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Abstract: This study aimed to analyze key hub genes related to pyroptosis in gout and construct a
miRNA-mRNA regulatory network using bioinformatic tools to elucidate the pathogenesis of gout
and offer novel ideas to develop targeted therapeutic strategies for gout. Methods: The GSE160170
dataset was downloaded from the GEO database. The expression data extracted from the dataset
were used to screen for differentially expressed genes (DEGs), which intersected with pyroptosis-
related genes. These DEGs were analyzed via Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses, and a protein–protein interaction (PPI) network
was constructed to identify pyroptosis-related hub DEGs. The relationship between upstream
miRNAs and the hub genes was analyzed, miRNA-mRNA networks belonging to gout disease
were constructed and samples from patients with gout were used for experimental verification.
The CTDbase tool was used to analyze the identified hub genes and construct a molecular docking
model. Results: A total of 943 DEGs (380 upregulated and 563 downregulated) were identified by
analyzing the data of patients with early-stage gout and healthy control individuals in the GSE160170
dataset. DEGs and pyroptosis-related genes were intersected to obtain 17 pyroptosis-related DEGs
associated with gout; of which, 12 were upregulated, and five were downregulated. The results
of GO and KEGG analyses revealed that the DEGs were enriched in inflammatory and immune
signaling pathways. Additionally, the DEGs were found to regulate inflammatory responses and
were associated with apoptosis. TNF, IL-1β, NLRP3, CXCL8, PTGS2, NFE2L2, CASP8, and CD274
were identified as key hub genes in the PPI network, and a miRNA-mRNA network was constructed,
which had 16 edges. Experimental validation revealed that PTGS2 and NFE2L2 were significantly
upregulated, and CASP8 and CD274 were significantly downregulated in gout. In addition, miR-
128-3p, miR-16-5p, miR-155-5p, and miR-20a-5p (associated with the miRNA-mRNA regulatory
network) were significantly downregulated in gout. Five potential therapeutic drugs with stable
PTGS2 binding were selected to develop a molecular docking model. Conclusion: A miRNA-mRNA
potential regulatory network was constructed based on pyroptosis-related DEGs associated with gout.
miR-16-5p, miR-128-3p, miR-20a-5p, and miR-155-5p can potentially influence pyroptosis and the
occurrence and development of gout by affecting the expression of the PTGS2, CASP8, NFE2L2, and
CD274 genes. Screening of celecoxib and resveratrol and other targeted drugs with stable binding.
The findings of this study offer valuable insights into the regulatory mechanisms of gout and may
help to identify Biomarkers and develop targeted therapeutic strategies for gout.

Keywords: gout; inflammation; microRNA; pyroptosis

1. Introduction

Dysfunction of purine metabolism results in gout, a metabolic disease. Gout occurs
as a result of the deposition of monosodium urate (MSU) crystals in joints. MSU crystals
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are formed when plasma uric acid levels are chronically elevated (hyperuricemia, HUA)
beyond the saturation threshold. Gout often occurs in adult and elderly individuals and is
most common among men. It develops in approximately 1–4% of the global population,
and these patients tend to be younger. The death rate of gout is projected to increase to
55% by 2060 [1,2]. Gout and HUA denote different stages of the same disease. Uric acid
accumulation and excretion disorders significantly increase uric acid levels in the body.
HUA results in the local formation of MSU [3], which is phagocytosed by macrophages.
Under these conditions, cathepsin B is released, the NOD-like receptor family pyrin domain-
containing protein 3 (NLRP3) inflammasome is activated, and the signaling cascade of
inflammatory factors is enhanced [4]. Gout can be classified under the symptom manifes-
tation category of HUA, which is related to the stage associated with the outbreak of an
inflammatory reaction. The first metatarsophalangeal joint in the foot is typically the most
common site of gout onset, as gout typically develops in the joints and surrounding tissues
of the lower limbs [5]. The clinical symptoms of gout can be superficially characterized as
swelling, redness, pain, heat, and dysfunction around the affected area. Patients experience
immense pain, which greatly restricts the movement of the affected area [6]. and affects the
quality of life.

