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Abstract: Background: Asthmatic patients’ responses to inhaled corticosteroids (ICS) are variable
and difficult to quantify. We have previously defined a Cross-sectional Asthma STEroid Response
(CASTER) measure of ICS response. MicroRNAs (miRNAs) have shown strong effects on asthma and
inflammatory processes. Objective: The purpose of this study was to identify key associations between
circulating miRNAs and ICS response in childhood asthma. Methods: Small RNA sequencing in
peripheral blood serum from 580 children with asthma on ICS treatment from The Genetics of
Asthma in Costa Rica Study (GACRS) was used to identify miRNAs associated with ICS response
using generalized linear models. Replication was conducted in children on ICS from the Childhood
Asthma Management Program (CAMP) cohort. The association between replicated miRNAs and
the transcriptome of lymphoblastoid cell lines in response to a glucocorticoid was assessed. Results:
The association study on the GACRS cohort identified 36 miRNAs associated with ICS response
at 10% false discovery rate (FDR), three of which (miR-28-5p, miR-339-3p, and miR-432-5p) were
in the same direction of effect and significant in the CAMP replication cohort. In addition, in vitro
steroid response lymphoblastoid gene expression analysis revealed 22 dexamethasone responsive
genes were significantly associated with three replicated miRNAs. Furthermore, Weighted Gene
Co-expression Network Analysis (WGCNA) revealed a significant association between miR-339-3p
and two modules (black and magenta) of genes associated with immune response and inflammation
pathways. Conclusion: This study highlighted significant association between circulating miRNAs
miR-28-5p, miR-339-3p, and miR-432-5p and ICS response. miR-339-3p may be involved in immune
dysregulation, which leads to a poor response to ICS treatment.

Keywords: childhood asthma; miRNA; ICS

1. Introduction

Asthma is the most common chronic lung disease of childhood, with 44.3 percent of
children in the United States reporting one or more asthma attacks in the previous year [1].
Inhaled corticosteroids (ICS) are the most effective and widely recommended controller
medication for asthma. However, there are two key drawbacks: over 40% of patients do
not respond well to ICS therapy, particularly those with severe disease, and ICS have dose-
dependent side effects [2–4]. Clinical asthma management would benefit from a method to
identify patients who are poor responders to ICS before treatment begins, allowing other
medications to be added or substituted for the ICS and avoiding the usual trial-and-error
phase of treatment. Extracellular microRNAs (miRNAs) are miRNAs found outside of
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cells, in bodily fluids such as saliva, urine, breast milk, etc. They are released from cells
through various mechanisms, such as passive leakage from damaged cells, active secretion
in extracellular vesicles (EVs), or by binding to proteins such as Argonaute-2 (AGO2). The
release of extracellular miRNAs is more localized and may affect cells that are in close
proximity to the site of release. In contrast, circulating miRNAs are a type of extracellular
miRNA that circulate in the bloodstream and have the potential to regulate gene expression
in distant cells. They are mainly released by active secretion in extracellular vesicles or by
binding to proteins such as high-density lipo-proteins (HDLs), apoptotic bodies, and micro-
particles [5]. Circulating microRNAs (miRNAs) have been suggested as biomarkers for a
number of conditions and have been shown to be important in a number of inflammatory-
mediated processes [6,7], including asthma [8]. We hypothesized that circulating miRNA
in serum would be associated with ICS response in children with asthma.

To distinguish between good and poor ICS responders, a precise quantitative definition
of steroid response is necessary. Six clinical features were used by Clemmer et al. to
establish a measure of the Steroid Responsiveness Endophenotype (SRE); while this method
showed excellent performance, this measure is inherently longitudinal and necessitates
surveillance during a period of ICS administration [9]. We have previously defined a
Cross-sectional Asthma STEroid Response (CASTER) measure of ICS response, based
on a combination of asthma control indicators and spirometry measures, which can be
computed from data collected at a single time point [10]. Previously, analyses of gene or
miRNA differential expression [11,12], metabolome, single-nucleotide polymorphism, and
expression quantitative trait loci (eQTL) found multiple genes, miRNAs, metabolomes, or
SNPs associated with asthma drug responsiveness [13–16].

The primary goal of this study was to identify circulatory miRNAs associated with ICS
response in children with asthma and to interpret the mode of function of such miRNAs.
We show that serum miRNAs were associated with ICS response in a cohort of Costa Rican
children with asthma, and these findings were replicated in an independent cohort of North
American children with asthma. Using transcriptomics of lymphoblastoid cell lines in
response to steroids, we then constructed a steroid-responsive gene co-expression network,
identified co-modulated genes clusters using a modified WGCNA method, and showed
that these were associated with replicated miRNAs.

