: 5E69) [102]. Hydrogen
bonds are shown as blue dashed lines; zinc ions are depicted as purple spheres. H1, helix 1; H3, helix 3.

The identification of novel DNA-binding-dependent mechanisms by which the GR can
repress pro-inflammatory genes may have implications for the strategies of how to search
for improved GR therapies [102,104]. What the determinants are that drive the selection
between tethering and DNA-binding-dependent repression and what the contribution is
hereof in vivo has yet to be uncovered.

3.2.7. GR Binding to RNA

GR is reported to bind several RNAs including transfer RNA (tRNA), messenger RNA
(mRNA) and growth-arrest-specific 5 long noncoding RNA (Gas5 lncRNA) [109–112,136].

Ten small nucleolar RNAs (snoRNAs) and two spliced isoforms, Gas5a and Gas5b,
are expressed from the gas5 gene [109]. Gas5 lncRNA accumulates upon cellular growth
arrest (hence the name) and consequently contributes to cell death via its pro-apoptotic
effects [137–139]. Gas5a lncRNA was found to associate with GR in an RNA and protein co-
immunoprecipitation assay in HeLa cells, and this interaction was GR DBD dependent [109].
Furthermore, Gas5a lncRNA inhibited dexamethasone-induced GR transcriptional activity
in reporter assays [109]. The effects of Gas5a lncRNA overexpression were also tested on sev-
eral GC-responsive genes harboring endogenous GREs, including glucose-6-phosphatase
(G6Pase or G6PC1), glucocorticoid-induced leucine zipper (GILZ or TSC22D3), phospho-
enolpyruvate carboxykinase 1 (PEPCK-C or PCK1) and serum/glucocorticoid-regulated
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kinase 1 (Sgk1). Gas5a lncRNA reduced mRNA expression of these genes and GR occu-
pancy at their GREs in a dose-dependent matter [109]. This reduction in GR DNA-binding
by Gas5 has pro-apoptotic consequences, and consequently, downregulation of Gas5 was
shown to have anti-apoptotic effects in cell culture [110]. Consistently, in prostate and
breast cancers, the downregulation of Gas5 is correlated with poor prognosis [140,141].

Gas5a and Gas5b lncRNA are 598 and 630 bases long, respectively, and form numerous
hairpin structures [109]. The GR DBD binds the consensus GRE and Gas5 with comparable
affinities in the 67–125 nM range [100,112]. Although GR binds GREs as a dimer with
slightly positive cooperativity (Hill coefficient of 1.3–1.4), this is not the case for GR-
RNA binding (Hill coefficient of 0,93) [100,112,113]. NMR spectra revealed that the GR
dimerization loop was not affected by binding to a 33-nucleotide Gas5 RNA hairpin. This
suggests that GR binding to Gas5 is dimerization independent [110]. Furthermore, the
GR A458Tdim mutant shows a ~three-fold weaker binding affinity for GREs compared to
wild-type GR, while maintaining full affinity for Gas5, providing additional evidence to
support this conclusion [112]. Earlier reports suggested that the region between nucleotides
400 and 598 in Gas5 is responsible for binding GR as this region contains a GRE mimic
(Gas5 GREM), and mutations in GREM compromised GR binding [109,110]. However,
these earlier studies utilized Gas5 constructs lacking an RNA terminal loop. A more recent
study found that mutations in the GREM had no effects on GR binding and proposed
instead that GR binds in a structure-specific rather than sequence-specific fashion [112].
This was supported by in vitro and in silico observations showing that a loss of the Gas5
RNA terminal loop resulted in a drastic decrease in GR binding [112,113]. A 4 bp stem-loop
proved sufficient for binding, and increasing the loop length or altering its sequence had no
significant impact on binding [112]. However, a 3 bp stem-loop did display reduced affinity
for GR [110]. In line with these findings, GR was found to bind to multiple biological and
synthetic RNA hairpins that had no sequence similarity to the Gas5 GREM, which implies
that many RNAs have the potential to impact GR biology [112].

