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Abstract: Aging and obesity are the two prominent driving forces of metabolic dysfunction, yet the
common underlying mechanisms remain elusive. PPARγ, a central metabolic regulator and primary
drug target combatting insulin resistance, is hyperacetylated in both aging and obesity. By employing
a unique adipocyte-specific PPARγ acetylation-mimetic mutant knock-in mouse model, namely aKQ,
we demonstrate that these mice develop worsened obesity, insulin resistance, dyslipidemia, and
glucose intolerance as they age, and these metabolic deregulations are resistant to intervention by
intermittent fasting. Interestingly, aKQ mice show a whitening phenotype of brown adipose tissue
(BAT) manifested in lipid filling and suppressed BAT markers. Diet-induced obese aKQ mice retain an
expected response to thiazolidinedione (TZD) treatment, while BAT function remains impaired. This
BAT whitening phenotype persists even with the activation of SirT1 through resveratrol treatment.
Moreover, the adverse effect of TZDs on bone loss is exacerbated in aKQ mice and is potentially
mediated by their increased Adipsin levels. Our results collectively suggest pathogenic implications
of adipocyte PPARγ acetylation, contributing to metabolic dysfunction in aging and thus posing as a
potential therapeutic target.
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1. Introduction

Aging and obesity are the two primary driving forces of chronic health complications
such as diabetes, cardiovascular disease, and cancer [1]. These two manifestations overlap
on escalating the dysregulation of metabolic pathways, while also mutually promoting
one other [2]. Peroxisome-proliferator-activated receptor gamma (PPARγ) has become
increasingly appreciated as a knot connecting aging and obesity. It plays vital roles in
regulating glucose and lipid metabolism, adipocyte biology, insulin sensitivity, and the
inflammatory response, making it closely involved in the pathophysiology and intervention
of obesity and its comorbidities. Its synthetic thiazolidinedione (TZD) agonists, such as
rosiglitazone and pioglitazone, are the most potent insulin sensitizers; however, various
side effects are common.

Emerging evidence implicates PPARγ in the aging process. The PPARγ2 isoform
polymorphism Pro12Ala, for example, is associated with longevity in humans [3], and
mouse models conferring PPARγ2 deficiency have exhibited a reduced lifespan [4,5]. A
clinical study found that the expression of PPARγ is inversely correlated with age and
negatively correlated with the presence of reactive oxygen species, total free fatty acids, and
palmitic acid in the human liver [6]. Interestingly, interventions known to extend lifespan,
such as a moderately high-fat diet (IHF), are accompanied by PPARγ upregulation [6].
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Moreover, the treatment of aged mice with a TZD agonist prolongs lifespan and alleviates
the associated metabolic hurdles [7]. As such, PPARγ has been implicated as a determinant
of longevity [5]; however, how PPARγ is dysregulated in aging and how that ties into its
deregulation in obesity remains poorly understood.

PPARγ is a nuclear receptor that is activated upon ligand binding to heterodimer-
ize with RXRα, forming a complex suitable for DNA binding [8]. It is also regulated
at the transcriptional level to sense nutrient availability, and its expression is activated
by insulin [9–11]. Beyond these two primary regulatory layers, PPARγ undergoes vari-
ous posttranslational modifications (PTMs), including acetylation, phosphorylation, and
SUMOylation [12–15]. It can be appreciated that PTMs provide a new perspective on
PPARγ function in transcriptional selectivity. Previous studies have shown that SirT1
deacetylates PPARγ in a ligand-dependent manner to induce brown remodeling of white
adipose tissue (WAT) by selectively activating catabolic genes, without affecting canonic
downstream targets [16]. Indeed, PPARγ undergoes pronounced acetylation in obesity and
aging [17]. Mice carrying K268R/K293R mutations, mimicking constitutive deacetylation
(the 2KR model), are protected from obesity and, more importantly, resistant to TZD’s
adverse effects, while retaining the insulin sensitization response [18]. Given that the
2KR mouse is a whole-body knock-in model, we recently developed an adipocyte-specific
PPARγ acetylation-mimetic mutant (K293Q) knock-in model (PparγKQ/KQ: Adipoq-Cre,
aKQ) to dissect the contribution of adipocyte PPARγ. Consequently, PPARγ acetylation
in adipocytes is important for adipose adaption to nutrient challenges, as well as for the
orchestration of metabolic rhythms [17].

