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Abstract: Plasma membrane protein channels provide a passageway for ions to access the intracellular
milieu. Rapid entry of calcium ions into cells is controlled mostly by ion channels, while Ca?*-ATPases
and Ca?* exchangers ensure that cytosolic CaZ* levels ([Ca2+]cyt) are maintained at low (~100 nM)
concentrations. Some channels, such as the Ca%*-release-activated Ca2* (CRAC) channels and voltage-
dependent CaZ* channels (CACNAs), are highly Ca%*-selective, while others, including the Transient
Receptor Potential Melastatin (TRPM) family, have broader selectivity and are mostly permeable
to monovalent and divalent cations. Activation of CRAC channels involves the coupling between
ORAI1-3 channels with the endoplasmic reticulum (ER) located Ca?* store sensor, Stromal Interaction
Molecules 1-2 (STIM1/2), a pathway also termed store-operated Ca®* entry (SOCE). The TRPM
family is formed by 8 members (TRPM1-8) permeable to Mg?*, Ca?*, Zn?* and Na* cations, and is
activated by multiple stimuli. Recent studies indicated that SOCE and TRPM structure-function are
interlinked in some instances, although the molecular details of this interaction are only emerging.
Here we review the role of TRPM and SOCE in Ca?* handling and highlight the available evidence
for this interaction.

Keywords: CaZ* signaling; TRPM channels; SOCE; ORAI channels

1. Introduction

Cation-conducting channel proteins in the plasma membrane play important roles in
a multitude of cellular processes [1]. Most of these channels experience conformational
changes from closed to open states allowing the passage of thousands of ions in response to
chemical or mechanical signals [2]. Although these channels provide selective permeability
to cations over anions determined by the amino acids lining the pore and the pore diameter,
they can adopt multiple roles in cell signaling due to the variable selectivity for cations [2].
This is the case for the non-selective transient receptor potential melastatin (TRPM) family,
which is capable of conducting monovalent (Na* and K*) and divalent (Mg?* and Ca?*)
cations [3]. Less selective cation channels of the TRPC family (i.e., review by Saul and
Hoth [4]) and of other families also contribute, but are not included in the present overview.
By contrast, the specialized Ca®* release-activated Ca?* (CRAC) channels, mediating store-
operated Ca®* entry (SOCE), which are generated by the ORAI1-3 proteins, are a 1000-fold
more selective for Ca?* than Na* ions [5]. Recent studies indicate that the TRPM and the
CRAC channels interact in some expected ways but also by novel mechanisms [6,7]. Here
we specifically review the role of TRPM channels in Ca?* homeostasis and highlight recent
advances toward understanding the potential synergy between TRPM and ORAI channels.

1.1. General Features of TRPM Channels

TRPM channels are a subfamily of the TRP superfamily composed of eight members
denoted as TRPM1 to TRPMS and grouped based on sequence homology as follows: (1)
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TRPM1 and TRPM3; (2) TRPM2 and TRPMS; (3) TRPM4 and TRPM5; and (4) TRPM6 and
TRPM?7 [3]. With the exception of the monovalent selective TRPM4 and TRPM5 channels,
the remainder of the proteins in the family are non-selective cation channels that participate
in a heterogeneous range of physiological processes including temperature and redox
sensing, light sensing, embryonic development and Mg?* homeostasis [3,8,9]. Although
TRPM4 and TRPMS5 are Ca?* activated channels, they are impermeable to Ca2*[3,10,11].
The general structural architecture of TRP channels consists of six transmembrane helical
domains (TM1-TM6), with a loop between TM5 and TM6 forming the channel pore, and
N- and C-terminal regions located in the cytosol [3,11]. Each TRPM subunit has a ~850
amino acids cytosolic domain, making TRPM members the largest proteins of the TRP
superfamily [9,10]. The ion channel regions of TRPM2, TRPM6 and TRPM? are linked to
an intrinsic enzymatic domain within the C-terminus [12,13]. TRPM6 and TRPM? contain
serine/threonine x-kinase domains, while TRPM2 channel has a NUDT9-H domain [12,14].
These chanzymes modulate cellular functions either by inward ion currents through the
pore and/or by phosphorylating downstream proteins via its enzymatic domain [3,10].
Table 1 lists features of the TRPM channels including their ion permeability and activation.
Mutations in the genes encoding TRPM channels result in channelopathies including
cancer [15], neuropathic pain [16], inflammation [17], hypertension [18,19], diabetes [20]
and hypomineralization [21,22]. The TRPM channel pore domain located between TM5-6,
surrounded by the S1-S4 domain and connected through the S4-S5 portion, appear to
play an important role in channel gating [3,10]. All members of the TRPM family have a
conserved Ca?* binding site, but available data show that this binding site is important for
the gating of only TRPM2 [23] and TRPMS [24]. Several studies have indicated that TRPM
channels are expressed in the membranes of intracellular organelles in addition to their
plasmalemmal localization [3,6,25], but their functions in organelles are not completely
understood and will not be discussed here.