The DBD shares the highest percent identity among the steroid hormone receptors
(Figure 2). Consequently, it is no surprise that Gas5a lncRNA was shown to bind the DBD of
the AR, MR and PR-A and to suppress their transcriptional activity in a ligand-dependent
fashion, in vitro [109,110]. The DBD of ERα shares the least sequence identity with the GR
DBD and accordingly, Gas5a lncRNA does not bind to the ERα DBD in vitro [109]. The
ERα Glu203 is considered critical for DNA binding as it contacts a cytosine in the ERE. In
contrast, the residue at this position in other steroid receptors is a Gly and does not contact
the DNA. Therefore, the bulkier Glu203 in ERα prevents binding to the Gas5a GREM [110].
Indeed, the ERα E203G mutant binds GREs and Gas5a GREM, whereas the corresponding
GRα G349E mutation reduces binding to both [110]. Another factor that contributes to the
inability of the ERα DBD to bind Gas5 is that basic residues in H4 are not well conserved
outside of the 3-ketosteroid receptors (GR, MR, PR, AR and ER) [112]. This explains why
the transcriptional activity of not only ERα but also of another NR family member, PPARδ,
when fused with the GAL4 DBD, was not affected by Gas5a lncRNA in vitro [109].

Although the GR-DBD binds to DNA and RNA with similar affinity, the mode of bind-
ing is distinct between the two. A molecular dynamics study based on DNA-free GR DBD
(PDB ID: 6CFN), revealed that all GR DBD residues involved in RNA-binding were also
involved in DNA-binding [113]. Thus, GR DBD binding to DNA and RNA involves similar
residues but distinct protein–nucleic acid contacts [112,113]. The DNA-reading helix (H1)
was more involved in DNA binding but also bound RNA [112]. Alanine substitutions of
positively charged arginine and lysine residues in the H1 mutant (K442A/K446A) resulted
in a 20-fold decrease in affinity for DNA but only a 4-fold for RNA [112]. The distorted helix
(H2, see Figure 5) was involved in both DNA and RNA binding, and the corresponding
mutant K467A/R470A displayed dramatically reduced binding for both [112]. Likewise,
alanine substitutions of lysine and arginine in H3 had more pronounced effects on DNA
binding [112]. Finally, H4 was reported as both folded [54,98] and unfolded [93,100] in
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crystal structures. Molecular dynamics simulations indicate that unfolding of H4 into a
random-coil structure increases the number of electrostatic interactions with RNA [113].

3.3. Carboxy-Terminal Ligand-Binding Domain (LBD)

In 2002, Bledsoe et al. reported the first crystal structure of the F602S GR LBD in
complex with dexamethasone and a peptide from the transcriptional intermediary factor
2 (TIF2) coactivator (see an overview of GR DBD crystal structures in Table 2) [142]. This
structure revealed 11 α-helices and 4 β-strands that fold into three parallel layers to form
an alpha helical sandwich, consistent with the LBD structure of other NRs (Figure 12) [63].
Helices 1 (H1) and H3 form the front, and H7, H10 and H11 form the back, whereas H4,
H5, H8, and H9 form the middle layer of the domain [142]. This arrangement creates a
hydrophobic cavity at the base of the receptor, termed the ligand-binding pocket (LBP) and
is able to accommodate a variety of molecules [142]. The LBP volume ranges dramatically
across the NR family from 30 Å3 in the Drosophila orphan nuclear receptor DHR38 to
1400 Å3 in the subtypes of peroxisome proliferator-activated receptors (PPARs) [143]. The
top half of the LBD is conserved, while the bottom half is more variable, conferring ligand
specificity among the NRs [144]. The volume of the GR LBP is approximately 600 Å3, while
dexamethasone occupies only about 65% of the LBP [142]. To add to that, the pocket can
expand to as much as 1070 Å3 as seen in the crystal structure of the deacylcortivazol-bound
GR LBD [145]. Two distinct domains involved in coregulator binding are found in the
LBD, the transcriptional activation function tau2 (τ2) region (residues 527 to 556) and the
activation function 2 (AF2) region (Figure 3) [142,146].

Table 2. Overview of available crystal structures of the ligand-bound GR LBD, retrieved from the
Protein Data Bank (PDB).

PDB
ID Ligand GR Region +

Mutations Species Cofactor Peptide GRE
Sequence Method Ref.