Pyroptosis is a type of programmed cell death, which is also referred to as inflamma-
tory necrosis. Like gout, activation of inflammasome formation is the central response in
pyroptosis, and proteins related to the gasdermin family are also involved [7]. Pyroptosis
is associated with the generation of an innate immune response, and is a self-regulatory
cell-death mechanism. Pattern recognition receptors (PRRs) on cells recognize the pathogen-
associated model patterns (PAMPs) of infectious pathogens and activate NLRP3 and other
inflammasome complexes, resulting in caspase-1 activation. The gasdermin D (GSDMD)
protein is cleaved and activated by active caspase. Under these conditions, the N-terminal
fragment of the protein oligomerizes on the cell membrane and aggregates into pores, result-
ing in the rupture of the cell membrane. Subsequently, cellular contents and inflammatory
factors (primarily IL-1β and IL-18) are released, and inflammatory cells accumulate [8,9]
to eliminate pathogenic microorganisms to protect the host body. However, a high de-
gree of pyroptosis can cause pathological reactions such as diabetic nephropathy and
atherosclerosis [10,11].

The mechanism associated with the development of gout is very similar to that of
pyroptosis, and NLRP3 plays a key role in both mechanisms. Zhang et al. [12] reported that
NLRP3 is one of the target genes of miR-223, and miR-223-3p negatively regulates NLRP3
to inhibit inflammation and pyroptosis (induced by sodium urate crystals) in rats and
fibroblasts. Studies have examined the role of microRNAs (miRNAs) in the development
of inflammatory diseases [13,14]. miRNAs are noncoding RNA molecules composed
of approximately 20 nucleotides [15], and are widely present in eukaryotes. They can
regulate gene expression by binding to the 3′-noncoding region (3′-UTR), which results in
mRNA degradation or inhibition of translation. miRNAs function as clinical markers in the
diagnosis of diseases [16] and have good circulatory stability in blood or body fluids [17,18].

In this study, we identified key genes associated with gout and pyroptosis by analyz-
ing data extracted from the Gene Expression Omnibus (GEO) database. GO and KEGG
enrichment analyses were performed to examine potential signaling pathways associated
with gout. Thereby, based on previous miRNA-mRNA regulatory studies, the target genes
were predicted and a miRNA-mRNA network was constructed, which contained 16 edges.
Clinical specimens were collected to analyze and compare the expression of hub genes.
Drugs were predicted based on the expression data of hub genes, and a molecular docking
model based on small molecule compounds and hub genes was established to understand
the pathogenesis of gout. Preliminary results showed that celecoxib can be used as the
first-line drug to effectively alleviate gout. The docking model may help to develop new
strategies for targeted therapy of gout.
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2. Materials and Methods
2.1. Microarray Data Acquisition

“GOUT” was used as the keyword to download data from the GSE160170 (pub-
lic) dataset [19]. “Homo sapiens” was used as the filtering condition while analyzing
data extracted from the GEO database (https://www.ncbi.nlm.nih.gov/; accessed on
26 February 2022). The dataset included 6 healthy individuals (data number: GSM4861833–
GSM4861838) and 6 patients with primary gout (data number: GSM4861839–GSM4861844).
The expression matrix used was the GPL21827 (HuGene1_0-st) Affymetrix human gene 1.0
ST array (transcript (gene) version])

2.2. Differentially Expressed Genes Associated with Pyroptosis in Gout

The GEO2R tool (http://www.ncbi.nlm.nih.gov/geo/geo2r/; accessed on 26 February
2022) was used to analyze and compare the expression profiles of two or more groups to
identify differentially expressed genes (DEGs) [20]. The tool was also used to normalize
the data extracted from the GSE160170 dataset. Genes with FDRs of <0.05 and log FC
of >1, or <−1 were identified as DEGs. The GeneCards database (version 5.8, https:
//www.genecards.org/; accessed on 1 March 2022) was used to integrate genetic data
(genomic, transcriptomic, and proteomic data) from approximately 125 web sources [21].
Pyroptosis-related genes were identified by analyzing the integrated data, and intersected
with the DEGs to obtain DEGs related to pyroptosis.