2. Materials and Methods
2.1. Study Cohorts: GACRS and CAMP
2.1.1. Discovery Cohort: The Genetics of Asthma in Costa Rica Study (GACRS)

The Genetics of Asthma in Costa Rica Study (GACRS) is a cross-sectional study
that recruited from February 2001 to August 2008. It included 1165 asthmatic children
between the ages of 6 and 14 years, each with a high probability of having six or more
great-grandparents from the Central Valley of Costa Rica. A previous publication [17]
described the GACRS protocols and assessments, which included FEV1, bronchodilator
response (BDR), methacholine challenge, and questionnaires about prior medication use
and exacerbations. GACRS did not specifically assess asthma severity. We used 2 major
types of data from selected GACRS participants: clinical data (from which we calculated
CASTER), and serum miRNA data.

2.1.2. Replication Cohort: The Childhood Asthma Management Program (CAMP)

CAMP is a multi-center, randomized, double-blinded, clinical trial of inhaled corticos-
teroids in 1041 children aged 5 to 12 years with mild-to-moderate persistent asthma who
were followed for four years. In CAMP, asthma severity was defined at enrollment based
on physician assessment (1 = no asthma, 2 = mild, and 3 = moderate asthma), and patients
with mild and moderate asthma were enrolled in the cohort. A detailed definition is given
in Saprio et al. 1999 [18]. CAMP participants predominantly self-identified as non-Hispanic
white, but included small numbers of African American, Hispanic white, and other racial
and ethnic groups (Table 1), which were grouped together in this analysis. The design [18]
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and outcomes [19] of the CAMP study have been previously reported (“other”). During
the original trial, CAMP participants were randomized into 3 treatment arms: budesonide
(an ICS), nedocromil, or placebo. We used 3 major types of data from selected CAMP
participants: clinical data (from which we calculated CASTER), serum miRNA data, and
transcriptomic profiling from lymphoblastoid cell lines.

2.2. CASTER: Cross-Sectional Asthma STEroid Response Measurement

Cross-sectional Asthma STEroid Response (CASTER) is a composite corticosteroid re-
sponsiveness phenotype or Steroid Responsiveness Endophenotype (SRE) measure. CASTER
is calculated using five cross-sectional clinical measures: (1) oral steroid courses, (2) asthma-
related hospitalizations and ED (emergency department) visits, (3) pre-bronchodilator FEV1,
(4) provocative concentration of methacholine required to effect a 20% reduction of FEV1
(PC20), and (5) bronchodilator response to albuterol (BDR), computed as a percentage
change in FEV1 from baseline. In previous work, we showed that CASTER had good
performance in childhood cohorts [10].

2.3. miRNA Sequencing and Quality Control

We performed small RNA sequencing on serum from 580 GACRS samples of asthma
patients on ICS. Sequencing on 187 CAMP samples has been described previously [20].
Both cohorts were sequenced following the same protocols [20]. In brief, small RNA-seq
libraries were prepared by using the Norgen Biotek Small RNA Library Prep Kit v2 (Norgen
Biotek, Therold, ON, Canada) and sequenced on the Illumina NextSeq 500 platform. The
ExceRpt pipeline was used for quality control (QC) of the RNA-seq data [21]. miRNAs
with less than five mapped reads in at least 50% of subjects were removed. The data were
normalized using DESeq2 [22].

Small RNA sequencing was completed on all available serum samples from GACRS
[n = 1134]. Each sample produced an average of 15.8 million total reads. In total, 11.9 million
reads per sample passed the initial quality control (QC). On average, 8.9 million reads per
sample were mapped to the genome, which included 5.4 million miRNA sense sequences.

DESeq2 was used to perform normalization before association analysis. For GACRS
cohort samples, sequencing was carried out in 2 batches, which may have introduced
technical causes of discrepancy during preparation and handling, affecting the outcomes.
Therefore, guided principal component analysis (gPCA) [23] was used to check for batch
effects on mapped read counts per sample; the analysis showed that there was not a
significant batch effect in normalized data (p-value = 0.41) (Supplemental Figure S1).

