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Abstract: The CB1 cannabinoid receptor (CB1R) and extracellular calcium (eCa2+)-stimulated Calcium
Sensing receptor (CaSR) can exert cellular signaling by modulating levels of intracellular calcium
([Ca2+]i). We investigated the mechanisms involved in the ([Ca2+]i) increase in N18TG2 neuroblas-
toma cells, which endogenously express both receptors. Changes in [Ca2+]i were measured in cells
exposed to 0.25 or 2.5 mM eCa2+ by a ratiometric method (Fura-2 fluorescence) and expressed as the
difference between baseline and peak responses (∆F340/380). The increased ([Ca2+]i) in cells exposed
to 2.5 mM eCa2+ was blocked by the CaSR antagonist, NPS2143, this inhibition was abrogated upon
stimulation with WIN55212-2. WIN55212-2 increased [Ca2+]i at 0.25 and 2.5 mM eCa2+ by 700%
and 350%, respectively, but this increase was not replicated by CP55940 or methyl-anandamide.
The store-operated calcium entry (SOCE) blocker, MRS1845, attenuated the WIN55212-2-stimulated
increase in [Ca2+]i at both levels of eCa2+. Simultaneous perfusion with the CB1 antagonist, SR141716
or NPS2143 decreased the response to WIN55212-2 at 0.25 mM but not 2.5 mM eCa2+. Co-perfusion
with the non-CB1/CB2 antagonist O-1918 attenuated the WIN55212-2-stimulated [Ca2+]i increase
at both eCa2+ levels. These results are consistent with WIN55212-2-mediated intracellular Ca2+

mobilization from store-operated calcium channel-filled sources that could occur via either the CB1R
or an O-1918-sensitive non-CB1R in coordination with the CaSR. Intracellular pathway crosstalk or
signaling protein complexes may explain the observed effects.

Keywords: Ca2+ mobilization; receptor crosstalk; cannabimimetic aminoalkylindoles

1. Introduction

Phytocannabinoids, endocannabinoids, synthetic cannabinoids, and aminoalkylindole
agonists regulate neuronal activity by activating the CB1 receptor (CB1R) to signal via Gi/o
and other G proteins, but little is known about modulating intracellular calcium concentra-
tion ([Ca2+]i). Although initial studies could not detect Ca2+ mobilization in cultured cell
models, evidence indicates that the effects of cannabinoid receptors on [Ca2+]i depend on
the agonist and the cell type tested. In CHO cells, the synthetic cannabinoid HU210 and
its non-CB1-binding isomer HU211 (10 µM) both induced only a non-receptor-mediated
increase in [Ca2+]i in untransfected, CB1R-expressing, or CB2R-expressing cells, using a
Fura-2 method that readily detected muscarinic receptor-mediated Ca2+ mobilization [1,2].
In the murine neuroblastoma cell line N18TG2 endogenously expressing CB1R (but not
CB2R), treatment with the non-selective CB1/2R agonists 2-arachidonoylglycerol (2-AG),
CP55940, or WIN55212-2 (up to 1 µM) failed to evoke Ca2+ mobilization using Fluo-4
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fluorescence able to detect a bradykinin-mediated response [3]. The Sugiura laboratory
investigated Ca2+-deprived suspensions of HL60 monocytic cells endogenously express-
ing CB2R or NG108-15 neuro-glioma hybrid cells endogenously expressing CB1R. In this
setting, Ca2+ mobilization was stimulated by 1 mM eCa2+ followed by 2-AG, CP55940, or
WIN55212-2 (up to 10 µM) and detected with Fura-2 [4,5]. Subsequent studies showed that
the aminoalkylindole WIN55212-2, but not ∆9-tetrahydrocannabinol (∆9-THC), HU210,
CP55940, 2-AG, or methanandamide, increased [Ca2+]i in HEK293 cells exogenously ex-
pressing CB1R [6]. The WIN55212-2-stimulated Ca2+ mobilization occurred in a CB1-
dependent manner requiring Gαq activation and release of Ca2+ from thapsigargin-sensitive
endoplasmic reticulum (ER) stores [6]. In addition, GPR55 and GPR18 receptors have been
shown to modulate [Ca2+]i in neurons and other cell types in response to lipid mediators,
including atypical cannabinoids [7].