2.3. Functional Enrichment Analysis

The DAVID software (https://david.ncifcrf.gov/home.jsp; accessed on 1 March 2022)
was used for GO and KEGG enrichment analyses of pyroptosis-related DEGs [22]. The
DEGs were characterized, and key pathways were examined. GO enrichment analysis
includes three independent categories: biological process (BP), molecular function (MF),
and cell components (CCs). KEGG pathway analysis is based on genomic, chemical, and
systemic functional information and is used to predict the role of proteins in cellular
processes. A p-value of <0.05 was considered significant for both GO and KEGG analyses.

2.4. Construction of Protein–Protein Interaction and miRNA-mRNA Networks

A protein–protein interaction (PPI) network was constructed using the STRING
database (http://string-db.org; accessed on 9 March 2022), with an interaction score
of 0.4 [23]. Cytoscape was used to optimize and visualize the PPI network, and Cyto-
Hubba was used to identify important hub genes. The final hub genes were identified
by intersecting the results obtained using the Degree, Maximal Clique centrality (MCC),
and Maximum Neighborhood Component (MNC) algorithms. The NetworkAnalyst tool
(https://www.networkanalyst.ca/; accessed on 19 March 2022) [24] was used to identify
the miRNAs of pyroptosis-related hub genes and establish a miRNA-mRNA network.

2.5. Patient Selection

A total of 5 patients with gout receiving treatment at the Xinjiang Uygur Autonomous
Region Hospital of Traditional Chinese Medicine and 5 healthy individuals (all men) were
selected. The diagnosis of gout was based on the 2015 American College of Rheumatol-
ogy/European League Against Rheumatism Collaborative Initiative gout classification
criteria [25]. Patients with tumors, abnormal liver and kidney function, acute and chronic
infectious diseases, diabetes mellitus, and hypertensive disorders were excluded. Blood
samples were obtained from patients during the attack stages of gout. The study was
approved by the Ethics Committee of Xinjiang Medical University and was performed
in accordance with the ethical guidelines of the 1975 Declaration of Helsinki. The ethical
review approval date for this experiment is 26 October 2020. The ethical approval code is
K202010-12.

https://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.genecards.org/
https://www.genecards.org/
https://david.ncifcrf.gov/home.jsp
http://string-db.org
https://www.networkanalyst.ca/
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2.6. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted from whole blood samples of patients using a total RNA
extraction reagent (Solarbio, Beijing, China). The miRNA and mRNA reverse transcription
reagents and PCR kits (Tiangen and Transgen Biotech, Beijing, China) were used according
to the manufacturer’s instructions. The synthesized cDNA was amplified via real-time
polymerase chain reaction (qPCR) (ABI Q6, Applied Biosystems Inc., Waltham, MA, USA).
The primers used for PCR are listed in Table 1. GAPDH was used as an internal references, and
the relative expressions of mRNAs and miRNAs were calculated using the 2−∆∆Ct method.

Table 1. Fluorescent primers for qRT-PCR.

Gene Primer Sequence (5′–3′)