2.4. ICS-Response-Associated miRNA Identification

The CASTER measure of ICS response was computed for all subjects in GACRS
and separately for CAMP. For more details, see [10], where partial least squares (PLS)
distance and principal component (PCA) methods were used to classify good vs. poor ICS
responders. We used mean (PCA-based) CASTER values from each cohort to dichotomize
participants into poor and good responder groups. The patients having a CASTER value
greater than the mean value of their cohort were considered to have a good response to
ICS treatment, while those with a CASTER value less than the mean value were considered
to have a poor response. Logistic regression with a Benjamini–Hochberg false discovery
rate (FDR) correction for multiple testing was used to identify miRNAs associated with
ICS response in GACRS using the GLM function in stats (v 4.1.2) R package. A significance
threshold of 10% FDR was used. The analysis was adjusted for age and sex. Similarly,
logistic regression was used to assess the association of serum miRNAs with ICS response
using CASTER phenotype in CAMP while adjusted for age, sex, and race or ethnicity (non-
Hispanic white, Hispanic, and others). Sensitivity analysis in CAMP was also performed,
including asthma severity and genetic ancestry proportion as co-variates. A p-value < 0.05
was considered significant for replication in the CAMP cohort.
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Logistic regression was also used to define a predictive model of ICS response. Three
models were assessed in this study: Model1 included demographic variables (age, sex,
race/ethnicity, height, weight, BMI), clinical variables (log10 IgE, vitamin, log10 Eosinophil
count), smoking, and asthma severity; Model2 consisted of three miRNAs that were
replicated; and Model3 combined variables from Model1 and Model2. These models were
trained on the discovery cohort, GACRS, and were then evaluated on the replication cohort
(CAMP) without parameter refitting. The area under the receiver operator characteristic
curve (AUC) was used to measure predictive accuracy, and the AUC confidence interval
was measured using 1000 bootstrap. The three models were compared using ANOVA.

2.5. CAMP Lymphoblastoid Cell Lines (LCL) Transcriptome Data

Some CAMP subjects also had gene array expression data available from a later time-
point. As previously described [14,15], subjects provided blood samples from which CD41
lymphocytes were isolated. These samples were immortalized and transcriptomically
profiled under two treatment conditions: dexamethasone (DEX) (1026 mol/L) and a sham
[ethanol] control. After 6 h, mRNA expression levels were measured with the Illumina Hu-
manRef8 v2 BeadChip (Illumina, San Diego, CA, USA). Detailed protocols were previously
described [14]. We performed quality control (QC) and filtering processes for the present
study as described previously [15]. For this study, we looked at 88 samples of individuals
on ICS for which serum miRNA data was also available.

2.6. Functional Annotation of Replicated miRNAs

The gene targets for three replicated CASTER-associated miRNAs were identified by
multiMiR R package v 1.12 [24], where miRecords v 4, TarBase v 8, and miRTarBase v 7.0
databases were used to provide validated mRNA targets. These databases contain lists of
validated miRNA target genes identified using experimental methods such as luciferase
reporter assay, HITS-CLIP, CLASH, qRT-PCR, Western blot, degradome sequencing, im-
munocytochemistry, and others. The Database for Annotation, Visualization and Integrated
Discovery (DAVID) v 2021 [25] was used to perform functional enrichment analysis of
total unique targets of 3 replicated miRNAs, where gene ontology (molecular function and
biological process) and pathway (KEGG and Reactome) datasets were considered. To show
substantial enrichment of targeted genes for a pathway, we used a Bonferroni-adjusted
p-value cut-off of 0.10 and a gene count of 3 or more.

2.7. Gene Expression Analysis

To identify differentially expressed genes in response to dexamethasone (DEX), gene
expression from LCL cell lines was examined using the limma R package [26]. The asso-
ciation between three replicated miRNAs and differentially expressed genes in response
to dexamethasone was then investigated using linear mixed modeling, using the lme4 R
package [27]. We tested whether the direct targets of three miRNAs were over-represented
among genes differentially expressed in response to DEX treatment using the hypergeomet-
ric test available in the stats R package. We identified comodulated genes (modules) using
Weighted Gene Correlation Network Analysis (WGCNA) v 1.71 [28]. For the WCGNA
input matrix, we used a modified version of Pearson correlation, following [29], to account
for the correlation between the DEX and sham paired expression design. We then assessed
the association of each module’s eigengene (ME) to miRNA levels, where the module
eigengene is defined as the first principal component of the module and represents the
overall expression level of the module. To account for the within-pair correlation in data
from the DEX–sham samples’ paired design, we used a linear mixed-effects model (LMM)
to test the association of a gene module to miRNA, with adjustment for age and sex using
the lme4 R package [27]. We considered 10% FDR cutoff as a significance threshold.
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3. Results
3.1. Cohort Characteristics
3.1.1. GACRS

Small RNA-Seq data from the baseline serum were available for 1134 (97%) of the
1165 children in the GACRS. A total of 580 GACRS participants (51%) who were self-
reported to use ICS in the prior 6 months and had enough data to calculate their CASTER
phenotype were divided into two groups: those with CASTER values below the mean
CASTER value (0.00403) were classified as poor responders (n = 379), and those with
CASTER values above the mean were classified as good responders (n = 201) (Table 1).

Table 1. Baseline Epidemiologic and Clinical Characteristics of the GACRS and CAMP cohort data.