Mounting evidence supports intracellular Ca2+ as an important second messenger for
excitable and non-excitable cells, with the inositol trisphosphate (IP3)/Calcium signaling
pathway playing a vital role in linking extracellular signals to [Ca2+]i [8]. Thus, one of the
receptor systems involved, the G protein-coupled calcium sensing receptor (CaSR) detects
extracellular Ca2+ (eCa2+) concentration, linking it to intracellular signaling affecting cell
function [9]. The CaSR can couple to more than one type of Gα subunit and influence the
properties of Gβγ signaling [10]. CaSR actions have been reported to act through Gαi, Gαq,
and Gβγ, with activation of phospholipase C, production of IP3 through Gαq, and Ca2+

release from the ER, being one of the major effects of CaSR activation [11]. In N18TG2
neuronal cells, stimulation of CaSR with the positive allosteric modulator calindol increased
[Ca2+]i in a response dependent on Gαi/o and modulated by Gαq [12]. Modulating [Ca2+]i
also seems dependent on PKC activity and localization [13]. It appears that the CaSR
intracellular pathways activated by eCa2+ proceed via Gαs and Gαq, whereas activation by
calcimimetics occurs via Gαi [9].

In the present study, we aimed to explore neuronal mechanisms involved in WIN55212-
2-mediated Ca2+ mobilization as observed by Lauckner and colleagues [6], with a focus
on the extracellular [Ca2+] influence associated with the Sugiura procedure [4,5]. We were
particularly interested in the cannabinoid receptors mediating the WIN55212-2-dependent
responses in [Ca2+]i and the role of CaSR activation on those responses. [Ca2+]i regulation
has relevant physiological significance, for example, in muscle [14] and brain tissue [15],
where a role for CB1Rs has been demonstrated. Since the CaSR monitors the extracellular
Ca2+ environment, our studies were performed in the N18TG2 neuroblastoma cell model
that endogenously expresses both CB1R and CaSR.

2. Materials and Methods
2.1. Cells

Mouse N18TG2 neuroblastoma cells were cultured as described [16], maintained
in complete media containing Dulbecco’s Modified Eagle’s Medium (DMEM): Ham’s F-
12 (1:1) supplemented with penicillin (100 U/mL) and streptomycin (100 µg/mL) and
10% heat-inactivated bovine serum. Cells were grown in 75-cm2 flasks at 37 ◦C in a
humidified atmosphere (5% CO2), harvested at sub-confluency, and transferred to 12 mm
glass coverslips (Fisher Scientific Co., Waltham, MA, USA). At 50–75% confluence, cells
were loaded for 15 min with Fura-2 (5 µM) in Krebs–Henseleit Buffer (KHB) containing (in
mM) NaCl 118, KCl 4.47, NaHCO3 25, KH2PO4 1.2, MgSO4 1.2, CaCl2·2H2O 0.25, glucose
5.5. Cells were incubated in two different extracellular [Ca2+] (eCa2+) and the responses in
intracellular [Ca2+] ([Ca2+]i) were measured.

2.2. Imaging

Coverslips were transferred to an imagining chamber on an inverted Olympus BBX51WI
microscope equipped with a 40× objective, a xenon arc lamp (Sutter Instruments, No-
vato, CA, USA), and a manual stage, and a cooled charge-couple device (CCD) camera
(Hamamatsu Orka II). For ratiometric imaging, the microscope was computer-controlled
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by HCImage software (Hamamatsu Corporation, Middlesex, NJ, USA). Cells on the field
were manually marked for analysis, and F340 and F380 were measured for one min. KHB
containing 0.25 mM Ca2+ (Low eCa2+) was passed through the imaging chamber for 5 min
after which eCa2+ was changed to 2.5 mM (High eCa2+) using a perfusion valve control
system (VC-6, Six Channel Perfusion Valve Control Systems, Warner Instruments, Holliston,
MA, USA) and cells perfused for additional 10 min. This procedure was repeated in the
presence of cannabinoid receptor agonists (WIN55212-2, CP55940, or methanandamide) in
KHB containing low or high eCa2+. Cells were pre-incubated for 15 min for the treatments
with antagonists, and the corresponding antagonists were added to the low and high eCa2+

solutions. Only one treatment was carried out on each coverslip used.