CASP8 (FORWARD) GCCTTGATGTTATTCCAGAGAC
CASP8 (REVERSE) TCTGAAGTTCCCTTTCCATCTC

PTGS2 (FORWARD) ATCCTCCCACAGTCAAAGATAC
PTGS2 (REVERSE) CGCATACTCTGTTGTGTTCC

CD274 (FORWARD) TAGGAAGACGGGTTGAGAATC
CD274 (REVERSE) CACACTCACATGACAAGAAGAC

NFE2L2 (FORWARD) TCTCTTCTGTGCTGTCAAGG
NFE2L2 (REVERSE) AGCTCATACTCTTTCCGTCG

hsa-miR-128-3p (FORWARD) CGTCACAGTGAACCGGTCTCT
hsa-miR-16-5p FORWARD) GCTAGCAGCACGTAAATATTGGCG

hsa-miR-20a-5p (FORWARD) GGGCTAAAGTGCTTATAGTGCAGGT
hsa-miR-155-5p (FORWARD) CGCTTAATGCTAATCGTGATAGGGGT

U6 (FORWARD) GCTTCGGCAGCACATATACTAAAAT
U6 (REVERSE) CGCTTCACGAATTTGCGTGTCAT

GAPDH (FORWARD) TGAGGCCGGTGCTGAGTATGT
GAPDH (REVERSE) CAGTCTTCTGGGTGGCAGTGAT

2.7. Statistical Analysis

All data were expressed as mean ± standard deviation. Clinical data were analyzed
using the SPSS software (version 28.0) (IBM, Armonk, NY, USA). The Student’s t-test was
used to compare gene expression between groups (statistical significance: p < 0.05). Statisti-
cal analyses were performed using the GraphPad Prism 8 software. Pearson correlation
coefficients were estimated for correlation analysis.

2.8. Drug-Gene Interaction and Molecular Docking Analysis

The CTD database (https://ctdbase.org/; accessed on 12 July 2022) [26] was used for
predicting target drugs. The structure of the ligand molecule was downloaded from the
PubChem database. The energy of the ligand molecule was minimized using Chem3D
software and exported to mol2 format. Moreover, the PDB database to obtain the molec-
ular structure of the target protein (PDB ID:5F19) [27,28]. The mol2 format of the small
molecule and the PDB file format of the receptor protein were converted to PDBqt format
and the active pocket was searched by using AutoDock tools 1.5.6 software. The search
conformation range was set and the Vina script was run to perform docking simulations to
obtain the docking energy [29]. Before molecular docking, water molecules and the ligand
in the protein structure were removed, and hydrogen molecules and Gasteiger charges
were added. A total of 10 docking poses were obtained for molecular docking calculations.
The binding capacity was assessed using a semi-empirical scoring equation to select the
most suitable dominant model in terms of geometry and energy, with the lowest binding
free energy being the dominant conformation. The binding energy of ≤−7.0 kcal/mol
indicated that the ligand molecule was strongly bound to the receptor protein. Finally, the
ligand–receptor complexes generated via molecular docking were visualized in 3D using
the PyMOL software (version 2.1) [30] to evaluate the biological reliability of the results.

https://ctdbase.org/
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3. Results
3.1. Expression of Pyroptosis-Related Differentially Expressed Genes

The GSE160170 dataset was divided into the control (six healthy individuals) and
experimental groups (six patients with gout). A total of 943 DEGs (380 upregulated and
563 downregulated genes) were identified by analyzing the expression data of both groups
(Table S1). A volcano map was generated to visualize the DEGs (Figure 1A), and a heatmap
was generated to visualize the top 30 upregulated and downregulated genes (Figure 1B).
Additionally, 247 pyroptosis-related genes were identified using the GeneCards database
(Table S2), and 17 pyroptosis-related DEGs associated with gout were identified from the
intersection of the two groups of DEGs (Figure 1C,D, Table 2).

Figure 1. Identification of differentially expressed genes in gout. (A) Volcano map of differentially
expressed genes associated with gout; (B) Heatmap demonstrating the top 30 upregulated and
downregulated genes; (C) Venn diagram demonstrating the intersection between gout and pyroptosis-
related differentially expressed genes; (D) Heatmap of 17 pyroptosis-related differentially expressed
genes associated with gout.

Table 2. 17 Data on the differential genes associated with gout and pyroptosis.

Gene Symbol logFC Adj. p-Value p-Value Changes

NLRP3 1.45234415 0.0015 7.53 × 10−5 UP
IL1B 3.09126135 0.00366 0.00026 UP

DDX3X 1.80012202 0.0155 0.00184 UP
PRDM1 1.84476925 0.000238 5.77 × 10−6 UP
NFE2L2 1.73936101 0.00017 3.46 × 10−6 UP

PGF 1.03779492 5.53 × 10−5 6.64 × 10−7 UP
PTGS2 2.70238972 2.24 × 10−5 1.83 × 10−7 UP

ADORA2A 1.42834031 0.000129 2.36 × 10−6 UP
TNF 2.10325641 0.00709 0.00064 UP

BHLHE40 2.62218684 8.26 × 10−6 3.92 × 10−8 UP
NINJ1 1.72377655 0.00119 5.56 × 10−5 UP
CXCL8 5.62812965 2.40 × 10−7 1.18 × 10−10 UP
CASP8 −1.07127595 0.000251 6.19 × 10−6 DOWN
TXNIP −1.04520555 0.00707 0.000637 DOWN
CD274 −1.59880911 0.00231 0.000138 DOWN