GACRS CAMP

Characteristics Poor
Responder

Good
Responder p Value Poor

Responder
Good

Responder
p

Value

(n = 379) (n = 201) (n = 71) (n = 116)

Sex

Male 156
(41.2%)

87
(43.3%) 0.686 39

(54.9%)
70

(60.3%) 0.565

Female 223
(58.8%)

114
(56.7%)

32
(45.1%)

46
(39.7%)

Age (years)

Mean
(SD)

9.43
(1.89)

8.80
(1.87) <0.001 8.67

(2.18)
9.16

(2.08) 0.132

Median
[Min, Max]

9.36
[4.50, 15.2]

8.53
[6.02, 13.1]

8.90
[5.18, 13.2]

8.94
[5.26, 13.1]

Race/Ethnicity

Non-Hispanic NA NA 50
(70.4%)

76
(65.5%) 0.211

Hispanic White 379
(100%)

201
(100%)

4
(5.6%)

16
(13.8%)

Other NA NA 17
(23.9%)

24
(20.7%)

Height (cm)

Mean (SD) 134
(15.2)

130
(12.3) <0.001 132

(12.9)
136

(13.7) 0.0615

Median
[Min, Max]

134
[0, 168]

128
[103, 164]

133
[108, 156]

136
[107, 170]

Missing NA NA 1
(1.4%)

0
(0%)

Weight (kg)

Mean
(SD)

34.5
(11.9)

32.1
(12.3) 0.0275 32.8

(12.0)
35.6

(12.5) 0.133

Median
[Min, Max]

30.9
[15.8, 87.4]

29.3
[15.0, 94.2]

30.0
[17.8, 80.5]

33.0
[17.1, 82.3]

Missing 2
(0.5%)

0
(0%) NA NA

BMI

Mean
(SD)

18.5
(3.81)

18.4
(4.15) 0.819 18.3

(3.67)
18.7

(3.67) 0.442

Median
[Min, Max]

17.8
[8.18, 34.0]

17.2
[12.8, 41.4]

17.0
[13.4, 34.3]

17.5
[14.2, 33.7]

Missing 2
(0.5%)

0
(0%)

1
(1.4%)

0
(0%)

High-Dose Oral Steroid Courses

Mean
(SD)

2.15
(0.388)

1.41
(0.776) <0.001 2.14

(1.27)
0.0603
(0.239) <0.001

Median
[Min, Max]

2.00
[2.00, 5.00]

2.00
[0, 2.00]

2.00
[1.00, 6.00]

0
[0, 1.00]

ED (emergency department) visits
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Table 1. Cont.

GACRS CAMP

Characteristics Poor
Responder

Good
Responder p Value Poor

Responder
Good

Responder
p

Value

Mean
(SD)

4.60
(4.19)

2.75
(3.00) <0.001 0.451

(0.968)
0.0517
(0.222) 0.00102

Median
[Min, Max]

4.00
[0, 30.0]

2.00
[0, 22.0]

0
[0, 5.00]

0
[0, 1.00]

% Predicted Pre-BD FEV1

Mean
(SD)

91.9
(14.1)

109
(18.2) <0.001 91.2

(13.0)
93.8

(13.0) 0.181

Median
[Min, Max]

92.8
[31.8, 135]

111
[34.6, 154]

92.0
[62.0, 118]

95.0
[61.0, 125]

Airway hyper-responsiveness

Mean
(SD)

0.671
(0.336)

0.998
(0.532) <0.001 −0.260

(1.15)
0.162
(1.11) 0.0149

Median
[Min, Max]

0.778
[0.043, 2.2]

0.778
[0.14, 2.87]

−0.390
[−2.59, 2.48]

0.140
[−2.94, 2.53]

Bronchodilator Response as % of baseline FEV1

Mean
(SD)

6.57
(8.37)

3.30
(7.33) <0.001 0.130

(0.248)
0.0764

(0.0731) 0.0805

Median
[Min, Max]

5.29
[−18.1, 44]

3.40
[−35.1, 25]

0.0800
[−0.04, 2.05]

0.0600
[−0.06, 0.41]

Log10 IgE

Mean (SD) 2.61
(0.629)

2.40
(0.669) 0.0255 2.78

(0.622)
2.60

(0.669) 0.0684

Median
[Min, Max]

2.73
[0.260, 3.7]

2.55
[0.73, 3.67]

2.89
[1.26, 4.13]

2.61
[0.30, 4.15]

Missing 244
(64.4%)

118
(58.7%) NA NA

25 Hydroxyvitamin D (ng/mL)

Mean
(SD)

36.0
(11.0)

35.0
(9.18) 0.484 39.9

(15.7)
40.2

(15.2) 0.902

Median
[Min, Max]

34.7
[12.5, 71.5]

34.4
[18.4, 63.1]

37.8
[14.6, 80.0]

39.5
[9.00, 75.9]

Missing 244
(64.4%)

118
(58.7%) NA NA

Blood Eosinophils (Log10)

Mean
(SD)

2.63
(0.439)

2.52
(0.394) 0.00373 2.57

(0.462)
2.52

(0.427) 0.486

Median
[Min, Max]

2.73
[−1.0, 3.30]