1.2. General Features of the CRAC Channels

CRAC channels are formed by the endoplasmic reticulum (ER) resident Ca?* sensors
stromal interaction molecules 1-2 (STIM1/2) [26,27], and by the highly Ca?*-selective con-
ductance pore ORAI1-3 proteins [28,29], forming the dominant store-operated Ca®* entry
denominated as SOCE [30-32]. The most common activation mechanism of SOCE involves
the binding of a ligand to receptors in the plasma membrane (PM) which then couple and
activate phospholipase C enzymes (PLC) to produce inositol 1,4,5 triphosphate (IP3) and
diacylglycerol (DAG). The ensuing binding of IP; to its receptor in the ER membrane results
in a rapid decline in ER Ca?* concentration, which subsequently causes oligomerization,
migration of STIM1/2 to ER-PM contact sites, where the unfolded C-terminal CAD/SOAR
domains trap and couple to the ORAI1-3 channels activating SOCE [5,33,34]. The het-
ero multimerization between STIM1 and STIM2 and different ORAI1-3 subunits result
in distinct SOCE and CRAC biophysical properties [35-39]. Reports showed that loss-of-
function mutations or knockdown of ORAI2 and ORAI3 genes results in an enhancement of
SOCE [33,40—43]. Also, ORAI3 tunes-down efficient STIM1 gating when in a heteromeric
complex with ORAII channels [44].

There are several well-known pharmacological inhibitors of SOCE and a major chal-
lenge has been to identify molecules with suitable characteristics (i.e., potency, selectivity,
toxicology) to offer positive clinical applications [32,45]. The first generation of SOCE
inhibitors such as MRS-1845, lanthanides (Gd3*/La%*), imidazoles (SKF-96365) and 2-
APB, helped define basic SOCE cellular properties [46], although their poor selectivity
significantly limited their use [32]. Newer SOCE inhibitors including compounds such as
synta-66, BTP2 (YM-58483), RO2959, AnCoA4 and GSK-7975A have shown improved phar-
macological characteristics in terms of potency and selectivity [46,47]. Synta-66, CM4620,
R0O2959 and AnCoA4 appear to be effective tools showing no significant off-target effects
on TRP or voltage-gated channels [32,48,49]. The in vivo potency, efficacy and selectivity
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of these SOCE inhibitors remain less explored, but recent studies indicate that several new
compounds are now in clinical trials [32,47,50,51].

2. TRPM1, TRPM2 and TRPM3 Channels

The first member of the TRPM family cloned and identified was TRPM1 in 1998 [52].
TRPM1 channels are involved in photoresponses in retinal cells in Drosophila and in
mice [53,54]. In humans, TRPM1 is also associated with skin pigmentation and homozygous
loss of TRPMI1 results in retinal blindness [53,55]. Although TRPM1 and TRPM3 channels
share ~70% sequence homology, their functions are quite different with TRPM3 acting
as a thermoreceptor in detecting noxious hot (~40 °C) temperatures and heat-associated
inflammation [54,56]. In addition to Ca?*, TRPM1 is permeable to other divalent ions
such as Mn?* and Mg?*, while TRPM3 has permeability to both monovalent and divalent
cations [57]. The ionic conductance of TRPM1 channels is ~76 pS and ~65 to 130 pS for
TRPMS3 [53,57,58].

The activation mechanism of the TRPM1 channels has not been fully elucidated yet.
Recent findings suggest that the intracellular uncoupling of the G, /Gf+, subunit of G-
proteins, after its activation, leads to the channel’s closure [59]. Also, the activation of
protein kinase C-alpha (PKCx) reduces the inhibition of TRPM1 by Mg2+ ions [60]. The
heat compound capsaicin has been used to investigate TRPM1 function although it is a
non-selective agonist [61]. TRPM3 channels can be activated by pregnenolone sulfate,
CIMO0216 and hypotonic solutions [56,62] that induces an increase in [Ca2+]cyt leading
to Ca?*/calmodulin modulation and subsequent activation of mitogen-activated protein
kinases (MAPKSs) [57,62]. The lack of selective agonists of TRPM3 channels is evidenced by
its activation by several metabolites and synthetic and plant-derived compounds including
cholesterol, mefenamic acid, and the antidiabetic PPARy-agonists rosiglitazone and trogli-
tazone [56,57,62]. Functional studies using HEK-293 cells overexpressing TRPM3 channels
showed that flavanones reduced pregnenolone sulfate-induced [Ca2+]cyt elevation [63].
Also, changes in ion concentration can negatively affect channel activity with increases in
[Ca2+]Cyt inhibiting TRPM1 and TRPM3 channels, intracellular Zn2* blocking TRPM1, and
Mg?* inhibiting TRPM3 channels [8,64].