1M2Z Dex 521–777
F602S H. sapiens PVSPKKKENALLRYLLDKDDT

(NCOA2) / XRD [142]

1NHZ RU-486
500–777

N517D, F602S,
C638D

H. sapiens / / XRD [147]

1P93 Dex
500–777

N517D, F602S,
C638D

H. sapiens KENALLRYLLDK
(NCOA2) / XRD [147]

3BQD
Deacyl-

cortivazol
(DAC)

525–777
F602S H. sapiens AQQKSLLQQLLTE

(NCOA1) / XRD [145]

3CLD Fluticasone
furoate (GW6)

521–777
F602Y, C638G H. sapiens KENALLRYLLDK

(NCOA2) / XRD [148]

3E7C GSK866 521–777
F602Y, C638G H. sapiens ENALLRYLLDK

(NCOA2) / XRD [149]

3GN8 Dex 529–777
N.A. Ancestral PVSPKKKENARYLLDKDDT

(NCOA2) / XRD [150]

3H52 RU-486

528–777
F602S, C638D,
E684A, E688A,

W712S

H. sapiens ASNLGLEDIIRKALMGSFD
(NCOR1) / XRD [151]

3K22 alaninamide 10 521–777
F602Y, C638G H. sapiens KENALLRYLLDK

(NCOA2) / XRD [152]
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Table 2. Cont.

PDB
ID Ligand GR Region +

Mutations Species Cofactor Peptide GRE
Sequence Method Ref.

3K23 D-prolinamide
11

521–777
F602Y, C638G H. sapiens KENALLRYLLDK

(NCOA2) / XRD [152]

3MNE Dex 527–783
F617S

M.
musculus

KENALLRYLLDKD
(NCOA2) / XRD [153]

3MNO Dex 527–783
F608S, A611V

M.
musculus

KENALLRYLLDKD
(NCOA2) / XRD [153]

3MNP Dex
527–783

A611V, V708A,
E711G

M.
musculus

KENALLRYLLDKD
(NCOA2) / XRD [153]

4CSJ Compound 30
(NN7)

500–777
N517D, V571M,
F602S, C638D

H. sapiens ENALLRYLLDKDD
(NCOA2) / XRD [154]

4E2J mometasone
furoate

Synthetic 250AA
fragment,

ancestral GR
Ancestral NCOA2 (741–752) / [155]

4LSJ Compound 10
(LSJ)

522–777
F602Y, C638G H. sapiens HSSRLWELLMEAT

(Synthetic D30 peptide) / XRD [156]

4MDD
Compound 8
Non-steroidal

antagonist

522–777
L525S, L528S,
L535A, V538T,
F602Y, C638D,
E684A, E688A,

W712S

H. sapiens NLGLEDIIRKALMGS
(NCOR1) / XRD [157]

4P6W Mometasone
Furoate

526–777
F602A, C622Y,
T668V, S674T,
V675I, K699A,

K703A

H. sapiens ANALLRYLLDKD
(NCOA2) / XRD [158]

4P6X Cortisol

523–777
F602A, C622Y,
T668V, S674T,
V675I, E684A,

E688A

H. sapiens KENALLRYLLDKDD
(NCOA2) / XRD [158]

4UDC Dex
500–777

N517D, F602S,
C638D

H. sapiens KENALLRYLLDKDD
(NCOA2) / XRD [159]

4UDD Desisobutyryl-
ciclesonide

500–777
N517D, V571M,
F602S, C638D

H. sapiens KENALLRYLLDKDD
(NCOA2) / XRD [159]

5G3J Compound 15
(E7T)

500–777
N517D, V571M,
F602S, C638D

H. sapiens KENALLRYLLDKDD
(NCOA2) / XRD [160]

5G5W Compound 8b
(R8C)

500–777
N517D, V571M,
F602S, C638D

H. sapiens KENALLRYLLDKDD
(NCOA2) / XRD [161]

5NFP Budesonide
500–777

N517D, V571M,
F602S, C638D,

H. sapiens KENALLRYLLDKDD
(NCOA2) / XRD [162]
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Table 2. Cont.

PDB
ID Ligand GR Region +

Mutations Species Cofactor Peptide GRE
Sequence Method Ref.

5NFT AZD5423

500–777
N517D, V571M,
F602S, C638D,
E638A, W712S

H. sapiens KENALLRYLLDKDD
(NCOA2) / XRD [162]

5UC1 RU-486
519–727
(GRβ)
F599S

H. glaber / / XRD [163]

5UC3 RU-486 522–777
L733K, N734P H. sapiens / / XRD /

6DXK Compound 11

522–777
L525S, L528S,
L535A, V538T,
F602Y, C638D,
E684A, E688A?