PPARγ is hyperacetylated in aging [17], and consistently, the metabolic protections
of PPARγ deacetylation are exaggerated in aged 2KR mice, such as the inhibition of
visceral adiposity [18] and protection against atherosclerosis [19]. Therefore, in this present
study, we evaluated the hypothesis that PPARγ acetylation contributes to aging-associated
adipose dysfunction using our unique aKQ mouse model. We further investigated their
response to TZD treatment, including assessing the adverse effects on the bone. aKQ mice
presented with impaired insulin sensitivity in aging and worsened TZD-induced bone loss.
Intriguingly, these detriments were accompanied by an accelerated whitening of brown
adipose tissue (BAT). Collectively, our study demonstrates PPARγ acetylation in adipose
tissue as a pathogenic factor underlying metabolic dysfunction in aging and obesity.

2. Materials and Methods
2.1. Animal Studies

aKQ mice on a C57BL/6J background were generated as described previously [17].
Mice were housed at room temperature (RT, 23 ± 1 ◦C) in a 12 h light/dark cycle
(07:00 a.m./19:00 p.m.) barrier facility. The 60% high-fat diet (HFD) was purchased from
Research Diets, Inc. (New Brunswick, NJ, USA, D12492i). Rosiglitazone maleate (Abcam,
ab142461) was mixed in the 60% HFD at a dose of 100 mg/kg by Research Diets (New
Brunswick, NJ, USA). Our intermittent fasting method adopted an every-other-day regimen
by removing food with free access to water 1 h before the lights turned off (19:00 p.m.) for
24 h and adding food back at the same time on the next day [20]. This process was repeated
for 6 weeks in 1-year-old male aKQ mice and their littermate controls.

For insulin tolerance tests (ITT), the mice were fasted for 5 h in cages with fresh bed-
ding. Body weight (BW) and fasting glucose were recorded, the mice were intraperitoneally
(i.p.) injected with insulin (0.75 U insulin kg−1 BW), and glucose was measured using
a OneTouch Ultra glucometer at 15, 30, 45, and 60 min. For the glucose tolerance tests
(GTT), the mice were fasted for 16 h. After recording BW and fasting glucose, the mice
were injected with glucose (i.p., 2 g kg−1 BW). Blood glucose was measured at 15, 30, 60, 90,
and 120 min after injection. The body compositions were determined using an EchoMRI
(EchoMRI LLC, Houston, TX, USA). Plasma insulin, non-esterified fatty acids (NEFA), and
triglycerides (TG) were determined with the following kits: mouse insulin ELISA (Mer-
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codia, Uppsala, Sweden), NEFA-HR (Thermo Fisher Scientific, Waltham, MA, USA), and
Infinity Triglyceride Reagent (Thermo Fisher Scientific, Waltham, MA, USA), respectively.

2.2. Western Blotting

Tissues were homogenized with a Polytron homogenizer in an IntactProein extraction
buffer (GenuIn Biotech, Blacksburg, VA, USA, catalog #415). After placing on ice for
15 min, the lysates were sonicated for 10 min, and debris was removed by centrifugation at
14,000 rpm for 10 min at 4 ◦C. The total protein was resolved on 8% or 10% SDS-PAGE after
BCA determination of the protein concentration. The Western blotting signals were detected
with ECL (Thermo Fisher Scientific, Waltham, MA, USA, catalog PI32209). The following
antibodies were used in this study: anti-HSP90 (Proteintech, Rosemont, IL, USA, catalog
# 13171-1-AP), anti-Adipsin (R&D systems, Minneapolis, MN, USA, catalog # AF5430),
anti-Adiponectin (Invitrogen, Waltham, MA, USA, catalog # PA1-054), anti-PPARγ (Cell
Signaling Technology, Danvers, MA, USA, catalog # 2443), anti-SirT1, anti-UCP1 (Abcam,
Cambridge, UK, ab234430), anti-PGC-1α (Abcam, Cambridge, UK, catalog # ab54481),
anti-C/EBPα (Santa Cruz, CA, USA, catalog # sc-61). Western blots were quantified using
densitometry via Image J.