ADORA3 −1.36258112 0.0155 0.00185 DOWN
FADD −2.26130412 1.20 × 10−6 2.24 × 10−9 DOWN
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3.2. Functional Annotation of the Target DEGs

The results of GO and KEGG enrichment analyses are shown in (Table S3). GO analysis
revealed that the DEGs were enriched in BPs such as inflammatory responses, positive
regulation of apoptosis, and the extrinsic apoptotic-signaling pathway influenced by the
action of death domain receptors. In addition, the DEGs were enriched in CCs such as
the extracellular matrix, ripoptosome, and CD95 death-inducing signaling complex and
MFs such as tumor necrosis factor receptor binding, death effector domain binding, and
G-protein coupled adenosine receptor activity (Figure 2A). KEGG pathway enrichment
analysis revealed that the DEGs were mainly involved in the RIG-I-like receptor, IL-17, and
NOD-like receptor-signaling pathways, (Figure 2B).

Figure 2. Enrichment analysis, PPI network, and miRNA-mRNA network of DEGs. (A) Top 8 GO
terms; (B) Top 20 KEGG pathways; (C) PPI networks and hub genes; (D) MiRNA-mRNA network.
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3.3. PPI and miRNA-mRNA Networks

Unrelated genes (NINJ1 and BHLHE40) in the PPI network were eliminated, resulting
in the generation of a network with 15 nodes and 36 edges. Each node represented a protein,
and each edge represented the interaction between proteins. A total of eight hub genes were
eventually identified after the intersection of important hub genes identified via the MCC,
Degree, and MNC algorithms (Table 3). Cytoscape was used for visualization (Figure 2C).
On analyzing the hub genes, four mRNAs (PTGS2, CASP8, NFE2L2, and CD274) were
found to be associated with 4 miRNAs (miR-155-5p, miR-128-3p, miR-16-5p, and miR-
20a-5p). This finding is consistent with that of previous studies [31–34]. Subsequently, a
miRNA–mRNA network was constructed, which contained 16 edges (Figure 2D).

Table 3. Node score.

Gene Degree Score MCC Score MNC Score

TNF 14 330 14
IL1B 12 326 12

NLRP3 9 290 9
CXCL8 8 270 8
PTGS2 7 264 7

NFE2L2 6 144 6
CASP8 6 144 6
CD274 6 32 6
TXNIP 4 24 4
FADD 4 24 4
PGF 3 6 3

ADORA2A 3 6 3
DDX3X 2 2 2
PRDM1 2 2 2

ADORA3 2 2 2

3.4. General Information on the Study Population

No significant difference was observed in the average age of patients between the
experimental and control groups (46.6 and 48.2 years, respectively) (p > 0.05). Serum uric
acid levels were significantly higher in the experimental group than in the control group
(p < 0.01) (Table 4).

Table 4. Comparison of data of patients in two groups.

Mean ± Standard
Deviation Gout (n = 5) Control (n = 5) p Value

Age (years) 46.6 ± 6.43 48.2 ± 1.10 0.5981
Gender (male/female) 5/0 5/0

Uric acid (mmol/L) 552.64 ± 76.82 341.8 ± 32.87 0.0005

3.5. Validation of Pyroptosis-Related Genes Associated with Gout

qRT-PCR was used to analyze the predicted mRNAs and miRNAs. The mRNA ex-
pression of PTGS2 and NFE2L2 was significantly higher and that of CASP8 and CD274
was significantly lower in the experimental group than in the control group (Figure 3A).
The results were consistent with those obtained via bioinformatic analysis. Additionally,
miR-128-3p, miR-20a-5p, miR-16-5p, and miR-155-5p were downregulated in the experi-
mental group (Figure 3B). Pearson correlation analysis revealed that a significant positive
correlation between CD274 and miR-155-5p (r = 0.91) and a significant negative correla-
tion between NFE2L2 and miR-16-5p (r = −0.75). These results indicated the relationship
between the predicted miRNAs and mRNAs (Figure 3C).
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Figure 3. Verification of key differentially expressed genes related to gout and pyroptosis: (A) Expression
of mRNAs; (B) Expression of miRNAs; (C) Pearson correlation analysis of mRNAs and miRNAs.
(* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