2.57
[1.0, 3.27]

2.67
[0, 3.40]

2.61
[0, 3.24]

Missing 13
(3.4%)

6
(3.0%)

1
(1.4%)

2
(1.7%)

Smoking

No 281
(74.1%)

152
(75.6%) 0.59 46

(64.8%)
67

(57.8%) 0.508

Yes 97
(25.6%)

46
(22.9%)

25
(35.2%)

47
(40.5%)

Missing 1
(0.3%)

3
(1.5%)

0
(0%)

2
(1.7%)

Asthma Severity

Mild NA NA 29
(40.8%)

51
(44.0%) 0.79

Moderate NA NA 42
(59.2%)

65
(56.0%)

Genetic Ancestry
Proportion (n = 366) (n = 194) (n = 48) (n = 83)

Sub Saharan African 0.047 0.045 0.29 0.167 0.179 0.84

Central and South Asia 0.014 0.014 0.40 0.009 0.01 0.33
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Table 1. Cont.

GACRS CAMP

Characteristics Poor
Responder

Good
Responder p Value Poor

Responder
Good

Responder
p

Value

East Asia 0.003 0.003 0.70 0.002 0.003 0.18

Europe 0.533 0.539 0.26 0.772 0.734 0.52

Native America 0.320 0.317 0.61 0.030 0.045 0.35

Oceania 0 0 0.06 0 0 0.7

Middle East 0.082 0.080 0.3 0.019 0.027 0.15

3.1.2. CAMP

Small RNA-Seq data on the baseline serum level were available for 492 (47%) of the
1041 children in the CAMP. A total of 187 CAMP participants (38%) who were on ICS
and had enough data to calculate their CASTER phenotype were divided into two groups:
those with CASTER values below the mean CASTER value (0.00547) were classified as poor
responders (n = 116), and those with CASTER values above the mean CASTER value were
classified as good responders (n = 71) (Table 1).

In GACRS, older age (9.43 vs. 8.8) was associated with poor ICS response (p < 0.001),
whereas in CAMP, there was a non-significant trend of younger age associated with poor
ICS response. Total serum IgE level and eosinophil count were higher in the poor-responder
group than in the good-responder group in both cohorts (Table 1). Further, the five con-
stituent features of the CASTER measure differed from poor to good ICS responders, as
expected, described presently. The poor-responder group patients had more courses of oral
steroids (GACRS: 2.15 vs. 1.41; CAMP: 2.14 vs. 0.06) and ED visits (GACRS: 4.6 vs. 2.75;
CAMP: 0.451 vs. 0.052) as well as more reactive airways (GACRS: 0.671 vs. 0.99; CAMP:
−0.26 vs. 0.16) compared to good responders. Poor responders similarly had higher BDR
(GACRS: 6.57 vs. 3.30; CAMP: 0.13 vs. 0.076) than the good-responder group (Table 1).
Poor responders had a lower FEV1 than good responders in the GACRS (91.9 vs. 109), but
not in CAMP. We noticed no significant differences by asthma severity at enrollment (in
CAMP; unavailable in GACRS) or by genetic ancestry proportions.

3.2. Identification of miRNAs Associated with ICS Response

The sequenced serum miRNA datasets were subjected to—quality control (QC), filtra-
tion, and normalization, yielding 580 samples and 317 miRNAs for our discovery cohort
(GACRS) and 187 samples and 257 miRNAs in our replication cohort (CAMP). Logistic
regression showed that 36 of the 317 interrogated miRNAs were associated with ICS re-
sponse at 10% FDR in the GACRS (Figure 1 and Supplemental Table S1). Of these miRNAs,
33 were associated with poor ICS response (odds ratio (OR) >1) and three miRNAs were
associated with good ICS response (OR < 1). Of these 36 miRNAs, three (miR-28-5p, miR-
339-3p and miR-432-5p) were validated as being significant in the CAMP cohort and in
the same direction of effect (Table 2A,B, Supplemental Figure S5) at p < 0.05. All three
replicated miRNAs were positively associated with poor ICS response (OR > 1, Table 2),
which means that the increase in expression of these miRNAs leads to worse response to
ICS treatment. In CAMP, the miRNA association finding remains consistent in sensitivity
analysis adjusting by asthma severity status and genetic ancestry proportion.
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Figure 1. Serum miRNA association with CASTER in GACRS. Firebrick and cyan color circles in-

dicate insignificantly and significantly associated miRNAs, respectively, and dark-red solid circles 

indicate miRNAs replicated in CAMP. Beta values are from regression analysis. 

Table 2. Significant miRNAs associated with CASTER (poor vs. good response) in GACRS and 

CAMP. Logistic regression model was adjusted for age and sex. p adjust: false discovery rate (FDR) 

adjusted p-values, with FDR < 0.10 considered significant. 

