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Abstract: Numerous studies show a modification of the gut microbiota in patients with obesity or
diabetes. Animal studies have also shown a causal role of gut microbiota in liver metabolic disorders
including steatosis whereas the human situation is less clear. Patients with metabolic dysfunction
associated fatty liver disease (MAFLD) also have a modification in their gut microbiota composition
but the changes are not fully characterized. The absence of consensus on a precise signature is
probably due to disease heterogeneity, possible concomitant medications and different selection or
evaluation criteria. The most consistent changes were increased relative abundance of Proteobacteria,
Enterobacteriaceae and Escherichia species and decreased abundance of Coprococcus and Eubacterium.
Possible mechanisms linking the microbiota and MAFLD are increased intestinal permeability with
translocation of microbial products into the portal circulation, but also changes in the bile acids
and production of microbial metabolites such as ethanol, short chain fatty acids and amino acid
derivatives able to modulate liver metabolism and inflammation. Several interventional studies exist
that attempt to modulate liver disease by administering antibiotics, probiotics, prebiotics, synbiotics,
postbiotics or fecal transplantation. In conclusion, there are both gaps and hopes concerning the
interest of gut microbiome evaluation for diagnosis purposes of MAFLD and for new therapeutic
developments that are often tested on small size cohorts.
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1. The Gut Microbiota: General Concepts and Interaction with Obesity, Diabetes and
Metabolic Syndrome

Microbes located in the human gut are now considered key players in the metabolism
of their host. These include bacteria but also other micro-organisms such as viruses,
Archaea, Eukarya and fungi [1]. All these microbes are capable of interacting with each
other but also with human cells. The commensal intestinal microbiota is essential to our
health. It maintains the integrity of the intestinal barrier, participates to the defense against
the invasion of pathogens and acts as modulator of the immune system, and it ensures
the production of key metabolites such as bile acids, or short-chain fatty acids (SCFA)
issued from non-digestible carbohydrates fermentation, which play a role in the regulation
of inflammation, cell proliferation and mucus secretion. Conversely, alterations in the
microbiota have been demonstrated to be associated with several diseases and correspond
then to the “dysbiosis”. Among the microbial groups, bacteria have been mostly studied [1].
In 2007, Gram-negative bacterial constituents such as lipopolysaccharides (LPS) were
highlighted as key factors driving the chronic low-grade inflammation characteristic of
obesity and insulin resistance [2,3]. This endotoxemia stimulating toll-like receptor 4 (TLR4)
receptor and its cofactor cluster of differentiation 14 (CD14) have established the link
between the gut of obese patients and their insulin resistance state which is a central feature
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of the metabolic syndrome. Changes in the microbiota in obese patients have been first
demonstrated at the phylum level, the ratio of Firmicutes to Bacteroidetes being associated,
in the prime studies, to the metabolic disorders in obesity and diabetes [4]. However,
even these characteristic changes have not been replicated. Nevertheless, the causal role
of the microbiota in diabetes-related insulin resistance has finally been proven by fecal
microbiota transplantation experiments from slim to obese subjects with the reference gold
standard technique evaluation of hyperinsulinemic euglycemic clamp [5]. This evaluation
showed a transient improvement in peripheral insulin resistance in obese patients who
received microbiota from thin patients [5]. This effect was mainly related to elevated
levels of butyrate from the transplanted microbiota [5]. This opens up the possibility
that factors other than LPS and intestinal permeability are responsible for the metabolic
homeostasis, as well as the concept of the “microbiome” which includes the microbiota
and its by-products. Indeed, the revisited definition of the microbiome encompasses both
the microorganisms and their “theatre of activity” (microbial structural elements such as
polysaccharides, proteins and nucleic acids, the surrounding environmental conditions and
microbial metabolites/signal molecules) [6].