2.3. Bone Processing and Analysis

The femurs were collected after removing proximal muscle and connective tissue
were and fixed in a 10% neutral buffered formalin solution overnight at 4 ◦C. For each
mouse, one femur was used for bone microarchitecture analysis and lipid quantification
using a Quantum FX µCT Scanner (PerkinElmer, Waltham, MA, USA), and the other femur
was used to extract bone marrow for RNA analysis. For lipid determination, the femurs
were decalcified for at least two weeks in a 14% EDTA solution, which was changed every
three days. The bones were then stained in a 1% osmium tetroxide and 2.5% potassium
dichromate solution at room temperature for 48 h and washed in tap water for at least
2 h. The bones were imaged by µCT. Bone mineral density (BMD) and lipid volume were
quantified using the software Analyze 12.0 [21].

2.4. Gene Expression

RNA from tissues (including bone marrow) were isolated using a TRI-Isolate RNA
Pure kit (IBI Scientific, Dubuque, IA, USA). Then, 1 µg total RNA was used for reverse tran-
scription to cDNA using the High-Capacity Reverse Transcription Kit (Applied Biosystems,
Waltham, MA, USA). Quantitative Real-Time PCR (qPCR) was conducted on a Bio-Rad
CFX96 Real-Time PCR system with an AzuraView GreenFast qPCR Blue Mix LR (Azura
Genomics, Waltham, MA, USA). The relative gene expression levels were calculated using
the ∆∆Ct method with Cyclophilin A (CPA) as the reference gene.

2.5. Hematoxylin and Eosin (H & E) Staining

Fresh tissues from mice were immediately fixed in a 10% neutral buffered formalin
solution for 24 h and then dehydrated in 70% ethanol at 4 ◦C for another two days. The
samples were embedded into the paraffin and cut into 5 µm sections. Allocated sections
were stained with hematoxylin and then washed with water three times. After a step of 1%
(v/v) hydrochloric acid alcohol differentiation, the sections were washed with water three
times and then stained with eosin. Following dehydration and mounting, the images were
photographed using a microscope (Olympus I X 71) with a DP74 camera.

2.6. Immunostaining of Ucp1

Mice BATs were fixed in a 10% formalin solution for 16 h, followed by storage in
70% ethanol for subsequent paraffin embedding. Next, sections of 6 µm in thickness
were obtained onto charged slides. The slides were hydrated in Xylenes and descending
concentrations of ethanol. Using a pressure cooker, slides underwent heat-induced antigen
retrieval in a 10 mM sodium citrate solution, were cooled on ice, and washed with 1 × PBS
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prior to treatment with 3% H2O2 for 10 min at room temperature to prevent background
staining. The slides were then washed and blocked in a blocking solution (1 × PBS, 0.1%
Tween-20, and 5% normal goat serum) for 1 h before incubating with a primary antibody
against UCP-1 (1:50, Cell Signaling Technology, Danvers, MA, USA, catalog #72298) for 16 h
at 4 ◦C. An HRP-conjugated secondary antibody was used the next day (1:200, Millipore
Sigma, Burlington, MA, USA, catalog #A0545) for 1 h at room temperature and developed
using the ImmPACT DAB Substrate Kit (Vector Laboratories, Newark, CA, USA, catalog SK-
4105). Dehydration was performed using ascending concentrations of ethanol, ending in
Xylenes. Slides were mounted with coverslips using Permount Mounting Medium (Thermo
Fisher Scientific, Waltham, MA, USA, SP15-500) and imaged under light microscopy using
a Keyence imaging instrument.