2.3. Drugs

The ratiometric fluorescent dye Fura-2 was purchased from Molecular Probes (Eugene,
OR, USA), dissolved in dimethylsulfoxide at 1 mM, and further diluted in KHB containing
0.25 mM Ca2+ to a working concentration of 5 µM as described [17]. The aminoalkylindole
agonist of CB1/2 cannabinoid receptors WIN55212-2 (5 µM) [6], the prototype bicyclic non-
selective CB1/2R agonist CP55940 (5 µM) [6], and the stable chiral analog of anandamide,
a CB1R partial agonist, methanandamide (5 µM) [6], were from Cayman Chemical Co,
(Ann Arbor, MI, USA). Receptor antagonists used include the blocker of CaSR, NPS2314
(3 µM) [18], the selective store-operated calcium (SOC) channel inhibitor N-propargyl-
nitrendipine (MRS1845, 10 µM) [19], the CB1R antagonist SR141716 (1 µM) [6], and the non
CB1/CB2 receptor blocker O-1918 (10 µM) [20], all from Cayman Chemical Co, (Ann Arbor,
MI, USA). The cannabinoid compounds were stored at −20 ◦C as 10 mM stock solutions in
ethanol. Immediately before use, an aliquot of drug stocks was air-dried and re-suspended
in 0.25 mM Ca2+ KHB. All other chemical reagents were from Sigma-Aldrich Chemical Co.
(St. Louis, MO, USA).

2.4. Data Analysis

Average changes in F340 and F380 were recorded continuously, and [Ca2+]i responses
were determined using the ratiometric method (ratio between F340 and F380) [17]. Imaging
measurements were repeated 5 to 7 times with a total of 200 to 300 cells analyzed per
each condition, and the background was subtracted automatically. Results were expressed
as the difference between baseline and peak response (∆F340/380), with data expressed
as mean ±SEM (n = 5–7). Statistical analyses were performed by One-Way Analysis of
Variance (ANOVA) and Newman-Keuls multiple comparisons test for data obtained in 0.25
or 2.5 mM Ca2+ using GraphPad Prism v6 (GraphPad Software Inc, La Jolla, CA, USA). A
p < 0.05 was accepted as an indication of statistical significance.

3. Results

3.1. WIN55212-2 Increased [Ca2+]i in N18TG2 Cells at Both Low eCa2+ and during a
High-eCa2+ Stimulus

After resting at 0.25 mM extracellular Ca2+, perfusion of N18TG2 cells with 0.25 mM
eCa2+ increased [Ca2+]i transiently by 11%. When eCa2+ was changed to 2.5 mM, [Ca2+]i
increased by 304% over basal (∆F340/380 0.11 ± 0.04 vs. 0.334 ± 0.06 p < 0.05, Figure 1A,B).
We tested the Ca2+ mobilization response to the non-selective CB1/2R aminoalkylindole
agonist WIN55212-2 at concentrations that have previously been demonstrated to stimulate
Ca2+ mobilization in HEK293 cells [6]. In the presence of WIN55212-2 (5 µM), [Ca2+]i
increased by 700% over basal in 0.25 mM eCa2+ (∆F340/380 0.11 ± 0.04 vs. 0.84 ± 0.12
p < 0.05) and by 350% over basal in 2.5 mM eCa2+ (∆F340/380 0.334 ± 0.06 vs. 1.29 ± 0.13
p < 0.05, Figure 1B–D).
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Figure 1. WIN55212-2 increases [Ca2+]i: effect of eCa2+. (A). Time course of the changes in F340/380

in N18TG2 cells incubated in 0.25 and 2.5 mM eCa2+ in basal conditions (blue line) or the presence of
WIN55212-2 5 µM (red line). (B). Relative changes in [Ca2+]i as ∆F340/380 in basal conditions (Basal,
�, n = 6) or in the presence of WIN55212-2 5 µM (+WIN, �, n = 7). * p < 0.05 vs. basal; # p < 0.05 vs.
0.25 mM eCa2+. (C). Fluorescence image from a representative coverslip with N18TG2 cells observed
under the imaging system used (see section Imaging in Materials and Methods) in eCa2+ 0.25 mM.
40× amplification. (D). Same cells as in C after 2 min treatment (approximately at peak response)
with WIN55212-2 5 µM in eCa2+ 0.25 mM, 40x amplification. Changes in pseudo color from green
to red represent the increase in emission after excitation at 340 nm and decrease in emission after
excitation at 380 nm of Fura-2 upon binding to Ca2+, the basis of the ratiometric (F340/380) system for
determinations of relative changes in [Ca2+]i [17].