TRPM2 channels, which contain an enzymatic domain, sense warm temperatures
and are also associated with the inflammatory cascade [65]. For example, Trpm2-deficient
mice are prone to Listeria-mediated infections [66]. These channels are also considered as
oxidative stress-sensitive and Ca%*-permeable ion channels [65]. The biophysical features
of TRPM2 include a large pore, an intracellular Ca* binding site linked to the pore and a
cation non-selectivity without voltage-dependence [23]. The single-channel conductance
is ~60-80 pS and the PCa/PNa permeability ratio is ~0.7-0.9, indicating that cation influx
is predominantly of Na* ions [67,68]. Its permeability to Ca?* and Mg?* is maintained
by amino acid residues located between the pore helix and the selectivity filter, being
regulated by ADP ribose (ADPR), reactive oxygen and nitrogen species (ROS/RNS), and
the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP;) [19,65]. Recent evidence
suggests that the activation of TRPM2 channels is linked to its enzymatic domain [69-72].
Interestingly, TRPM2 is catalytically inactive in humans but not in invertebrates [72]. At
least one study reported a connection between TRPM2 and SOCE, although this link is
indirect [73]. Salivary glands require SOCE for fluid secretion and radiation treatment of
the gland activated a TRPM2-dependent pathway involving mitochondria which caused a
caspase-mediated cleavage of STIM1 and loss of SOCE [73].

3. TRPM4/TRPMS5 Channels

Unlike other TRPM family members, TRPM4 and TRPM5 channels are unique due to
their much higher permeability to monovalent cations compared to divalent ions [74,75].
Their role in altering Ca?* homeostasis is therefore more indirect. However, both channels
require increases in intracellular Ca?* levels to become activated and are also regulated
by PIP,. TRPMS5 channels are 5 to 10-fold more sensitive to Ca?>* when compared to
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TRPM4 [74,76,77]. TRPMb5 was originally identified as MTR1, and was later found to be co-
expressed with the taste signaling molecule o-gustducin [78,79]. TRPM4 has been identified
as a homolog of MLSN (TRPM1) and is highly expressed in heart, kidney, prostate and
colon and as a Ca?* activated cation channel mediating membrane depolarization [80,81].
CAM binding sites in the C-terminus of TRPM4 are essential for regulating the sensitivity
of direct Ca%* dependent activation [76,82]. However, both TRPM4 and TRPMS5 have a
direct CaZ* binding site on the intracellular side of the S1-S4 domain [83]. TRPM4, but
not TRPMS5, is inhibited by extracellular adenosine nucleotides (AMP, ADP, ATP) and its
activity can be enhanced by PKC dependent phosphorylation of the TRP domain [84].

Increased TRPM4 expression correlates with decreased SOCE due to changes in the
driving force for Ca* as has initially been demonstrated in prostate cancer cells [85]. A
later report correlating the expression of TRPM4 with proliferation, cell cycle progression
and invasion by colorectal cancer cells [86], but see also its role for cell spreading, migration
and contractile behavior [87]. Within the heart, direct pathophysiological roles for TRPM4
that are likely independent from a concomitant inhibition of SOCE, are linked to smooth
muscle depolarization and subsequent myogenic vasoconstriction [88]. Also, a recent
review [8] provided the role of TRPM channels in several human diseases. In the context
of SOCE regulation, the role of TRPM4 in the immune system is of particular interest.
Bone marrow derived mast cells from TRPM4 knockout mice showed a greater release of
leukotrienes and TNF-« as well as of histamine [89], but so far it has not been formally
investigated to what extent these effects are dependent or independent from differential
driving forces for Ca?* influx from the outside. In T-lymphocytes, TRPM4-dependent
alterations of cytokine production and altered Ca®* oscillations as well as differential effects
on NFATc1 localization [90,91], might also be caused by alterations of the electrical driving
force. Still, the exact mechanism and/or the differential contribution of TRPM4 to immune
responses remains to be fully understood and investigated for the response to differential T
cell agonists. How ORAI and TRP channels interact has also been reviewed by Saul et al. [4].
As both TRPM4 and TRPM5 need Ca?* for activation, a dual interaction with SOCE is
likely with SOCE providing a source of Ca?* and TRPM4/5 mediated depolarization
subsequently providing negative feedback on SOCE mediated Ca?* influx.