W712S

H. sapiens / / XRD [164]

6EL6 Compound 4
500–777

N517D, V571M,
F602S, C638D

H. sapiens KENALLRYLLDKDD
(NCOA2) / XRD [165]

6EL7 Compound 31

500–777
N517D, V571M,
F602S, C638D,
E684A, W712S

H. sapiens KENALLRYLLDKDD
(NCOA2) / XRD [165]

6EL9 AZD9567

500–777
N517D, V571M,
F602S, C638D,
E684A, W712S

H. sapiens KENALLRYLLDKDD
(NCOA2) / XRD [165]

6NWK Dex 529–777
N.A. Ancestral PSLLKKLLLAPA

(PGC1α) / XRD [166]

6NWL Cortisol 529–777
N.A. Ancestral PSLLKKLLLAPA

(PGC1α) / XRD [166]

7KRJ Dex 520–777
F602S H. sapiens Hsp90, p23 (full-length) / CEM [167]

7KW7 / Full-length
(LBD structure) H. sapiens Hsp90, Hsp70, Hop

(full-length) / CEM [168]

7PRV Fluticasone
furoate (GW6)

385–777
S404A N517D
V571M F602S

C638D

H. sapiens PPQEAEEPSLLKKLLLAPANT
(PGC1α)

TACAGAACATTT
TGTCCGTCGAC

(Sgk1 23 bp;
overhang)

XRD [122]

7PRW Velsecorat

385–777
S404A N517D
V571M F602S

C638D

H. sapiens PPQEAEEPSLLKKLLLAPANT
(PGC1α)

GTACAGAACAT
TTTGTCCGTCGA

(Sgk1 23 bp;
blunt)

XRD [122]

7PRX Velsecorat 529–777 H. sapiens PPQEAEEPSLLKKLLLAPANT
(PGC1α) / XRD [122]

Dex, dexamethasone; NCOA2, nuclear receptor coactivator 2; XRD, X-ray diffraction; NCOA1, nuclear receptor
coactivator 1; NCOR1, nuclear receptor corepressor 1; PGC1α, Peroxisome proliferator-activated receptor gamma
coactivator 1 alpha; Hsp90, heat shock protein; CEM, cryo-electron microscopy; LBD, ligand-binding domain;
Hsp70, heat shock protein 70, Hop, Hsp90-Hsp70 organizing protein.
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Figure 12. (a) Protein sequence of the GR LBD. (b) Structural overview of the GR LBD in complex
with dexamethasone and a TIF2 coactivator motif (PDB ID: 1M22) [142]. Dexamethasone is depicted
as a sphere colored in red/salmon.

3.3.1. Agonist-Bound Form

GCs bound within the GR LBP form an extensive network of hydrogen bonds. The
boundaries of this pocket are delineated by H3, H4/5, H7, H10/11 and H12 [142]. At one
side of the pocket, the C3-ketone group of the GC A-ring forms a hydrogen bond with
Arg611 of H5 and Gln570 of H3 (Figure 13) [142,147,158]. Another hydrogen bond forms
between the C11 hydroxy group of the steroid C-ring and Asn564 of H3 [142,147,158]. The
C17 hydroxy group of the D-ring interacts with Q642 of H7, while the C20 carbonyl and C21
hydroxy both form hydrogen bonds with T739 of H11 [142,147].
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Figure 13. Structural overview of dexamethasone (gray) bound in the GR LBP with hydrogen bonds
shown as blue dashed lines (PDB ID: 1M2Z) [142]. The C3 ketone from the A-ring interacts with
Gln570 and Arg611 belonging to H3 (orange) and H5 (yellow), respectively. The C11 hydroxy group
from the C-ring interacts with Asn564 belonging to H3 (orange). The C17 hydroxy group from the
D-ring interacts with Q642 belonging to H7 (green). The C20 carbonyl and C21 hydroxy group interact
with Thr739 belonging to H11 (purple).

Although cortisol and dexamethasone are structurally similar, dexamethasone is
much more potent and binds GR with much higher affinity [158]. The C1-C2 double
bond observed in dexamethasone results in a planar steroid A-ring and C3 ketone group,
facilitating the interaction of the latter with residues Arg611 and Gln570 [158]. In contrast,
the C1-C2 single bond in cortisol is much more flexible which requires the steroid A-
ring to bend in order to form a hydrogen bond with these residues [158]. Prednisolone,
which is more potent than cortisol, exemplifies this as it is identical to cortisol except
for the additional C1-C2 double bond [158]. It also appears that a water molecule is
required for cortisol, but not dexamethasone, to form a hydrogen bond network to keep
the ligand in place [158]. Interestingly, crystal structures of an ancestral variant of the GR
(AncGR2) complexed with either cortisol or dexamethasone, revealed the presence of a
water molecule for both ligands bound [166]. Dexamethasone also features two additional
structural modifications, a fluorine atom at position C9α and a methyl group at position
C16α, which increase its interaction surface with the ligand-binding pocket [158].