3.2. CaSR Mediates Increases in eCa2+-Induced [Ca2+]i in N18TG2 Cells

NPS2143 is a CaSR negative allosteric modulator that binds to the 7-transmembrane
domain of the CaSR to inhibit the Ca2+ mobilization signaling pathway [21,22]. We used this
calcilytic agent at concentrations previously shown to block increases in [Ca2+]i promoted
by activation of the Ca2+ receptor in HEK293 cells expressing the human Ca2+ receptor [18].
High eCa2+-induced [Ca2+]i increase was effectively antagonized with NPS2143 (3 µM)
(∆F340/380 0.36 ± 0.06 vs. 0.16 ± 0.02, p < 0.05, 56% of reduction, Figure 2A), demonstrating
the functional activity of the CaSR evident at supra-physiological eCa2+. The WIN55212-2-
induced elevations in [Ca2+]i in low eCa2+ conditions were also attenuated by simultaneous
perfusion with the NPS2143 (3 µM) (∆F340/380 0.84 ± 0.12 vs. 0.54 ± 0.05, p < 0.05, 36% of
reduction, Figure 2B). Interestingly, in the presence of high eCa2+, the WIN55212-2-induced
[Ca2+]i increase was not inhibited by NPS2143 (∆F340/380 1.29 ± 0.13 vs. 1.25 ± 0.14,
p > 0.05). These findings might suggest that the WIN55212-2 can influence [Ca2+]i under
“basal” CaSR conditions, but the WIN55212-2 stimulus was not influenced by NPS2143-
inhibited CaSR. An alternative interpretation is that WIN55212-2 provided a mechanism to
protect the CaSR from inhibition by the negative allosteric modulator.

3.3. Aminoalkylindole-Specific Potentiation of the eCa2+-Mediated Increase in [Ca2+]i

To check the selectivity of WIN55212-2-induced increase in [Ca2+]i in neuronal cells,
the non-classical cannabinoid full agonist, CP55940, and endocannabinoid partial agonist,
methanandamide (Me-AEA) were used at concentrations previously shown to inhibit cAMP
accumulation [23]. Both compounds at 5 µM failed to significantly increase [Ca2+]i relative
to basal values at either 0.25 mM (∆F340/380 CP 0.29 ± 0.08, Me-AEA 0.05 ± 0.01, p > 0.05)
or at 2.5 mM eCa2+ (∆F340/380 CP 0.44 ± 0.03, Me-AEA 0.75 ± 0.17, p > 0.05, Figure 3). The
responses to either CP55940 or Me-AEA on [Ca2+]i at both levels of eCa2+ were significantly
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lower than the response to WIN55212-2 (p < 0.05). These findings support the WIN55212-2
selectivity, implicating a non-CB1 and non-CB2 mechanism for this response.
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3.4. WIN55212-2-Stimulated Increases in [Ca2+]i Require Operational Store Operated Calcium
Entry (SOCE)

Ca2+ mobilization by GPCR-mediated production of inositol triphosphate (IP3) pro-
motes Ca2+ release from ER stores, which requires continuous repletion via store operated
Ca2+ entry (SOCE) mechanisms [24,25]. The most effective SOCE mechanism is based upon
the ER [Ca2+] sensor stromal interacting molecule (STIM) and its association and activation
of Ca2+ release-activated Ca2+ channels (CRAC) comprised of Orai1, Orai2, and Orai3
proteins. Cells also utilize non-selective cation channels as store-operated channels (SOCs),
comprised of both Orai1 and transient receptor potential canonical channel 1 (TRPC1)
channel subunits. Current reviews describe these processes in detail [25–28].