(A) 

Logistic Regression GACRS (Discovery Cohort) 

Variable Beta Z p Value p Adjust OR OR (95% CI) 

hsa-miR-339-3p 0.064 2.238 0.025 0.070 1.066 1.008–1.128 

hsa-miR-28-5p 0.128 3.581 0.000 0.001 1.136 1.059–1.218 

hsa-miR-432-5p 0.080 2.988 0.003 0.008 1.084 1.028–1.142 

(B) 

Logistic Regression CAMP (Replication Cohort) 

Variable Beta Z p Value OR OR (95% CI) 

hsa-miR-339-3p 0.199 2.620 0.009 1.221 1.052–1.417 

hsa-miR-28-5p 0.172 2.408 0.016 1.188 1.033–1.366 

hsa-miR-432-5p 0.128 1.898 0.058 1.137 0.996–1.298 

In order to predict ICS response, three predictive models were assessed in this study. 

Each logistic regression model was trained on the GACRS cohort and tested on the CAMP 

cohort without parameter refitting. Model1, which incorporated demographic variables 

and clinical variables which were not constituents of the CASTER measure, had a 65% (CI: 
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Figure 1. Serum miRNA association with CASTER in GACRS. Firebrick and cyan color circles indicate
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miRNAs replicated in CAMP. Beta values are from regression analysis.

Table 2. Significant miRNAs associated with CASTER (poor vs. good response) in GACRS and
CAMP. Logistic regression model was adjusted for age and sex. p adjust: false discovery rate (FDR)
adjusted p-values, with FDR < 0.10 considered significant.

(A)

Logistic Regression GACRS (Discovery Cohort)

Variable Beta Z p Value p Adjust OR OR (95% CI)

hsa-miR-
339-3p 0.064 2.238 0.025 0.070 1.066 1.008–1.128

hsa-miR-
28-5p 0.128 3.581 0.000 0.001 1.136 1.059–1.218

hsa-miR-
432-5p 0.080 2.988 0.003 0.008 1.084 1.028–1.142

(B)

Logistic Regression CAMP (Replication Cohort)

Variable Beta Z p Value OR OR (95% CI)

hsa-miR-
339-3p 0.199 2.620 0.009 1.221 1.052–1.417

hsa-miR-
28-5p 0.172 2.408 0.016 1.188 1.033–1.366

hsa-miR-
432-5p 0.128 1.898 0.058 1.137 0.996–1.298

In order to predict ICS response, three predictive models were assessed in this study.
Each logistic regression model was trained on the GACRS cohort and tested on the CAMP
cohort without parameter refitting. Model1, which incorporated demographic variables
and clinical variables which were not constituents of the CASTER measure, had a 65% (CI:
57–73%) AUC in testing on the CAMP cohort (Supplemental Figure S2a). Model2, which
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included only the three replicated miRNAs, had a 64% (CI: 56–72%) AUC in the same
cohort (Supplemental Figure S2b). Finally, Model3, which combined all variables from both
Model1 and Model2, had a 72% (CI: 65–79%) AUC in the CAMP cohort (Supplemental
Figure S2c). ANOVA was used to compare the models, and the results indicated a significant
difference only between Model1 and Model3 (p = 0.0022).

3.3. Target Identification and Functional Enrichment Analysis of Replicated miRNAs

Next, we assessed the putative targets of these three miRNAs. We used the multi-
MiR R package to identify 1320 unique functionally validated gene targets for pathway
and ontology enrichment (Table 3, Figure 2A). We found enrichment of some common
asthma pathogenesis-associated pathways such as PI3K-Akt, MAPK cascade, Wnt, Hippo,
FoxO, and p53 signaling. We also discovered enriched ICS-response-related pathways such
as estrogen receptor (ESR)-mediated, PI3K-Akt signaling (Supplemental Figure S3), and
immune-response- and inflammation-associated pathways such as neutrophil degranula-
tion and Interleukin-4 and -13 signaling (Figure 2B).

Table 3. Statistics of validated targets identified from microRNA-target databases (miRecords,
miRTarBase and TarBase) for replicated DE-miR.

microRNAs Name Number of Target Genes

hsa-miR-28-5p 767

hsa-miR-339-3p 168

hsa-miR-432-5p 486

Overall number of unique target genes 1320
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number of validated target genes of the 3 replicated DE-miRNAs. (B) Three miRNAs target genes
enrichment analysis using DAVID version 2021 (gene ontology terms: molecular function and
biological processes; pathway database: KEGG and Reactome) at 10% FDR cut-off.