3.6. Drug–Gene Interaction and Molecular Docking Analyses of PTGS2

PTGS2 was the core gene among the four validated hub genes (Figure 4A). A total of
10 drugs that could bind to PTGS2 with an interaction degree of >100 were selected from the
CTD database (Supplementary Table S4). Of these 10 drugs, five small-molecule compounds
were identified to have a strong binding affinity for PTGS2 (binding energy ≤ 7 kcal mol−1;
Table 5). Subsequently, the molecular binding sites corresponding to PTGS2 and the five drugs
were determined (Figure 4B–F).

Table 5. Drugs that interacted with PTGS2.

Corresponding Receptor Protein PTGS2 Binding Energy (kcal mol−1)

Celecoxib −11
N-(2-cyclohexyloxy-4-

nitrophenyl)methanesulfonamide −7.8

Resveratrol −8.1
Tetrachlorodibenzodioxin −8.4

Tetradecanoylphorbol Acetate −7
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Figure 4. Molecular docking of the core gene PTGS2 with drugs. (A) PTGS2 was identified as the
core gene; (B) Molecular docking of PTGS2 and celecoxib; (C) Molecular docking of PTGS2 and N-(2-
cyclohexyloxy-4-nitrophenyl)methanesulfonamide; (D) Molecular docking of PTGS2 and resveratrol;
(E) Molecular docking of PTGS2 and tetrachlorodibenzodioxin; (F) Molecular docking of PTGS2 and
tetradecanoylphorbol acetate.

4. Discussion

Gout manifests as severe and painful recurrent intermittent arthritis [5]. It is challeng-
ing to understand the pathogenesis of gout and identify therapeutic methods to effectively
alleviate its symptoms and avoid its recurrence. The role of pyroptosis in gout has not
been extensively studied. In this study, key genes associated with pyroptosis and gout
were identified using bioinformatic tools. GO and KEGG analyses revealed that the genes
were mainly associated with the generation of inflammatory responses, positive regulation
of apoptosis, and inflammatory and immune-related signaling pathways. As the first
line of defense against infection, the innate immune response is strengthened by PRRs.
Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) [35]
are important and extensively studied receptors. Innate immune cells recognize danger
signals through membrane-bound receptors, namely, TLRs. These signals are transmitted to
NLRs in the cytosol, which assembles inflammasomes. Inflammasomes activate caspase-1
and gasdermin-D via two synchronous mechanisms to initiate pyroptosis [36]. Pathways
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associated with pyroptosis and the regulation of TLRs, NLRs, and RLRs can potentially
influence the generation of inflammatory responses in gout.

PTGS2, CASP8, NFE2L2, and CD274 were identified as key pyroptosis-related genes
associated with gout. These four mRNAs have been identified in previous studies on
inflammatory diseases. Wei et al. [37] reported that miR-101-3p negatively regulates PTGS2
and the proliferation and inflammation of fibroblast-like synoviocytes in rat models of
rheumatoid arthritis. CASP8 functions as a molecular switch during pyroptosis-mediated
CD95 signaling [38]. Formation of the CD95 death-inducing signaling complex can result
in apoptosis and autoimmune lymphoproliferative syndrome (ALPS) in humans and
lymphoproliferative disease (LPR) in mice [39]. NFE2L2 is a transcriptional activator that
responds to oxidative stress [40] and promotes anti-inflammatory responses by coordinating
with inflammatory cells. It also regulates gene expression by activating glutathione-s-
transferase, which may help to alleviate osteoarthritis [40,41]. CD274, also known as PD-L1,
is a member of the B7 family [42], and studies have demonstrated aberrant CD274 signaling
in animal models of acute inflammation [43,44].