In the dexamethasone-bound GR crystal structure (PDB ID: 1M2Z), a hydrophobic
cavity, formed by helices 3, 5, 6, 7 and the β3-β4 turn above the steroid D-ring, is empty [158].
However, mometasone furoate (MF, PDB ID: 4P6W) has a C17α furoate ester that occupies
this hydrophobic cavity and makes hydrophobic interactions with Phe623, Ile629, Met639
and Cys643 which underlies this ligand’s higher affinity for GR [158]. The largest difference
between the cortisol- or dexamethasone-bound vs. MF-bound GR LBP, is in Gln642 of
H7 [158]. Gln642 is pushed away by the C17α lipophilic group of MF, leading to an altered
orientation of the C-terminus of the AF2-H, which is reported to be characteristic for high
potency [158]. This increase in potency was also illustrated by a C17α substitution to go
from fluticasone propionate to the more potent fluticasone furoate (FF) [169].
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Recently, the first crystal structure of a multidomain GR (DBD and LBD, residues
385–777) in complex with the agonists velsecorat or FF, a natural GRE (Sgk1) and a peptide
of the PGC1α coactivator were resolved [122]. Both agonists interact with Asn564 to
stabilize H12 in the active conformation (Figure 14). At the opposite side from Asn564, both
ligands interact with Gln642, but the side chain is positioned differently due to the less
bulky and non-steroidal scaffold of velsecorat. Most notable is the interaction of the 3-keto
group of FF with Gln570 and Arg611, while velsecorat extends in a novel pocket beneath
Trp577. Hydrogen–deuterium exchange mass spectrometry (HDX-MS) revealed that the
two ligands led to different deuterium-uptake levels in a region of the DBD (residues
424–460, see Figure 5). This suggests there is ligand-specific communication between the
LBD and DBD, even in the absence of DNA [122].
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Figure 14. Structural overview of velsecorat and fluticasone furoate (FF) bound in the GR LBP with
hydrogen bonds shown as blue dashed lines (PDB ID: 7PRW and 7PRV, respectively) [122]. (a) Both
ligands interact with Asn564 and Gln642 to stabilize H12. (b) Velsecorat extends in a novel pocket
beneath Trp577, while FF interacts with Arg611 and Gln570.
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3.3.2. Antagonist-Bound Form

Mifepristone, also known as RU-486, is a steroidal antiprogestin and antiglucocorticoid
with weak antiandrogen activity [147,170]. The crystal structure of mifepristone in complex
with a GR LBD (N517D, F602S, C638D) was first solved in 2003 (PDB ID: 1NHZ) [147]. In
2010, the crystal structure of the mifepristone-bound GR LBD in complex with a peptide
from the corepressor NCOR1 (PDB ID: 3H52) was resolved [151]. Compared to other
typical NR structures, the main differences were observed in H12 and in the binding
of mifepristone and NCOR1 [151]. In the LBP, mifepristone adopts a conformation and
orientation analogous to that of dexamethasone, albeit with a significant steric hindrance
from the mifepristone moiety, which displaces H12, giving rise to three distinct monomers
with distinct H12 conformations on different sides of the dimethylaminophenyl group
(Figure 15) [151]. Hereafter, the three different H12 conformations in these monomers will
be referred to as domains 1 to 3. The NCOR1 peptide is bound in domains 1 and 2, but not 3.
In domain 1, H12 adopts a conformation that is remarkably different than the one observed
in agonist-bound GR [151]. In domain 2, H12 adopts an intermediate conformation between
that of domain 1 and the one GR acquires with an agonist [151]. Domain 1 is therefore likely
to be the main antagonist conformation in which the adjusted position of H12 alters the
coregulator binding site, thus increasing the affinity for the NCOR1 peptide [151]. Here, the
charge clamp interaction of Lys579 from H3 with the C-terminus of NCOR1 is preserved,
but the Glu755 interaction from H12 is lost [151].
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Figure 15. Structural overview of the dexamethasone-bound and RU-486-bound GR LBD (PDB ID:
1M2Z and 3H52, respectively) [142,151]. (a) Agonist-bound GR LBD as reference with H12 (purple),
TIF2 (blue) and dexamethasone (salmon) colored. (b) Overlay of the three domains (domain 1–3)
of RU-486-bound GR LBD. In domain 1, RU-486 (salmon) displaces H12 (purple) from the agonist
position, enabling the binding of NCOR1 (dark blue). In domain 2, H12 (pink) is observed in an
intermediate position between the positions observed in domain 1 and the agonist-bound GR LBD.
In domain 3, H12 (light pink) is observed on the other side of the dimethylaminophenyl moiety,
occupying the coregulator binding site and thus preventing NCOR1 binding.