2.7. Statistics

To evaluate statistical significance, we conducted two-way ANOVA or two-tailed
Student’s t-tests using the GraphPad Prism 6.0 software (GraphPad Software). A value of
p < 0.05 was considered statistically significant. Quantitative data are expressed as mean ±
SEM (standard error of the mean).

2.8. Study Approval

All of the studies in animals were approved by the Columbia University Animal Care
and Utilization Committee.

3. Results
3.1. PPARγ Acetylation in Adipocytes Exacerbates the Age-Associated Metabolic Decline

In a previous report, we found constitutive PPARγ acetylation in adipocytes (aKQ
model) to impair adipose plasticity in response to nutrient challenges [17]. These aKQ
mice displayed normal body weight at 8 weeks old, but interestingly gained more body
weight than their controls at 24 weeks old (Figure 1A). This increased body weight was
ascribed to higher fat mass but not lean mass (Figure 1B,C), owing to the decreased energy
expenditure previously observed [17], while the aKQ mice had comparable food intake to
the WT mice (Figure 1D). This pro-obesity phenotype is age-associated, becoming more
significant at 1 year old [17]. Given their augmented adiposity, middle-aged aKQ mice
displayed worsened insulin sensitivity and glucose tolerance (Figure 1E,F). In line with
their insulin resistance, they had increased plasma NEFA levels, while their plasma TG
levels were comparable to that of the control mice (Figure 1G,H). Moreover, plasma adipsin
levels were increased in middle-aged aKQ mice (Figure 1I,J), reinforcing that Adipsin is
a specific downstream target of PPARγ acetylation [18]. In contrast, their adiponectin
levels remained constant (Figure 1I,J). Collectively, these data demonstrate that PPARγ
acetylation in adipocytes intensified the metabolic complications associated with aging,
consistent with observed hyperacetylation of PPARγ observed in aging [17].

3.2. PPARγ Acetylation Promotes Lipid Accumulation in BAT during Aging

Upon sacrifice, there was no increase in the mass of inguinal white adipose tissue
(iWAT) and epididymal white adipose tissue (eWAT) in middle-aged aKQ mice, despite
their modestly higher body fat composition nor liver size (Figure 2A). The morphology
of iWAT and eWAT appeared relatively normal in terms of adipocyte size (Figure 2B,C);
however, more lipid-filling brown adipocytes, some of which were even unilocular, were
observed in the BAT of aKQ mice (Figure 2B). Lipid accumulation in BAT to achieve a
WAT-like morphology is called “whitening”, a process often seen in aging as an indicator
of BAT degeneration [22]. In BAT, there was a modest increase in Adipsin, but a significant
decrease in Adiponectin in aKQ mice (Figure 2D,E). We confirmed efficient replacement
of WT PPARγ (K293K) in BAT with mutant K293Q (Figure 2F). Moreover, aKQ modestly
repressed the expression of the browning marker Ucp1, and increased the expression of
the whitening marker Adipsin and proinflammatory cytokine Il6, with no changes in the
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gene expression of Adipoq, Fabp4, and Cpt1a (Figure 2F). UCP1 protein levels were not
altered in BAT (Figure 2G and Figure S1A). A similar trend in Adipsin was observed in
iWAT, although PPARγ was repressed (Figure 2H,I). Consistently, browning markers Ucp1,
Dio2, and Cidea were not altered in eWAT, hinting no negative effects on WAT brown
remodeling at the basal condition in middle-aged aKQ mice (Figure S1B). Therefore, PPARγ
acetylation shows a particular effect on accelerating BAT whitening during aging. This
finding is consistent with the persistent inhibition of lipid accumulation in BAT of PPARγ
deacetylation-mimetic 2KR mice [18].
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Figure 1. Adipose PPARγ acetylation impairs insulin sensitivity and glucose tolerance in middle-
aged mice. (A–C) Body weight (A), fat mass (B), and lean mass (C) of male WT and aKQ mice at the
age of 8 (n = 6 and 7) and 24 weeks (n = 13 and 13) on a chow diet. (D) Food intake of male aKQ and
control mice at approximately 16 weeks of age. (E) ITT and area under curve (AUC) after fasting
for 5 h in male WT and aKQ mice (at the age of 49 weeks) on a chow diet (n = 9 and 10). (F) GTT
and AUC after an overnight fast in male WT and aKQ mice (at the age of 50 weeks) on a chow diet
(n = 10 and 10). (G) Plasma non-esterified fatty acids (NEFAs) (n = 5 and 5) and (H) triglyceride
(TG) levels in middle-aged mice on a chow diet (n = 5 and 5) after overnight fasting. (I,J) Adipsin
protein levels determined by Western blotting (WB) with quantification in the plasma of middle-aged
mice on a chow diet (n = 6, 6), signals were relative to loading control (L.C.). Data are presented as
mean ± SEM, two-tailed Student’s t-test. * p < 0.05.
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Figure 2. Differential effects on adipose tissues in middle-aged aKQ mice. Middle-aged male
mice fed a chow diet were sacrificed after an overnight fast. (A) Tissue mass normalized to body
weight. (B) Representative H & E staining of brown adipose tissue (BAT), inguinal WAT (iWAT), and
epididymal WAT (eWAT). Scale bar: 200 µm. (C) Quantification of WAT adipocyte size. (D,E) WB
with quantification of Adipsin, Adiponectin, and PPARγ proteins levels in BAT. (F) qPCR analysis of
gene expression levels in BAT. (G) Immunohistochemical staining of UCP1 protein in BAT. (H,I) WB
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as mean ± SEM, two-tailed Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, n = 6 and 6.
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3.3. Metabolic Improvements of Intermittent Fasting (IF) Are Dampened in Middle-Aged
aKQ Mice