4. TRPM6 Channels

TRPMB6 channels are involved in maintaining Mg?* and Ca?* homeostasis [13] and
their activity is essential in the kidney and small intestine and in mammary epithelial cells
and colon cells [12]. Mutations in the gene encoding TRPM6 cause hereditary disease of
familial hypomagnesemia with secondary hypocalcemia [8]. TRPM6 channels can induce
inward divalent cation currents when the intracellular Mg2+ levels are ~500 uM [12,14,92].
The permeability of TRPM6 to divalent cations is dependent on key acid residues present in
its selectivity filter [12,93] and its ion conductance is estimated to be around 82-84 pS [12,94].
Molecular analysis based on amino acid sequences has revealed that TRPM6 and TRPM?7
channels are close homologues, sharing a key feature of harboring the C-terminal ser-
ine/threonine protein kinase domain [3,10]. As shown in HEK-293 cells, TRPM6 specif-
ically interacts with TRPM7 proteins forming complexes in the PM [95]. The TRPM6/7
complex has different biophysical properties compared to homomers of TRPM6, including
its permeability to Ni%*, pore structure, inhibition by 2-APB, sensitivity to low (4-6) pH
and conductance, ranging between 40 to 105 pS for TRPM7 and 56.6 pS for TRPM6/7
heteromeric form [3,12,94]. Additionally, the activation of TRPM6 channels is modified
in the heteromeric form [92]. While TRPM6 homomers are inactive under basal Mg2+
levels, in the oligomeric form TRPMS6 can be active after TRPM7 phosphorylation and lacks
sensitivity to Mg?* [92,94]. Despite the close homology of TRPM6 and TRPM?7 channels
they have different functions, with TRPM6 being involved in intestinal uptake and renal
reabsorption of Mg?*, and TRPM7 regulating cellular Mg?* homeostasis [12,14].



Cells 2022, 11, 1190

50f17

5. TRPM?7 Channels

The TRPMY presents a unique combination of an ion channel with a serine/threonine
kinase and contributes to numerous physiological functions [96] (Figure 1). Besides being
implicated in maintaining intracellular and systemic Mg?* homeostasis [97-102], TRPM7
has been linked to cell motility, proliferation, differentiation, volume regulation, migration,
and apoptosis [98,103-119]. This channel-kinase symbiosis paired with its ubiquitous ex-
pression gives it a central and non-redundant role in cellular processes. Its pathophysiology
is broad being linked to neurodegenerative disorders, hypertension, and tissue fibrosis
and to atypical immune responses [120-127]. As versatile as the function of TRPMY is,
so is its regulation by a variety of internal and external cellular factors. They range from
intracellular cations, Mg-ATP, C1~ and Br™ concentration, and intracellular pH to hydroly-
sis of the PIP, [128-131]. The channel is constitutively active and conducts preferentially
Zn?*, Mngr and Ca?*, and trace metals [103,115,132—134]. The constitutive active current
is suppressed by intracellular levels of Mg?* and Mg-ATP [103] and external Mg?* acts
as a permanent blocker of the pore [92,103,130,134]. These features led to the earlier des-
ignation of the native TRPM7 current as MagNuM (Mg?*-nucleotide-regulated metal ion
current) [103,135] or MIC (Mg2+-inhibited cation current) [36]. TRPM7 permeability for
Zn?* is 4-fold higher than Ca®* [134] and its deletion protects cells from Zn?* and Ca?*
induced toxicity [136-138].

N-terminal Kinase Domain/

C-terminal

Figure 1. Structural architecture of TRPM7. TRPM?7 channels are formed by six helical transmem-
brane domains (TM1-TM6). The channel pore (P) of TRPM?7 is located between TM5 and TM6. TM1
contains the N-terminal region and TM6 harbors the serine/threonine kinase domain. The N’ and C’-
terminal regions are in the cytosol.