To date, more than 2500 human miRNAs have been identified; however, the relation-
ship between most miRNAs and mRNAs remains unclear [45]. In this study, we identified
and analyzed key pyroptosis-related genes for miRNA prediction and verified the results
using clinical specimens via qRT-PCR. The results revealed that the predicted miRNAs
expression in the experimental group was significantly different from those in the control
group. A few studies have examined the role of miRNAs underlying the occurrence of gout.
Regulatory molecular mechanisms underlying the occurrence of gout can be elucidated by
investigating the regulatory relationship between miRNAs and mRNAs, which may help
in understanding the pathogenesis of gout and developing treatment strategies for it.

miRNAs are important regulators of various biological functions and influence the
generation of various physiological immune responses. Chen et al. [46] reported that
the balance between the synthesis and breakdown of the extracellular matrix (ECM) is
disrupted during osteoarthritis. Stimulation of chondrocytes with interleukin-1β results
in the downregulation of miR-128-3p, which in turn results in negative regulation of the
overexpression of WNT1-inducible signaling pathway protein 1 (WISP1) and inhibits the
proliferation of chondrocytes. The NF-κB pathway can induce apoptosis, pro-inflammatory
cytokine production, and matrix degradation in chondrocytes. miR-20a is a member
of the miR-17/92 cluster. In liver fibrosis, downregulation of miR-20A-5p can lead to
the activation of transforming growth factor-beta (TGF-β) Induced by TGF-β receptor
2 (TGFBR2), which exacerbates inflammation [47]. miR-16-5p and miR-155-5p are associated
with the generation of inflammatory responses in various cells [48–50]. To the best of our
knowledge, this study is the first to report that miR-128-3p, miR-16-5p, miR-20a-5p, and
miR-155-5p are downregulated in gout, Therefore, the findings of this study may help to
understand the pathogenesis of gout and develop targeted therapeutic strategies for it.

At present, non-steroidal anti-inflammatory drugs and colchicine are primarily used
for the treatment of gout [51,52]. These drugs exhibit anti-inflammatory, antipyretic, and
analgesic properties and can alleviate the symptoms of gout. In this study, PTGS2 was
identified as an important target gene for drug screening. Small molecule compounds with
a strong binding affinity for PTGS2 were eventually used to develop a molecular docking
model, which can be used to develop an efficient and reliable treatment strategy for gout.
Among the screened drugs, resveratrol has been widely used to treat gout and exhibits
good anti-inflammatory and antioxidant effects. Li [53] and Yang [54] et al. reported that
resveratrol exerts therapeutic effects against gout by inhibiting TAK1 activity. Upregulation
of SIRT1 promotes MSU-induced autophagy and inhibits the generation of inflammatory
response. Schumacher et al. [55] reported that celecoxib can alleviate pain and reduce the
degree of inflammation in acute gout. Celecoxib is well tolerated by patients and does not
exert negative effects on their health. In this study, the maximum extent of binding was
observed between celecoxib and PTGS2, which is consistent with the findings of previous
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studies. However, celecoxib has been rarely studied, and further studies are required to
validate the results of this study.

There are some limitations to this study. First, the study is a small cohort validation trial
based on bioinformatics analysis. In vitro and in vivo experiments should be conducted
in the future to understand the relationship between miRNA-mRNA, and a larger cohort
should be analyzed. We identified key differential genes for gout associated with Pyroptosis,
and a miRNA–mRNA network was established to predict the drug targets. We expect
the treatment of gout to be simple, straightforward, and targeted. Therefore, we chose
PTGS2 as the target gene for our drug screen because it is the pivotal gene of the four
genes. Targeting the drug to intervene in the pivotal gene may have unexpected effects
on each gene in the network and to emphasise the importance of the gene network in the
disease. However, we did not experimentally validate the results of molecular docking. In
conclusion, this study can provide new perspectives on the pathogenesis of gout and new
ideas on the screening of targeted drugs.
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