To evaluate the role of SOCE in WIN55212-2-stimulated increases in [Ca2+]i, we
employed the Orai1 inhibitor N-propargyl-nitrendipine (MRS1845), which has a reported
IC50 = 1.7 µM to block capacitative Ca2+ influx in HL60 cells [19], and also inhibits the ER
Ca2+ replacement via TRPC1 at higher concentrations [29]. The WIN55212-2-stimulated
increases in [Ca2+]i, in both eCa2+ conditions (0.25 mM or 2.5 mM Ca2+) were attenuated
by incubation with MRS1845 (10 µM) (∆F340/380 MRS 0.33 ± 0.07, n = 4, 61% reduction
at 0.25 mM; ∆F340/380 MRS 0.7 ± 0.14, n = 7, 46% reduction at 2.5 mM, Figure 4, p < 0.05).
These results are consistent with a requirement for continuous refilling of the intracellular
Ca2+ stores in the ER as the source of the mobilized Ca2+.
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3.5. WIN55212-2-Dependent Increases in [Ca2+]i Are Mediated by either CB1R or a nonCB1/CB2
Receptor as a Function of the eCa2+ Stimulus

The N18TG2 neuronal cell expresses CB1R but fails to express CB2R [30–32], and
thus, cellular signaling via cannabinoid receptors is expected to be inhibited by a CB1R
competitive antagonist/inverse agonist such as SR141716 in this model [33]. Several non-
CB1, non-CB2 GPCRs have been promoted as “Cannabinoid Related” receptors based
on their ability to be orthosterically stimulated/inhibited or allosterically modified by
phytocannabinoid or endocannabinoid-like compounds (see [34–36] for review). The
cannabinoid related GPCRs GPR18 and GPR55 both signal through Ca2+ mobilization, and
both interact with endocannabinoid-like N-arachidonoylglycine and N-arachidonoylserine,
phytocannabinoid CBD, and CBD analogs abnormal-cannabidiol (abn-CBD), O-1602 and
O-1918 [37]. For this reason, we chose to test O-1918 for its potential as an inhibitor of
Ca2+ mobilization in these studies, and we selected a concentration of O-1918 (10 µM) that
has been shown to block cannabinoid-dependent effects that are independent of CB1R or
CB2R [20]. The WIN55212-2-induced increase in [Ca2+]i in 0.25 mM eCa2+ was partially
blocked by simultaneous perfusion with the CB1R antagonist SR141716 (1 µM) (∆F340/380
SR 0.45 ± 0.07, n = 6, p < 0.05, 46% reduction). Under conditions of 2.5 mM eCa2+, SR141716
does not affect the WIN55212-2-dependent increase in [Ca2+]i (∆F340/380 SR 1.57 ± 0.11,
n = 6, p > 0.05). Simultaneous perfusion with the nonCB1/CB2 receptor antagonist O-
1918 (10 µM), attenuated WIN55212-2-promoted increases in [Ca2+]i at both eCa2+ levels
(∆F340/380 O-1918 0.28 ± 0.07, n = 5, p < 0.05, 67% reduction at 0.25 mM; ∆F340/380 O-1918
0.72 ± 0.05, n = 5, p < 0.05, 44% reduction at 2.5 mM, Figure 5B). These findings implicate
the role of the CB1R in WIN55212-2-promoted [Ca2+]i increases in the absence of a CaSR
stimulus. On the other hand, a prominent influence of a nonCB1/CB2 stimulus appears
under conditions of activation of CaSR by supra-physiological eCa2+.
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and 2.5 mM eCa2+ in the presence of WIN55212-2 5 µM (+WIN, red line), SR141716 1 µM (+WIN + SR,
green line) and WIN55212-2 plus O-1918 10 µM (+WIN + O-1918, light blue line). (B). Increases in
[Ca2+]i in low (0.25 mM) and high (2.5 mM) eCa2+ in basal conditions (Basal, open bars, n = 6), in the
presence of WIN55212-2 (5 µM) (+WIN, n = 7), in the presence of WIN55212-2 plus SR141716 (1 µM)
(+WIN + SR, n = 7), and in the presence of WIN55212-2 plus O-1918 (10 µM) (+WIN + O-1918, n = 5).
* p < 0.05 vs. +WIN.

4. Discussion

The aminoalkylindole WIN55212-2 can modulate [Ca2+]i in neuroblastoma cells via
at least two mechanisms. At low eCa2+, the WIN55212-2 induced potentiation of [Ca2+]i
partially depends on CB1R defined by its sensitivity to inhibition by SR141716. At supra-
physiologic eCa2+, which activates the CaSR, the effect of WIN55212-2 is CB1R-independent.
At both eCa2+ levels, the release of Ca2+ is from intracellular stores filled by store-operated
Ca2+ channels.