The kinase domain of TRPM?7 belongs to the family of the atypical «-kinases [139]
with the predisposition to phosphorylate serine and threonine residues in the context of
an o-helix. It shows close homology to eukaryotic elongation factor-2 kinase (eEF2K), Dic-
tyostelium myosin heavy chain kinases (MHCK) A-C and alpha-kinases 1-3 [140]. The first
targets of the TRPMY kinase were identified in vitro, including annexin A1 [141], PLC [142],
and the MHCK A-C isoforms [105,143]. Novel mouse models made it possible to expand
this diversity by the identification of native kinase substrates like SMAD2 [127,144]. Further-
more, the autophosphorylation of kinases supports target recognition and subsequent phos-
phorylation of substrates and appears not to be crucial for its catalytic activity [145-147].
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Beside the necessity of Mn?* or Mg?* and Mg-ATP for the kinases activation and phos-
phorylation [146], the phosphorylation of some targets seems to be a Ca?*-dependent
process [105,141,143]. This dependence suggests that channel activity somehow induces
Ca?* influx to support the kinase-target interaction. Additionally, the TRPM?7 kinase can be
cleaved by caspases to release the kinase domain, without losing its phosphotransferase
activity from the channel and act on apoptotic signaling through the Fas receptor [119].
Interestingly, the cleaved kinase translocates to the nucleus affecting mRNA expression
of TRPM7-dependent genes by modifying phosphorylation of serines and threonines on
specific histone residues in a Zn?* -dependent way [148].

The combination of a channel and a kinase poses a significant challenge to researchers
when investigating the causes of pathophysiological processes. Since the discovery of
TRPM?, the research has focused on the relationship between the channel and kinase
activity and the physiological roles of the channel versus the kinase domain. This interplay
between the TRPM7 channel and «-kinase activity affect each other, but the functional
significance of this coupling is not clear and still the subject of ongoing investigation
and debate. Reported inconsistencies result mainly from using a heterologous expression
of TRPM7 mutants or by complete deletion of the kinase and the use of different tissue
types [92,97,98,115,129,145,149]. A mouse model K1646R point mutation is introduced
at TRPM7’s enzyme active site [96] opens the door to investigate the role of the kinase,
uncoupled from the channel activity on physiological functions. Overall, it appears that
the kinase activity of TRPM7 is not essential for the native channel function [96] and may
play a more structural role in channel assembly or subcellular localization [97,98,145].
However, the kinase domain might still be important for Mg?* levels ((Mg?*]cyt) mediated
modulation of the TRPM7 channel itself, since the complete deletion of the domain increases
[Mg2+]cyt sensitivity of the channel [97,98,128] in contrast to inactive kinase point mutant
K1646R [145]. Accordingly, the defect in Mg?* homeostasis and TRPM7 current reduction
is only found in heterozygous delta-kinase but not in K1646R mice [96,97,127].

6. TRPMS8 Channels

The seminal discovery of TRPV1 by the Julius laboratory in 1999 [150] with the follow-
up study of impaired nociception and pain sensation in mice lacking TRPV1 [151] and of
the cold sensitive TRPMS published in 2002 by the Julius [152] and Patapoutian [17] groups
were groundbreaking. These studies were a critical step in recognizing that sensitization of
primary afferent neurons via ion channels is responsible for detecting skin surface tempera-
tures and thermal-related neuropathic pain. TRPMS8 was originally cloned by screening
cDNA isolated from trigeminal sensory neurons for their ability to respond to menthol
and cold stimuli and from DRG neurons looking for novel sensory TRP channels [17,152],
placing the TRPM subfamily at the center stage of thermal somatosensation [153]. However,
the ability to sense changes in temperature is not restricted to a given TRP subfamily. The
significance of these findings and the discovery of the touch-sensitive Piezo channels [154]
won the discoverers Dr. David Julius and Dr. Ardem Patapoutian the 2021 Nobel Prize
in Physiology [152,155]. TRPMS8 channels are non-selective Ca?*-permeable channels ex-
hibiting multi-gating mechanisms, being activated by innocuous cool to cold temperatures
and regulated by crucial molecules such as Ca®* and PIP; [155,156]. The early work by the
Latorre group identified the C-terminally located PIP; sensing domain as one determinant
of temperature sensitivity [157,158]. The permeability ratio between Ca?* and Na* ions
(PCa/PNa) range from 0.97 to 3.2, with monovalent ions conductance series of Cs* > K*
> Na* [159]. Also, TRPMS8 channels can depolarize cells and activate voltage-gated Na*
and Ca?* channels [153], leading to increased ion influx. Basal cytosolic Ca?* is required
for TRPMS activation by the cooling agonist, icilin, but not for menthol activity [24,160]. A
major break-through in the understanding of TRPM8 modulation is based on several highly
relevant reports published in 2017 to 2019 describing the cryo-electron microscopy struc-
tures of TRPMS8. Herein, Yin et al. initially resolved the cryo-electron microscopy (Cryo-EM)
structure of a full-length TRPMS from the collared flycatcher [24]. Their structures revealed
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a complex layered architecture with the menthol binding site located within the voltage-
sensor like domain [24,161]. This was followed by a report from the Julius group, using
TRPMS from another bird (Parus major) to more clearly resolve the transmembrane and
selectivity filter domains of TRPMS in the antagonist or Ca?* bound configurations [153].
A second follow-up report from the Lee group in 2019 further revealed allosteric coupling
between binding of PIP, and cooling compounds and also revealed that intracellular Ca®*
is not necessary for cold- or menthol-dependent TRPMS activation, however it is necessary
for TRPMS activation by icilin [162]. In contrast to competition for binding of PIP, versus
agonist binding in TRPV1 [163], TRPMS has nearby but distinct binding sites for PIP; and
agonists and PIP; is required as a cofactor for channel activation by cooling agonists and
cold temperatures [153,164]. PIP; itself might be sufficient to activate TRPMS, whereas
depletion of basal PIP; levels results in channel desensitization [153]. Endogenous ligands
including testosterone, artemin and Pirt (phosphoinositide interacting regulator of TRP)
protein have been also proposed as physiological ligands of TRPMS8 channels [165]. The
modulation of TRPMS8 channels have been considered a promising approach to develop
novel therapeutic tools for chronic pain and noxious cold sensitization [165] and have also
been relevant in the treatment of cancer, neuropathic pain and inflammation [15,165].