An intriguing crystal structure is the one from Heterocephalus glaber (naked mole rat)
GRβ LBD in complex with RU-486 (PDB ID: 5UC1) [163]. The general structure is very
similar to that of GRα LBD/RU-486, and the in silico calculated total binding energies are
similar, albeit some differences in binding interactions are observed [163]. In GRβ, the
50 C-terminal AAs of GRα are replaced by 15 unique residues resulting in the absence of
H11 and H12 and appearance of a disordered C-terminal region (Figure 1) [46,163]. These
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unique C-terminal residues were found to be mostly disordered and not implicated in
RU-486 binding. Remarkably, GRβ/RU-486 binds the NCOR corepressor with slightly
higher affinity than GRα/RU-486 suggesting that H12 might be dispensable for corepressor
binding [163]. This is further supported by the observation that H12 is positioned away
from the AF2 region when the nonsteroidal antagonist compound 8 is bound (PDB ID:
4MDD) [157].

At the time of writing, no published studies are available for another structure involv-
ing RU-486 deposited in the Protein Data Bank with PDB ID 5UC3 [133].

A recent study by the team of Estebanez-Perpiña thoroughly reinvestigated GR LBD
homodimerization, revealing distinct assemblies for antagonist-bound GR LBD compared
to agonist-bound GR LBD [171]. In the antagonist-bound structures 5UC3, 1NHZ [147]
and 3H52 [151] (Table 2), symmetric back-to-back and base-to-base homodimers were
observed with much larger interface areas and lower energies compared to other GR LBD
conformations. Antagonist binding is suggested to promote or stabilize these back-to-back
and base-to-base assemblies, which is associated with an inactive or self-repressed state of
GR. They also suggested that the deficiency in transcriptional activity of antagonist-bound
GR may be attributed to impaired tetramerization, based on results from [172] in which
RU-486-bound full-length GR is dimeric in the nucleus but unable to form tetramers on
DNA [171].

The C-terminal H12 (also known as the activation function helix, AF2-H) forms the AF2
surface together with H3 and H4 and plays a major role in ligand-dependent interaction
with coregulators [122]. The antagonist-bound GR has the AF2-H positioned in such a way
that corepressor interactions are allowed [142]. Amongst the corepressors are NCOR1 and
NCOR2 (or NCOR and SMRT, respectively) [173,174]. In agonist-bound GR, the AF2-H
packs against helices 3, 4 and 10, stabilizing the receptor in the active conformation and
promoting the association with coactivators proteins [142] such as NCOA1, 2, 3 and PPARγ
coactivator 1α (PGC1α) [122,175,176]. Notably, some coregulators have the potential to
act as either a coactivator or a corepressor, depending on the context, as was first shown
for NCOA2 through the employment of distinct NCOA2 surfaces [177,178]. Binding
of coregulators to the AF2 region occurs through a short amphipathic helix containing
the LXXLL motif in coactivators or the (L/I)XX(I/V)I or LXXX(I/L)XXX(I/L) motif in
corepressors [151,179,180]. A so-called charge clamp in which AA residues on the surface
of GR interact with oppositely charged residues of the coregulator results in the formation
of a stable complex [142]. In coactivator binding, a conserved charge clamp is mediated by
K579 from H3 and E755 from H12, while a secondary charge clamp is mediated by R585
and D590 [142].

3.4. GR in Complex with Hsp

In the absence of GCs, apo-GR resides predominantly in the cytoplasm in association
with a chaperone complex [181,182]. GR cycles through a four-step chaperoning process,
which is essential for regulating its activity, stability, and ligand binding, and ensuring
proper cellular response to GC hormones. In the first step, the active GR LBD is inactivated
by Hsp70, upon which the cochaperone Hop (Hsp90-Hsp70 organizing protein) helps to
load the Hsp70-GR complex onto Hsp90, forming an inactive ‘client-loading’ complex [168].
After hydrolysis of ATP by Hsp90 and closure of Hsp90, the ‘client-loading’ complex
releases Hsp70 and Hop and incorporates p23 to form the ‘client-maturation’ complex,
which restores GR ligand binding with increased affinity [167,168].