Intermittent fasting (IF) is emerging as a potent intervention against metabolic dysfunc-
tion, particularly in obesity and aging [23,24]. The every-other-day method of IF has been
demonstrated to reduce fat body composition, improve glucose tolerance, and decrease
frailty in middle-aged male mice [20]. As expected, 6 weeks of IF reduced the total body
weight in both the controls and aKQ middle-aged mice (1 year old) (Figure 3A), with a
blunting of the latter’s higher fat content (Figure 3B). Despite their same body composition
(Figure 3B,C), aKQ mice remained less sensitive to insulin stimulation (Figure 3D), and
their tolerance to glucose was consistently worse (Figure 3E). Moreover, their plasma NEFA
levels were no longer higher than the control mice after IF (Figure 3F); instead, their TG lev-
els were higher (Figure 3G). The increase in circulating adipsin levels persisted in aKQ mice
after 6 weeks of IF, accompanied by an increased expression in WAT (Figure 3H,I). Of note,
the BAT whitening phenotype in aKQ mice remained exacerbated in IF (Figure 3J), further
supported by impaired brown adipocyte gene expression (Ucp1) and augmented whitening
markers (Adipsin and Leptin) and the key lipogenic gene Fasn (Figure 3K), even though
there was no significant decrease in UCP1 protein expression (Figure S1C). Moreover, aKQ
appeared to have an impairment in lipolysis (Figure S1D). However, the overall phenotype
in the WATs of aKQ mice on IF is inconspicuous in terms of adipocyte hypertrophy and
gene expression (Figure S1E,F). Additionally, it is worth mentioning that there is increased
lipid accumulation in BAT upon IF (Figure S1G), in line with a mild increase in BAT mass
after IF [25]. This IF-induced whitening phenotype was also reported in rats [26], indicating
that BAT has a distinct response to IF compared with WAT. Therefore, deacetylation of
PPARγ is required to fully execute the metabolic improvements of IF.