We observed that the effect of WIN55212-2 on [Ca2+]i depends on the eCa2+ level.
At low eCa2+, WIN55212-2 increases [Ca2+]i acting via CB1R and nonCB1/CB2 receptors,
probably acting on different intracellular transduction pathways. Actions of CB1R through
pertussis toxin-sensitive Gi/o proteins leading to inhibition of cAMP production were
first demonstrated in N18TG2 neuroblastoma cells [38]. CB1R acting through Gαi could
serve a modulatory role, as has also been proposed for Gαq signaling, in mediating [Ca2+]i
increases in these cells [12]. The requirement for Gαq on increasing [Ca2+]i after CB1R
activation was demonstrated in HEK293 cells and hippocampal neurons [6].

Our results of an eCa2+-dependent elevation in [Ca2+]i confirm a role for CaSR in the
modulation of [Ca2+]i in N18TG2 neuroblastoma cells, as previously demonstrated [12]. The
effects of WIN55212-2 we report at low and high eCa2+ were attenuated by SOCE blockade,
suggesting that WIN55212-2 promotes the release of Ca2+ from intracellular stores. The
main transduction pathway associated with this particular increase in [Ca2+]i is described
as dependent on Gαq, phospholipase C (PLC) activation, synthesis of diacylglycerol (DAG),
and inositol triphosphate (IP3) with further activation of ER IP3 receptors promoting Ca2+

release [11]. PLC can be activated by either Gαq or Gi/o βγ subunits, with these two
effectors interacting with distinct regions of PLCs; Gαq binds to the C-terminal and Gβγ

binds to the catalytic domain [39]. Gαq and Gi/o βγ can cooperate synergistically, increasing
[Ca2+]i after GPCR activation [40]. Recently a role for Gi/o βγ subunits as modulators of
Gαq activation of PLC, forming a Gαq-PLC-Gi/o βγ complex, and depending on the affinity
for the plasma membrane of the γ subunits has been proposed [41]. Regarding potential
interactions between CaSR- and cannabinoid-dependent pathways modulating [Ca2+]i, it is
conceivable that WIN55212–2-dependent CB1R activation increases [Ca2+]i by augmenting
CaSR-Gαq-dependent activation of PLC with the participation of CB1R-mediated Gi/o βγ

release in neuroblastoma cells.
Two conundrums remain. One is that only the WIN55212-2 but no other cannabinoid

or endocannabinoid agonist family representatives could stimulate the Ca2+ mobilization.
The other is that we observed a role for CaSR in WIN55212-2/CB1R-dependent increases in
[Ca2+]i at low eCa2+ and not at high eCa2+. These results suggest the possibility of different
Gαq-PLC-Gi/o βγ complexes being formed depending on eCa2+ and the cellular proximity
of the receptors and the G proteins to which they are pre-coupled (Figure 6). For example,
our earlier studies demonstrated that WIN55212-2 behaves as an agonist for all three Gi
subtypes, whereas the THC analog desacetyllevonantradol behaves as an agonist for Gi1
and Gi2 but an inverse agonist for Gi3; and methanandamide behaves as an agonist at Gi3
but an inverse agonist for Gi1 and Gi2 [42].
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[Ca2+]i. Among the candidates for these receptors is GPR55, which can be activated by 
CB1R antagonist/inverse agonist AM251 (but not SR141716), and the lysophospholipid, 
lysophosphatidylinositol (LPI). GPR55 utilizes Gαq or Gα12/13 for signal transduction [43] 
and can promote Ca2+ mobilization and mitogen-activated protein kinase (MAPK) phos-
phorylation [44]. GPR55 modulates neurotransmitter release through modulation of neu-
ronal [Ca2+]i [45]. Activation of GPR55 in dorsal root ganglia neurons by various canna-
binoids, including Δ9-THC and methanandamide, increases [Ca2+]i through a mechanism 
involving Gαq, PLC, and IP3 receptors [7]. 