Two cryo-electron microscopy structures are reported: the ‘client-loading’ complex of
Hsp90-Hsp70-Hop-GR [168] and the ‘client-maturation’ complex of Hsp90-p23-GR [167]. A
model is proposed in which Hsp70C (Hsp70 client loading, the first Hsp70) captures the GR
pre-H1 strand (residues 523–531 just N-terminal to/upstream of H1) causing the subsequent
helix-strand motif to detach, thus destabilizing the GR LBP [168]. The partially unfolded GR
is then delivered by Hsp70C to a complex containing Hop, Hsp70S (Hsp70 scaffolding, the
second Hsp70) and an Hsp90 dimer producing the ‘client-loading’ complex. In this complex,
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GR is further unfolded by engagement of the GR H1 LXXLL motif (residues 532–536) with Hop
and the GR post-H1 strand (residues just C-terminal/downstream of H1) with the Hsp90
lumen, impeding ligand binding [168]. Both Hsp70 proteins (Hsp70C and Hsp70S) and Hop
are then released in a process requiring ATP hydrolysis and p23 is incorporated, forming the
‘client maturation’ complex in which H1 docks back onto the GR body and ligand binding is
restored and enhanced [167,168]. This results in a mature apo-GR complex consisting of an
Hsp90 dimer, p23 and one of the tetratricopeptide repeat (TRP)-containing cochaperones.
Members belonging to the TRP-containing chaperones include FK506-binding protein
(FKBP) 51 and 52 (two immunophilins), cyclophilin 40 and protein phosphatase (PP) 5.
Ligand binding to GR is known to be inhibited by FKBP51, whereas FKBP52 is essential for
cytoplasmic transport of liganded GR to the nucleus [183–186]. Upon hormone binding
to GR, FKBP51 is replaced by FKBP52 [187]. Subsequent nuclear transport of GR along
the microtubules is mediated by the interaction of FKBP52 and PP5 with the retrograde
motor protein dynein [188]. At the nuclear membrane, nuclear import is mediated through
interactions with components of the nuclear pore complex. Two nuclear localization signals
(NLSs) have been identified in the GR sequence [189]. NLS1 overlaps with and extends
C-terminally from the receptor DBD, and NLS2 is located within the LBD. The passage of
GR through the nuclear pore complex starts with the recognition of NLS1 by the adaptor
protein importin-α [190] and formation of a trimeric complex with importin-β [191]. Hsp90
has been shown to interact with importin-β and Nup62 [192]. Nuclear retention of GR
is facilitated by a nuclear retention signal (NRS) which overlaps with NLS1 and delays
nuclear export [193]. On the other hand, nuclear export of GR is mediated through the
binding of its nuclear export signal (NES), located between the two zinc fingers in the
DBD, to exportin-1 and calreticulin [194–196]. The cellular localization of the GR involves a
dynamic process where both active and inactive forms have been shown to shuttle between
the nucleus and cytoplasm [191,197]. Still, apo-GR is predominantly in the cytoplasm,
whereas ligand-bound GR is predominantly in the nucleus.

4. GR Dimerization and Oligomerization

In 1983, the team of Yamamoto employed electron microscopy to study the behavior of
the 94 kDa GR in the presence and absence of DNA [198]. They observed that the GR formed
complexes of various sizes, ranging from homo-trimers to homo-hexamers, regardless of
DNA binding [198]. Later studies proposed a dimeric mode of DNA binding and gene
expression, guided by the first crystal structure of the GR DBD [93] and the identification
of a 5 bp region (later termed the D-loop) in the DBD implicated in dimerization [199].

From a series of GR mutagenesis studies, it was posited that the GR-activating prop-
erties via direct dimeric binding were distinct and separable from GR’s gene-repressing
properties, which are conferred by monomeric binding [127]. This was built on the obser-
vation that a D-loop mutant (A458T or GRdim) failed to activate genes while still being able
to repress AP-1 [127]. Subsequent work involving this mutant in so-called GRdim/dim mice
recapitulated the hypothesis for endogenous GR target genes and demonstrated the mice’s
viability, unlike the GR-null mice. This provided the basis to pursue the dissociated model
of GR action and spurred the quest for specific so-called ‘dissociating’ ligands [126]. Accord-
ing to this model, ligands that could drive wild-type GR towards a GRdim phenotype would
attenuate inflammation, the main goal of GC therapy, via monomeric GR-repressing AP-1
and NF-κB while avoiding the GRE-driven clinically undesirable ‘side effects’ [200,201].
Such intensely sought after selective GR agonists (SEGRAs) and selective GR modulators
(SEGRMs), collectively denominated SEGRAMs, are compounds designed to engage only
a subset of GR-driven mechanisms in an attempt to reduce the number of side effects
these compounds may have in the clinic [202]. SEGRA is the term that was first used for
compounds derived from a steroidal scaffold, but unfortunately, these molecules had poor
selectivity between steroid receptors [202]. The term SEGRM came later and was used to
refer to the newer generation, including also non-steroidal compounds [202].
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The simplified dissociated model of GR action has since been repeatedly challenged [203].
For instance, it was found that GRdim was still able to dimerize and activate certain
genes [54,69,95,129]. On the other hand, many anti-inflammatory actions of GCs were
mediated by dimeric GR acting at conventional GREs, further disconnecting the binary
vision of GR molecular biology from the complexity of ‘desirable’ vs. ‘adverse’ effects of
GCs in vivo.