3.4. In Vitro Steroid Response Lymphoblastoid Gene Expression

Paired mRNA gene expression data were available from immortalized lymphoblastoid
cell lines treated with dexamethasone (DEX) or a sham vehicle treatment from some of
the CAMP subjects. From these, we selected 88 paired DEX–sham arrays from individuals
for which serum miRNA data was also available. A total of 3827 out of 4818 probes
passing QC were differentially expressed in response to DEX (complete list by module in
Supplemental Table S2). These genes showed significant enrichment of direct targets of
the three replicated miRNAs (miR-28-5p, miR-339-3p, and miR-432-5p; p = 0.042). Further,
association analysis between three miRNAs and DEGs showed 22 significant associations
at 10% FDR (Supplemental Table S3 and Supplemental Figure S4).

WGCNA analysis was then conducted on the 88 paired DEX–sham expression arrays
to identify associations between gene expression on ICS response and three miRNAs
associated with ICS response. We identified 20 gene modules showing coordinated response
of LCL cells to dexamethasone treatment. Next, we calculated the module eigengene (ME)
for each of the 20 gene modules and used linear mixed-effects models to evaluate the
association between each of the gene modules with the three miRNAs. We found that the
black (OR = 0.99, FDR = 0.02) and magenta (OR = 0.99, FDR = 0.01) modules (Figure 3,
Supplemental Table S4) were significantly associated with miR-339-3p. The functional
enrichment analysis of these two modules showed that the magenta module is enriched
with genes associated with adaptive immune response and inflammation pathways such
as adaptive immune response, PIP3 activates AKT signaling, PTEN regulation, mTOR
signaling, and glutathione metabolism. We also looked for an association between these
20 gene module eigengene values and clinical and demographic outcomes, but we did not
find any significant association at the 5% FDR cut-off.
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4. Discussion

MicroRNAs are emerging as pharmacogenomic biomarkers capable of identifying
drug treatment response [30]. By enhancing the reliability of asthma treatment regimens,
a biomarker for ICS response might subsequently help reduce asthma morbidity. In this
study, we used CASTER, a composite corticosteroid responsiveness phenotype, to identify
serum miRNAs as indicators of ICS response in two independent cohorts of children
with asthma. GACRS is a cross-sectional observational study with self-reported ICS use.
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CAMP, on the other hand, is a clinical trial in which all children in the ICS-arm received
the same dose of the same ICS. Although GACRS is a cross-sectional study, and CASTER
is designed to provide a cross-sectional measure of ICS response, this is still an inferred
response phenotype that may differ from ICS response as revealed in a longitudinal cohort
such as CAMP. We minimized such issues by also computing CASTER in the CAMP
cohort, but some differences between the studies may have resulted in a lower number of
replicated miRNAs.

We identified 36 miRNAs significantly associated with ICS response at 10% FDR
cut-off; out of these, 17 miRNAs were found to have passed a more stringent 5% FDR
cut-off, three of which (miR-28-5p, miR-339-3p and miR-432-5p) were found to be positively
associated with poor ICS response in both cohorts (Supplemental Figure S5). Even at
5% FDR, both miR-28-5p and miR-339-3p remained significant, while miR-432-5p was
borderline, at p = 0.058 (Table 2B). These three miRNAs showed some promise as potential
pharmacogenomic biomarkers for ICS response with a 64% AUC in a test cohort when
evaluated alone (Supplemental Figure S2b), providing a significant improvement to pre-
diction based solely on clinical and demographic data (72% AUC). While we stress that
this performance is with no parameter refitting in a completely independent cohort, and is
therefore very encouraging, further work would be required to obtain more comprehensive
models suitable for clinical use.

miR-28-5p has been previously associated with inflammation in severe asthma [31]. miR-
28-5p is a validated regulator of IL2RG (interleukin 2 receptor, gamma) (Supplemental Table S5),
which is a pro-inflammatory cytokine receptor that plays an important role in glucocorticoid
function in severe asthma [32,33]. miR-339-3p regulates the expression of NR3C1, which
encodes an intracellular glucocorticoid receptor [34]. Fez et al. 2019 showed that miR-339-
3p was up-regulated after 30 months of ICS treatment in COPD patients [35]. We are the
first to report a link between miR-432-5p and asthma and ICS response, but this miRNA
has previously been linked to cancer [36].

Functional enrichment analysis of their unique validated targets showed that these
miRNAs regulate the expression of genes enriched in pathways of immune response and
inflammation (Figure 2B). This may indicate a possible role of these miRNAs in immune
dysregulation. The previous literature has established a link between immune dysregula-
tion and steroid insensitivity in patients [32,37,38]. We also discovered that these miRNAs
regulate the expression of genes that were enriched in estrogen receptor (ESR)-mediated
(Supplemental Figure S3) and PI3K-Akt signaling pathways (Supplemental Figure S3),
which have been linked to steroid resistance in severe asthma [39]. According to Bi et al.
2020, inhibiting the PI3K-Akt signaling pathway with PI3K inhibitors mitigates glucocorti-
coid (GC) insensitivity in severe asthma by restoring HDAC2 activity and inhibiting the
phosphorylation of nuclear signaling transcription factors [40]. It has previously been
reported that estrogen inhibits glucocorticoid anti-inflammatory function. [41,42]. This sug-
gests that these miRNAs indirectly contribute to glucocorticoid insensitivity by regulating
the genes involved in the pathways.