2. Metabolic Dysfunction-Associated Fatty Liver Disease: A Growing Welfare Disease

The prevalence of overweight and obesity has increased in the population and contin-
ues to rise as a slow epidemic [7]. The prevalence of obesity in children and adolescents
is also increasing [7]. Alongside this increase, non-alcoholic fatty liver disease (NAFLD),
now clearly also called “metabolic dysfunction-associated fatty liver disease” (MAFLD),
has emerged [8-10]. The disease is defined by the presence of excess fat in the liver, i.e.,
more than 5% of steatotic hepatocytes on histological analysis or other indirect markers of
hepatic fat overload. Different stages of the disease are possible: isolated steatosis or the
development of a more severe form where steatosis is associated with lobular inflammation
and hepatocyte damage called hepatocyte ballooning. The coexistence of steatosis, lobular
inflammation and hepatocyte ballooning defines non-alcoholic steatohepatitis (NASH).
This disease can progress to progressive liver fibrosis and lead to cirrhosis. The disease is
of course common in obesity, metabolic syndrome or type 2 diabetes [11-13]. Other risk
factors are also described [14-16]. Among these, the gut-liver axis is involved not only in
the initiation but also in the progression of MAFLD [17,18].

3. The Liver: The First Victim of Changes from the Digestive Tract but also a Culprit?
The Concept of a Bidirectional Gut-Liver Axis

The liver is the first organ to be exposed to microbes (microbiota) from the gastroin-
testinal tract, but also to its components and metabolites (microbiome). Indeed, the liver
receives portal venous blood—representing about 70% of the blood supply— from the
gastrointestinal tract. However, the relationship between the gut and the liver is bidirec-
tional. As an illustration, the liver produces bile which is secreted via the bile duct into
the small intestine. Animal experiments have shown that ligation of the common bile
duct, for example, leads to profound changes in the intestinal microbiota and intestinal
permeability [19]. In patients with cirrhosis (regardless of the cause), there is also an
increase in the translocation of intestinal bacteria and an increase in circulating bacterial
DNA fragments [20]. When compared to healthy individuals, the composition of the
microbiota of patients with cirrhosis showed a significant decrease in Bacteroidetes and an
increase in Proteobacteria and Fusobacteria [21]. This indicates that the results of association
studies between gut microbiota and liver diseases should be interpreted with some caution:
changes in the microbial composition of the gastrointestinal tract are not necessarily the
cause of the changes observed in the liver. Liver disease itself also affects the composition
of the gut microbiota.
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4. Evidence for a Causal Role of the Gut Microbiota in the Pathogenesis of MAFLD in
Experimental Animal Models

There is considerable evidence that the gut microbiome can induce obesity, insulin
resistance and liver steatosis. Firstly, germ-free animals do not develop obesity even when
fed a high-fat or high-sugar diet [22]. Transplantation of gut microbiota from conventional
normal animals to these germ-free animals results in adiposity and insulin resistance within
two weeks [23]. Secondly, transplanting the microbiome of animals that develop steatosis
and inflammation leads to the same liver abnormalities in the recipients, with the important
caveat that there are “responder” and “non-responder” animals [24]. On the contrary, fecal
transplantation from control animals to animals fed on a high-fat diet decreases liver and
fat content and liver inflammation. This transplantation is associated with higher butyrate
levels [25]. Thirdly, strategies based on the microbiome in order to manipulate it show
interesting results in animals. These treatments include the administration of prebiotics,
probiotics and synbiotics. The various data with this type of treatment are presented in a
recent review manuscript [26]. With prebiotic, probiotic or synbiotic interventions, hepatic
steatosis is often decreased with changes observed in hepatic gene expression (decreased
lipogenesis and/or increased fatty acid oxidation) [26]. All these promising results obtained
in animals therefore open the door to experiments in humans.