Our results with O-1918, could implicate a role for GPR55. However, since 
WIN55212-2 fails to activate [Ca2+]i by GPR55 [7] the effects of O-1918 on WIN55212-2-
dependent responses we observed may be explained by the CB1-induced activation of 
phospholipase A and synthesis of LPI, which in turn would activate GPR55. This possi-
bility has been suggested to explain the observed actions of CB1R antagonists/inverse ag-
onists on GPR55-mediated actions [46]. 
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In the current study, we also showed a role for nonCB1/CB2 receptors in controlling
[Ca2+]i. Among the candidates for these receptors is GPR55, which can be activated by
CB1R antagonist/inverse agonist AM251 (but not SR141716), and the lysophospholipid,
lysophosphatidylinositol (LPI). GPR55 utilizes Gαq or Gα12/13 for signal transduction [43]
and can promote Ca2+ mobilization and mitogen-activated protein kinase (MAPK) phospho-
rylation [44]. GPR55 modulates neurotransmitter release through modulation of neuronal
[Ca2+]i [45]. Activation of GPR55 in dorsal root ganglia neurons by various cannabinoids,
including ∆9-THC and methanandamide, increases [Ca2+]i through a mechanism involving
Gαq, PLC, and IP3 receptors [7].

Our results with O-1918, could implicate a role for GPR55. However, since WIN55212-
2 fails to activate [Ca2+]i by GPR55 [7] the effects of O-1918 on WIN55212-2-dependent
responses we observed may be explained by the CB1-induced activation of phospholipase
A and synthesis of LPI, which in turn would activate GPR55. This possibility has been
suggested to explain the observed actions of CB1R antagonists/inverse agonists on GPR55-
mediated actions [46].

Another possibility for the nonCB1/CB2 receptor is GPR18, which originally was
characterized by its activation by abnormal cannabidiol (abn-CBD) and inhibition by
CBD and O-1918, but now de-orphanized as a GPCR activated by the endogenous anan-
damide metabolite, N-arachidonoyl-glycine (see review for original references [34,37]). In
exogenous expression models, GPR18 responds to N-arachidoyl-glycine by Ca2+ mobi-
lization [47]. GPR18 also responds to the inflammation pro-resolving polyunsaturated,
hydroxylated 22-C lipid, resolvin D2 (RvD2). In monocytes, macrophages, microglia, and
BV2 microglia, and polymorphonuclear neutrophils, GPR18 couples to Gi/o, Gq/11, and Gs
to signal by increasing cAMP and protein kinase A (PKA), and phosphorylation of signal
transducer and activator of transcription 3 (STAT3) (for review and original references,
see [37,48]). However, WIN55212-2 has not been demonstrated to elicit any signaling
responses by GPR18 (see summary tables and text for original references [37,48]).

A final possibility is that WIN55212-2 might activate a putative Alkyl Indole receptor
as described for microglia and astrocyte cellular signaling in response to WIN55212-2
and analogs [49,50]. Such receptors may be those identified as [3H]WIN55212-2 binding
sites in neuroblastoma-glioma hybrid NG108-15 cells [51]. The potential for a specific
WIN55212-2 “receptor” in brain membranes was suggested by studies of the C57Bl/6
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CB1 knock-out mouse which showed that anandamide and WIN55212-2 could promote
G protein activation ([35S]GTPγS binding) [52]. The properties of a putative Alkyl Indole
receptor have yet to be fully characterized.

In summary, the aminoalkylindole WIN55212-2 can modulate [Ca2+]i in N18TG2 cells
via CB1R-dependent and independent mechanisms. We observed functional interactions
between the CB1R and CaSR activation in regulating [Ca2+]i, and these interactions are
dependent on eCa2+ with the participation of nonCB1/CB2 receptors in neuroblastoma cells.
Future studies should address the effects of LPI, abn-CBD, CBD and RvD2 to determine the
role of GPR55 and GPR18 on Ca2+ mobilization influenced by the CaSR. Additionally, stud-
ies should address whether aminoalkylindole analogs that act on the putative WIN55212-2
Alkyl Indole “receptor” are involved in the regulation of [Ca2+]i by CaSR. Details regarding
the mechanism by which the CaSR interfaces with Class A GPCRs to regulate intracellular
calcium stores could be analyzed using thapsigargin-dependent control of [Ca2+]i [6] and
other current methods of structural and functional analysis.
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