3.4. aKQ Mice Retain the Response to TZDs in Diet-Induced Obesity but with Impaired
BAT Function

TZDs are full agonists of PPARγ that potently improve insulin sensitivity [27,28].
Next, we asked whether PPARγ acetylation in adipocytes affects the response to TZD
treatment. To test this, we induced insulin resistance in the control and aKQ mice by
feeding them an HFD for 16 weeks, with subsequent treatment of rosiglitazone. aKQ
mice displayed a similar body weight and composition as control mice after rosiglitazone
treatment (Figure 4A). aKQ mice had comparable insulin sensitivity (Figure 4B) and glucose
tolerance (Figure 4C) to WT mice, no matter before or after rosiglitazone treatment, showing
aKQ mice are still responsive to rosiglitazone (Figure 4D,E). Adipsin levels in the circulation
were persistently increased in aKQ mice, while the adiponectin levels remained constant
(Figure 4F,G). Upon sacrifice, there was no difference in iWAT, eWAT, and liver mass
(Figure 4H). Given the blunted metabolic phenotype in aKQ mice, we did not focus on
white adipose tissue. Instead, we further examined BAT since TZDs are well known
to induce lipid filling in BAT [16]. Interestingly, this “whitening” phenotype of BAT
was magnified in aKQ mice. The brown adipocyte marker UCP1 was decreased in the
BAT of aKQ mice, together with the deacetylase of PPARγ, SirT1, which is enriched in
BAT and conveys a pro-BAT function (Figure 4I,J) [16]. Adipsin, as a white adipocyte
marker, was increased, whereas Adiponectin and its upstream regulator C/EBPα were
both repressed. Therefore, despite retaining the full insulin-sensitizing response to TZD,
aKQ mice remained impaired in BAT function.
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Figure 3. Adipocyte PPARγ acetylation diminishes the metabolic improvements of intermittent
fasting (IF) in middle-aged mice. (A–C) Body weight (A), fat mass (B), lean mass (C) of male middle-
aged WT and aKQ mice before and after 6 weeks of IF (n = 6, 6). (D) ITT and AUC after fasting
for 5 h after 5 weeks of IF. (E) GTT and AUC after an overnight fasting after 6 weeks of IF (n = 6, 6).
(F,G) Plasma NEFA and triglyceride (TG) levels after overnight fasting after 6 weeks of IF mice
(n = 6, 6). (H,I) WB with quantification of Adipsin and Adiponectin protein levels in plasma and iWAT
after 6 weeks of IF (n = 6, 6). (J) Representative H & E staining of BAT, iWAT, and eWAT after IF. Scale
bar: 200 µm. (K) qPCR analysis of gene expression levels in BAT (n = 6, 6). Data are presented as mean
± SEM, two-way ANOVA and two-tailed Student’s t-test were used to test significances. * p < 0.05,
** p < 0.01, *** p < 0.001.
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Figure 4. aKQ mice are sensitive to TZD treatment but with worsened BAT whitening. (A) Body
compositions of diet-induced obese (DIO) WT and aKQ mice after a rosiglitazone (Rosi) diet for
7 weeks (n = 13, 9). (B). ITT on Rosi treatment for 0 and 5 weeks (n = 13, 9, 13, and 9). (C) GTT on
Rosi treatment for 0 and 6 weeks (n = 13, 9, 13, and 9). (D) AUC of ITT (n = 13, 9, 13, and 9). (E) AUC
of GTT (n = 13, 9, 13, and 9). (F,G) WB with quantification of Adipsin and Adiponectin protein levels
in plasma (n = 6 and 6). (H) Tissue masses at sacrifice after 7 weeks of Rosi treatment (n = 13, 9).
(I,J) WB with quantifications in BAT (n = 6 and 6). * p < 0.05, ** p < 0.01, *** p < 0.001.