Table 1. TRPM1-8 channels ion influx characteristics including, enzymatic domain, gating, ion

permeability, function, SOCE interaction and pharmacology.

TRPM Channels: Ion Influx Characteristics

Enzymatic

Ion

SOCE In-

Name: Domain Gating Permeability Function teraction Pharmacology References
Got, and GB, Divalent Skin Pigmentation . .
TRPM1 No subunits of (Ca2*/Mg?*/ Retinal No Aiﬁf\?ﬁ?:éfg;fﬁgfﬁ‘]’lor‘e [51,52,58,60]
G-proteins Mn?*) Photoresponse ’ oyt
Monovalent Body Temperature
+ /Kt + : .
Yes ADP-ribose (Na / K*/Cs™) Control In- Yes (Indi- Activator(s): AD.P./ADPR
TRPM2  (NUDT9- o Divalent . analogues Inhibitor(s): [23,64-67]
and Ca o4 oy sulin/ROS/Immune rectly) . .
H) (Ca™"/Mg~"/ Cacospongia/Scalaradial
Ba2*) Response
Monovalent . .
GieGPCRs  (Na'/Ke/Cot) MR ! CIMO216/ Pregnenclone
TRPM3 No Ca?*/CaM/ Divalent 1 N No Inhibi & . [55,56,62]
MAPKs (Ca?* /Mg?*/ Glucose/Ca nhibitor(s):
Ba2*) Homeostasis T[Mg2+ Jeyt/Primidone
Monovalent (Na* My()égaegicaZOHe, Yes (Indi- Activator(s): T[Ca* Jeyt [8,11,63,75
TRPM4 No Ca?*/CaM >K*>Cst > Lit L Cat rectly) Inhibitor(s): ,77’86j ’
>> Ca2*/Cl7) cton, y AMP/ADP/ATP/DVT ’
Oscillation
Activator(s):
Monovalent (Na* Taste, Insulin 1[Ca* ]yt /PIP,/
2+ cy!
TRPM> No Ca™/CaM >K* > Cs") Secretion No Rutamarin Inhibitor(s): [3,74,77,81]
TPPO
Mainly
Yes Mg?*/Ca** and ~ Mg?* Homeostasis Activator(s): (3,12
TRPM6 (akinase) PIP, /PLCy other divalent Embryonic No ~L[MgZJr Jeyt/EGF/Insulin 14 8, 3.89]
(BaZ* /Zn**/ Development Inhibitor(s): ATP/H,0, (e
MnZ*)
Mainly Activator(s):
Phosphory- Mg?*/Ca% and ~ Mg?* Homeostasis . Naltriben /| [Mg?*]cyt/PiPs
TRPM7 (oc—lzisase) lation PLCy/ other divalent Cell Motil- Yi:c(tlln ()il_ Inhibitor(s): [6’71’?;’]109’
Myosin ITA-C (Ba%*/Zn?*/ ity /Differentiation Y NS8593/FTY720/
Mn?2*) WaxenicinA
Monovalent Cold Skin Activator(s):
+ Kt + .
Gag- (Na/K*/Cs") Temperatures Yes (Indi- Menthol/Icilin/WS12 [24,152,154,
TRPMS No 9 Divalent Thermal -
GPCRs/PIP, (Caz /Mo Neuropathic Pain rectly) Inhibitor(s): 159]
8 P AMTB/TCI2014/CPS-369
Ba™") prostate
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7. Discussion: The TRPM-SOCE Connection