miR-339-3p is significantly associated with two DEX-responsive gene clusters
(Figure 3). The genes in these modules were found to be enriched in inflammation-related
pathways: adaptive immune response, PIP3 activates AKT signaling, PTEN regulation,
mTOR signaling, and glutathione metabolism (Figure 4). miR-339-3p showed a significant
association (FDR = 0.02) with a DEX-responsive gene (PSMA7) (FDR = 0.0023) which
participates in activation of NF-kappaB in B cells (R-HSA-1169091) (Supplemental Table S4).
NF-kappaB is a pro-inflammatory transcription factor which is well-studied for its role in
glucocorticoid response [43,44]. miR-339-3p also showed significant association with genes
of adaptive immune system (CLTA, clathrin at FDR = 0.02 and RNF126, ring finger protein 126
at FDR = 0.04), mTOR-signaling pathway (EIF4EBP1, eukaryotic translation initiation factor
4E binding protein 1 at FDR = 0.04; CAB39, calcium binding protein 39 at FDR = 0.05), and
HATs acetylate histones pathway (RUVBL2 at FDR = 0.06). The mTOR signaling pathway
produces inflammatory or immune imbalance in asthma [45], and it has been reported
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that inhibition of mTOR activity can restore corticosteroid sensitivity in COPD [46]. The
HATs acetylate histones pathway is critical in corticosteroid responsiveness. Corticos-
teroids suppress inflammatory genes in asthma by inhibiting HAT activity and recruiting
HDAC2 to the activated inflammatory gene complex. HDAC2 activity and expression
are reduced in severe asthma, which may account for the increased inflammation and
resistance to corticosteroid action [47,48].These findings suggest that these three miRNAs,
particularly miR-339-3p, play an important role in immune dysregulation, which results in
poor response to ICS treatment.
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Figure 4. Black and magenta modules’ functional enrichment result. (A) The magenta module’s
genes’ functional enrichment result; (B) The black module’s genes’ functional enrichment result.
Performed using DAVID version 2021 (gene ontology terms: molecular function and biological
processes; pathway database: KEGG and Reactome) at 10% FDR cut-off.

The advantages of our study include a relatively large population for integrative
pharmacogenomics in asthma, replication of the results in another childhood asthma
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cohort, use of a previously validated composite ICS response phenotype, and validation of
the function of selected miRNAs using in vitro steroid response lymphoblastoid cell line
gene expression data. Disadvantages of our study are the lack of mRNA expression data
for the patient at the same time point as the LCL expression data, as well as racial and
trial-design differences between our discovery and replication cohorts. While CASTER
may be thought of as a measure of asthma severity, it would be one defined only in terms
of ICS response: people doing poorly on ICS therapy are generally defined as having more
severe asthma according to modern GINA (Global Initiative for Asthma) guidelines [49].
However, asthma severity was assessed at enrollment in CAMP in a treatment-independent
manner, and this was not associated with the CASTER measure.

5. Conclusions

In conclusion, our findings show that serum miRNA expression differs among in-
dividuals according to response to ICS treatment. The miRNAs miR-28-5p, miR-339-3p,
and miR-432-5p were associated with poor ICS response and may form part of a future
biomarker of ICS response. Particularly, miR-339-3p may reduce ICS responsiveness
through immune dysregulation.
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www.mdpi.com/article/10.3390/cells12111505/s1. Supplemental Methods; Figure S1: GACRS batch
effect check. Figure S2: ICS response prediction using logistic regression in replication cohort (CAMP);
(a) Model1, including age, sex, race/ethnicity, height, weight, BMI, log10 IgE, log10 Eosinophil,
vitamin, smoking and severity; (b) Model2: three miRNAs (miR-28-5p, miR-339-3p, miR-432-5p);
(c) Model3: variables of Model1 and Model2. Figure S3: Target genes of replicated miRs enriched
in PI3K-AKT and estrogen signaling pathways; orange-colored boxes represent enriched target
genes. Figure S4: Boxplot showing expression under DEX and sham condition for 22 differentially
expressed genes associated with replicated miRNAs. Figure S5: BoxPlot showing expression in poor
and good responder group for three replicated miRNAs in (A) GACRS and (B) CAMP. Table S1:
miRNAs associated with ICS response in GACRS cohort. Table S2: Details of genes from LCL cell line
used for differential expression analysis and WGCNA. Table S3: Association between differentially
expressed genes and three ICS response miRs using a linear mixed model. Table S4: Details of
genes from black and magenta modules. Table S5: List of unique validated gene targets of three
ICS-response-associated miRs.
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