3.5. Activation of SirT1 Fails to Protect aKQ Mice from BAT Whitening

TZD-induced PPARγ deacetylation is SirT1 dependent [16]. Our recent work revealed
significant elevation in PPARγ acetylation levels in aging and obesity, in which SirT1 activ-
ity was diminished [17]. The lack of phenotype in the WAT of DIO aKQ mice can likely
be explained by the K293Q mutation mimicking the hyperacetylation of wildtype PPARγ
under low SirT1 activity. We then reasoned that the BAT whitening phenotype in aKQ mice
should be attenuated by SirT1 activation if it is not dependent on PPARγ acetylation. To test
this, we treated DIO WT and aKQ mice with resveratrol to activate SirT1 [29], while main-
tained rosiglitazone treatment to ensure full agonism of PPARγ. Three weeks of combined
treatment of resveratrol and rosiglitazone did not alter body weight changes in aKQ mice
after obesity induction, but caused slightly worse insulin sensitivity and more favorable
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glucose tolerance in aKQ mice (Figure 5A–C). Despite these minor metabolic changes, there
was clearly more lipid accumulation in the BAT of aKQ mice compared with control groups
using H & E staining (Figure 5D). The WATs of aKQ mice were barely affected in terms
of depot size and morphology (Figure 5D,E). The browning markers UCP1 and PGC-1α
were consistently repressed in aKQ mice; however, the expression of Adiponectin and
Adipsin was unchanged despite the upregulation of C/EBPα (Figure 5F,G). The decreased
UCP1 was further confirmed by immunohistochemical staining (Figure 5H,I). These results
suggest that PPARγ acetylation directly causes whitening of BAT by promoting lipid filling
and dampening thermogenic activity.
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Figure 5. PPARγ acetylation-induced BAT whitening persists despite resveratrol treatment. (A) Body-
weight curves of DIO mice co-treated with Rosi and resveratrol (n = 6, 6). (B) ITT and AUC after
the co-treatment for 2 weeks (n = 6, 6). (C) GTT and AUC at 3 weeks co-treatment (n = 6, 6).
(D). Representative H & E staining of BAT, iWAT, and eWAT after Rosi and resveratrol treatment for
3 weeks. Scale bar: 200 µm. (n = 6, 6). (E) Quantification of WAT adipocyte size (n = 6, 6). (F,G) WB
and quantifications in BAT (n = 6, 6). (H,I) Immunohistochemical staining and quantification of
UCP1 protein in BAT (n = 3, 3). Data ae presented as mean ± SEM, two-tailed Student’s t-test.
* p < 0.05, ** p < 0.01.
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3.6. PPARγ Acetylation in Adipocytes Worsens TZD-Induced Bone Loss

Bone loss is the most prevalent adverse effect of TZD treatment and can be inhibited by
PPARγ deacetylation using a whole-body knock-in model of a constitutive deacetylation-
mimetic 2KR mutant [18]. This bone loss effect involves active remodeling of both adi-
pogenic and osteogenic programs. Here, we used the aKQ model to specifically dissect the
contribution of PPARγ acetylation in adipocytes to this drawback. Three weeks of rosigli-
tazone treatment in the presence of resveratrol resulted in a lower bone mineral density
(BMD) in the trabecular region of aKQ mice, without affecting bone volume (Figure 6A,B).
The cortical region was not affected (Figure 6C,D). Osmium tetroxide staining of lipid
droplets revealed a more than two-fold increase in bone marrow adiposity in aKQ mice,
although not significant (Figure 6E,F). In line with their lower BMD, aKQ inhibited the
expression of key osteoblast markers Alp and Runx2 in the bone marrow (Figure 6G), indi-
cating an impaired osteogenic gene expression. Hence, PPARγ acetylation in adipocytes
worsens TZD-induced bone loss.
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Figure 6. PPARγ acetylation accelerates TZD-induced bone loss in obese mice. (A) Bone mineral
density (BMD) in the trabecular bone (n = 6, 6). (B) Normalized bone volume (BV) to total volume
(TV) in the trabecular regions. (C) Bone mineral density in the cortical bone (n = 6, 6). (D) Normalized
bone volume in the cortical regions (n = 6, 6). (E,F) Representative osmium tetroxide staining, and
quantification of constitutive marrow adipose tissue (cMAT) assessed by µCT scanning in the femurs
of male mice after Rosi plus resveratrol treatment (n = 5, 5). (G) qPCR analysis of osteoclastogenic
genes (n = 6, 6). ** p < 0.01, *** p < 0.001.