The most evident connection between the TRPM channels and SOCE is represented
by the TRPMY7 channels. On the one hand, TRPM?, like SOCE, is implicated as a player
in global Ca?Z* levels and in mediating Ca?* influx [104,141,166-168]. Moreover, Ca2* in-
flux through the channel seems to play a central role in controlling the recruitment of
substrates, including annexin Al and myosin II A heavy chain, to the TRPM? kinase do-
main [105,141,143]. More importantly, recent reports highlighted the connections between
TRPM7 and SOCE and their relevance to cell physiology [6,7,169]. Initial studies focused
on the immune system cells because TRPM7 and SOCE play a significant role in immune
cell development, activation, and the initiation of both innate and adaptive immune re-
sponses [33,116,170]. The deletion or pharmacological inhibition of TRPM7 reduces SOCE
in DT 40 B-lymphocytes, which indicates a potential direct link between TRPM7 function
and SOCE [6]. The observed reduction of CRAC currents (Icrac) in the DT40 cells is neither
due to membrane potential effects nor to indirect effects of K* currents [6]. Furthermore,
the authors exclude that TRPM7 channels are part of SOCE but considered these channels
as SOCE regulators [6]. Rescue experiments in DT40 cells expressing kinase-dead (K1648R),
or kinase-deficient mutant of TRPM?, provide evidence that regulation of SOCE takes place
via its kinase domain [6]. Interestingly, TRPM7 participates in maintaining Ca®* stores
under resting conditions and contributes to ER store refilling after depletion [6].

An ensemble between SOCE and TRPM7 appears to support the intracellular Ca?*
balance under resting conditions and after activation of the Ca?* signaling cascade [6]. In
line with these findings, a second study used pharmacological (modulators) and molecular
(siRNA) approaches to examine SOCE/TRPM? connections in primary enamel forming
cells (ameloblasts) and in the enamel cell line LS8 cells [7]. Especially during ameloblast
differentiation, the TRPM?7 kinase plays a role by phosphorylating the cAMP response
element binding (CREB) protein [22]. The use of naltriben as a TRPMY7 activator [7,171]
enhances SOCE in rat-derived primary ameloblasts from the secretory and maturation
stages [7]. Pharmacological suppression of TRPM7 pore does not decrease SOCE and
excludes TRPMY? as a component of SOCE in these cells, supporting the non-critical role
of TRPM7 channels on SOCE in ameloblasts [7]. Moreover, the activation of TRPM7
with naltriben in LS8 cells lacking both ORAIT and ORAI2 (shORAI1-2) failed to increase
cytosolic Ca?* levels [7]. These findings are supported by data on primary ameloblasts
of Stim1/2K% mice lacking Stim1 and Stim2, which had not been previously reported.
Figure 2 shows that whereas naltriben enhances the SOCE peak in ameloblasts of wild
type mice, the activation of TRPM?7 in ameloblasts of Stim1/2X14" mice, which show nearly
abolished SOCE [28], failed to show any changes in Ca?* influx. This supports the notion
that the potentiating function of TRPM?7 on SOCE likely requires the previous activation
of SOCE, and that TRPMY is not able to compensate for the lack of SOCE. Furthermore,
additional rescue experiments of the TRPM7-KO-mediated phenotype with the inactive
kinase mutant (K1648R) or hTRPM7 A-kinase could address the involvement of the channel
or kinase in this potentiating function [6,7], as it has already been studied in B-lymphocytes.