In the meantime, the structural basis of GR oligomerization continues to be debated.
The first publication of the GR LBD crystal structure described an LBD dimer interface
involving the loop between H1 and H3, the antiparallel β-sheet (formed by β3 and β4) and
the C-terminal end of H5 [142]. A more recent in silico study analyzed the dimer interfaces
of 21 GR LBD crystal structures deposited in the PDB and found that the interface observed
by Bledsoe et al. was present in only six PDB entries [142,204]. The interface reported most
often (in nine crystal structures) is the one involving H1, whereas the architecture with
H9 in an anti-parallel arrangement is the most energetically favored, despite it only being
observed once [204].

In the first multi-domain crystal structure of the GR LBD and DBD in complex with
the agonist velsecorat, a GRE from Sgk1 and a PGC1α coregulator peptide (residues
134–154), the dimerization interface reported by Bledsoe et al. was not observed and
neither was the anti-parallel H9 interface described by He et al. and reported as most
stable by Bianchetti et al. [122,142,158,204]. Instead, two possible LBD dimer interfaces
were proposed [122]. The first interface is a head-to-tail dimer with a buried surface area
of 904.4 Å2 involving the N-terminal end of H10 and H11 and H6-H7 and this interface
partially overlaps with the canonical ER dimer interface [122]. The other is a head-to-head
dimer primarily mediated by H1, whereby only 710.2 Å2 is buried and which is most often
observed in crystal structures [122,204].

While the H9–H10–H11 dimerization interface of ERα and the estrogen-related re-
ceptors (ERRs) is well-established, this is not the case for the 3-ketosteroid receptors [204].
The C-terminal residues of GR form the F-domain, which packs against the LBD and
prevents H9–H10–H11 dimerization, as observed in ERα and the ERRs [204]. Comparing
the interfaces available in the PDB reveals that to date, there is no consensus on how the
GR LBD dimerizes [133]. Moreover, the concept that GR either acts as a monomer or a
dimer has been challenged when DNA binding was proposed to induce the formation of
GR tetramers [171,172,205]. A recent study by Jiménez-Panizo et al. describes four GR
agonist-bound modes of dimerization, centered around the residues Tyr545 and Ile628,
and these would further generate different tetrameric arrangements on DNA [171]. An
additional observation was that D641V, a GR mutant linked to Chrousos syndrome [206],
formed higher-order oligomers on DNA, but this was accompanied by reduced transcrip-
tional activity [171]. The authors suggest that the D641V mutation promotes the formation
of a non-functional multimer, explaining the GC-resistant phenotype [171].

In conclusion, the study of the GR is far from over. Despite significant progress in
understanding the structural and functional aspects of the receptor, there are still many
debates and controversies to be settled.

5. Conclusions and Future Perspectives

The advancements made in understanding the multidomain structure of the GR have
provided a critical framework for understanding its signaling and how this drives the
activation and repression of genes in response to different ligands, through the binding of
distinct DNA sequences and interaction with various coregulators. However, our insights
also come with limitations. X-ray diffraction studies often involve stabilizing mutations,
and although these are chosen in such a way that interference with the wild-type structure is
minimal, one cannot be certain of such a claim. Additionally, crystal structures often involve
individual domains of the GR, and therefore, information on domain interplay is lacking.
Recently, however, the first GR multidomain (DBD and LBD) crystal structure was resolved
and hopefully more will follow soon, allowing us to improve our understanding of GR
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domain interplay and its behavior on distinct DNA sequences, with different coregulators
in response to different ligands. Much can also be learned from studying other NRs or
by solving GR heterodimers, for example, the GR-MR heterodimer, which is recognized
as physiologically relevant [207–210]. Ultimately, these insights will aid in the search for
improved GC therapies
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