4. Discussion

Aging and obesity are the two prominent risk factors contributing to metabolic dys-
function [30], and both are associated with the degeneration of BAT [22,31]. Interestingly,
PPARγ acetylation is increased in both conditions [17]. Using an adipocyte-specific PPARγ
acetylation-mimetic mouse model (aKQ), we demonstrate a BAT whitening phenotype ac-
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companied by impaired insulin sensitivity and disordered lipid and glucose metabolism in
aging. Interestingly, despite the profound benefits of IF that have been reported regarding
insulin sensitivity, oxidative stress, circadian rhythm, and longevity [24,32–35], IF failed
to fully abrogate the metabolic detriments in aKQ mice. Therefore, PPARγ acetylation
specifically on Lys293 in adipocytes is a pathogenic factor predisposing mice to metabolic
complications in aging. This is probably due to impairing adipose plasticity, which has been
embodied in young aKQ mice with nutrient challenges of HFD and calorie restriction [17].
In this regard, PPARγ acetylation on the Lys293 residue could serve as an indicator of
metabolic health and thus be a therapeutic target. It is conceivable that compounds that
induce deacetylation on this residue, probably even without a PPARγ agonist activity,
might be used to curb metabolic decline during aging.

BAT is an energy-dissipating organ, naturally counteracting the positive energy bal-
ance in obesity [36]. It is highly vascularized and contains dispersed lipid droplets, in
sharp contrast with the unilocular lipid droplet in white adipocytes. However, this typical
brown adipocyte morphology is switched to white adipocyte-like when BAT function is
compromised, such as in obesity [31], aging [22], thermoneutrality [37], and diabetes [38].
This whitening process is characterized by lipid filling and suppressed BAT thermogenic
function. Interestingly, both phenotypical changes are persistently observed in aKQ mice
under multiple conditions, including aging, IF, and rosiglitazone treatment, regardless
of the activation of SirT1. This phenotype in aKQ mice is in line with the inhibited BAT
whitening observed in the deacetylation-mimetic PPARγ mutant knockin 2KR mice [18].
Therefore, PPARγ acetylation is a possible sensor and modulator of whitening, mirroring
the browning function of PPARγ deacetylation. The detailed molecular mechanisms of
tuning PPARγ acetylation and the consequent transcriptional regulation of downstream
target genes warrant further investigation.

TZD’s clinical utilizations have been greatly limited due to safety issues, in spite of
the desperate demand for insulin sensitizers [28,39]. Interestingly, PPARγ deacetylation is
able to uncouple the adverse effects of TZDs, especially bone loss, from metabolic benefits.
Here, we consistently showed that aKQ mice retained the same response to rosiglitazone,
improving insulin sensitivity and glucose tolerance, but with a more pronounced bone
loss in cotreatment with resveratrol. Besides its browning function [29,40], resveratrol has
been shown to improve bone mineral density in postmenopausal women [41]. Hence,
PPARγ deacetylation may be required to achieve this bone protection by resveratrol. The
deleterious effect of PPARγ acetylation in adipocytes on the bone is very possibly mediated
by Adipsin. This adipokine is a sensitive target to PPARγ acetylation and is increased in
aKQ mice, while consistently repressed in 2KR mice. Adipsin can prime the bone marrow
progenitor cells toward adipocyte differentiation, and the ablation of it alleviates bone
loss in aging [21]. This aKQ model, thus, serves as a model of Adipsin gain-of-function to
provide complementary evidence of its bone loss effect. Interventions targeting Adipsin
and its related alternative complement pathways might convey bone protection, whereas
exploiting its protection on insulin-producing β cells may have to be performed with the
consideration of the potential adverse effects on the skeleton.

Collectively, adipocyte PPARγ acetylation renders systemic metabolism toward obe-
sity, insulin resistance, and dyslipidemia during aging. These metabolic dysfunctions
are accompanied by the whitening of BAT, an adipocyte-intrinsic regulation by PPARγ
acetylation (Figure 7). Targeting PPARγ acetylation might be promising for developing
insulin sensitizers with improved safety to curb obesity, diabetes, and metabolic decline
during aging.
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