Overall, additional studies seem to be required to elucidate the role of TRPM7 or
its kinase in enamel cells and beyond. If the TRPM7 kinase is the regulatory portion in
this context, the kinase inactivated mouse model should unmask its role in Ca* signaling.
Inactivation of the TRPM7 «-kinase in a mouse model leads to splenomegaly with increased
splenocytes numbers [172], but unaltered T cell subsets distribution in the spleen [127].
TRPM?Y activity in murine splenic T cells is comparable in wild-type TRPM7 and KD mutant,
highlighting the dispensability of the kinase function for ion conduction again [96,145].
Also, the SOCE magnitude tends to be larger in cells from KD mutant mice, and the
initial slope is significantly increased, suggesting a potentiated Ca®* influx through ORAI
channels. The kinase deactivation causes potentiation of Ca?* signals in resting conditions
while a reduction occurs in the activated cells. The reasons can be multi-layered, including
differences in metabolic stages of the cells or altered SOCE expression patterns within
subpopulations of T cells [173-175].
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Figure 2. TRPM?7 stimulation does not elicit Ca?* influx in SOCE-deficient ameloblasts. (A) Rep-
resentative original traces of [Ca2+]cyt transients in ameloblasts of Stim1/2X4¢ mice (Stim1/2cKO)
and controls (WT) ameloblasts. The ameloblasts of Stin1/2K14" mice were isolated as reported (28).
SOCE was measured after pre-incubation with thapsigargin (20 min, 1 uM), followed by perfusion
with a Ca2*-free Ringer’s solution (60 s) before simultaneous re-addition of 2.0 mM extracellular CaZt
or with 2 mM Ca?* and the TRPM7 agonist naltriben (NAL,100 uM). (B) Quantification of the SOCE
peak. Data were analyzed by one-way ANOVA followed by Tukey’s multiple comparison post-hoc
test. * p< 0.05, ** p < 0.001, n.s., non-significant.

Recent evidence highlighted the TRPM7 «-kinase domain as a further indirect mod-
ulatory player generating Ca®* signals via SOCE [6]. So far, there is a lack of evidence
supporting the active participation of TRPM7 in SOCE, at least in the cells studied so
far [6,7]. This raises the next question: how does TRPM7 indirectly exert these regulatory
abilities on the SOCE pathway? The obvious answer would be its ability to phosphorylate
targets directly or indirectly involved in the SOCE pathway. The reversible phosphorylation
of proteins catalyzed by kinases is central in regulatory mechanisms of signal transduc-
tion [128]. Several studies have already identified ORAI and STIM proteins as targets for
kinases, leading to alterations of Ca®* entry [176-179]. In addition, STIM and ORAI regula-
tory proteins including SOCE-associated regulatory factor (SARAF), CRACR2A, GOLLI
proteins, caveolin and septin [180-183] may also be under the influence of kinases. Another
interesting point is the involvement of TRPM7 to form the myosin II motor protein, bundle
actin filaments, and build the actomyosin cytoskeleton network. The MHC-II phospho-
rylation by TRPM? is Ca?*-dependent [105], and it relies on STIM1-mediated Ca?* entry
since STIM1 deletion abolished actomyosin formation [184]. These reciprocal interactions
between TRPM7 and SOCE may require tight balance to maintain proper cell signaling
and functioning.

Additional SOCE/TRPM links are provided by TRPM2 channels. Liu et al. reported
that in irradiated salivary glands, TRPM2 channels are activated resulting in elevated
mitochondrial Ca?* and ROS which subsequently induced caspase-3 cleavage of STIM1
and loss of SOCE [73]. While these data strongly suggest a cause-effect association between
SOCE and TRPM2, this is an indirect link as it does not suggest a direct interaction between
TRPM2 and any of the SOCE components [73]. TRPMS8 channels have also been proposed
to antagonize the degree of SOCE. The downregulation of TRPMS in pulmonary smooth
muscle cells correlates with increased SOCE, and the application of icilin causes suppression
of SOCE. However, the link is less clear and, thus far, likely indirect [185]. TRPMS (and
many other channels) activity can be influenced by alterations in Ca?* and PIP, levels [153],
and are also affected by the activity of the GPCR Goag-subunit which could disrupt the
PLC-PIP; signaling cascade [186] and therefore might indirectly affect SOCE. A general
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note of caution is that activation of cation selective channels with a sufficient ion flux
capacity and high Na* > Ca?* permeability ratios will lead to membrane depolarization,
which might indirectly reduce influx through STIM2 mediated pre-coupled ORAI channels,
thus potentially lowering basal Ca?*.

8. Concluding Remarks

Since the identification of ORAI1-3 and STIM1/2 as key components of SOCE, sev-
eral reports have suggested that members of the TRPM family are associated with SOCE.
However, the available evidence at present does not support the consideration that TRPM
channels are intrinsic components of SOCE. Nonetheless, at least two members of the
TRPM family (TRPM2 and TRPM?) can modulate SOCE, albeit such modulation appears
to be primarily indirect involving either the phosphorylation of SOCE components via the
enzymatic domain of TRPM?7, or via mitochondrial Ca?* accumulation and ROS generation
to degrade STIM1. Yet there are several gaps in understanding the nature of these modula-
tory functions, particularly evident in the case of TRPM?7. Additional work is required to
better discern the synergy between TRPM members and SOCE and its impact on the Ca®*
signaling cascade.
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