5. What Changes in the Gut Microbiota in Humans with MAFLD?

A large number of studies describe the composition of bacteria in fecal samples from
patients with MAFLD. However, the results are very variable and sometimes contradictory.
In general, a decrease in the diversity of the microbiota is observed in patients with MAFLD
compared to control patients (Table 1) [27-30]. However, this change in diversity is not ob-
served in patients with steatosis and obesity regardless of the stage of severity of the disease
(Table 1) [27,31-33]. The changes usually observed in patients with steatosis compared to
control individuals are an increase in the abundance of Proteobacteria at the phylum level,
Enterobactariaceae at the family level and Escherichia at the genera level [34]. A decrease
in Rikenellaceae and Ruminococcaceae at the family level, Anaerosporobacter, Coprococcus,
Eubacterium, Faecalibacterium and Prevotella at the genera level is also observed [34]. When
compared with patients with NASH or advanced fibrosis, individuals with more severe
liver disease display decreased Gram-positive bacteria, Firmicutes phylum, Prevotellaceae
family and Prevotella genus and increased abundance of Gram-negative bacteria, increased
Enterobacteriaceae family (Bacteroides, Ruminococcus and Shigella genera) [34]. The relative
abundance of fecal Clostridium sensu stricto is also significantly decreased in MAFLD pa-
tients with increased liver elasticity compared to MAFLD patients with less severe liver
disease [31] and in NASH patients compared to controls [27]. We can therefore imagine
a microbial signature that would reflect the stage of the liver disease. All these changes
must be interpreted with some caution as studies vary according to diagnostic criteria, the
presence of co-factors (obesity, diabetes, concomitant medications, statistics used). Interest-
ingly, these changes are not fixed and a shift toward a healthy microbiome is observed in
longitudinal studies on adults with NASH and clinical improvement over time [35].

Most research to date has focused on changes in bacterial composition [36]. However,
recent data are available on fungi [37] and viruses [38] in patients with MAFLD also
showing differences in gut mycobiome and virome depending on the stage of the disease.
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Table 1. Association of microbiota and metabolic dysfunction-associated fatty liver disease (MAFLD),
non-alcoholic steatohepatitis (NASH) and NASH-related fibrosis.

Disease Stage Bacterial Microbiota Changes Reference
Changes in gut microbiota diversity [27-30]
Gram Gram negative
lassificati [29]
classilication Gram positive
Proteobacteria [28,30,39]
Phylum
MAFLD versus healthy Firmicutes [29,39,40]
individual controls
Family Enterobacteriaceae [30]
Rikenellaceae, Ruminococcaceae [40,41]
Escherichia, Dorea, Peptoniphilus
G [30,40,41]
enus Anaerosporobacter, Coprococcus, Eubacterium, [27,30,40]
Faecalibacterium, Prevotella, Clostridium sensu stricto
Same gut microbiota diversity [27,31-33]
Gram Gram negative
lassificati [42]
classincation Gram positive
Phylum irmi [42]
Severe MAFLD or NASH Y Firmicutes
versus mild MAFLD cases Enterobacteriaceae [32]
Family Prevotellaceae [33]
Clostridiaceae (311
. .
Genus Shigella, Bacteroides [31,33]

Prevotella, Clostridium sensu stricto [31,33]

6. What Are the Potential Mechanisms That Explain the Link between Gut Dysbiosis
and MAFLD?

6.1. Microbiota Changes in MAFLD: Cause or Consequence?

The causal role of digestive tract disturbances leading to steatosis in humans is much
less clear than in animals. The intestinal microbiome can lead to changes in the liver, but
liver alterations (such as cirrhosis or cholestasis) also lead to changes in the gut microbiota
and its permeability [43]. The question of cause and effect in the field of steatosis also
exists between the liver and other metabolically active tissues such as the adipose tissue
or the muscle. In a dysmetabolic context, many changes are observed in the intestines,
the liver, the adipose tissue, but also in the muscles and brain in particular, and it is not
clear where the trigger lies. The answer is probably not unique because, unlike in animal
models, the human disease can be caused by variable and sometimes interconnected
phenomena such as a diet rich in fat, a diet rich in sugar, a high level of sedentary activity,
a variable involvement of alcoholic beverages, different genetic background, the impact
of some drugs, the level of insulin resistance, etc. [14]. Despite this, there are general
mechanisms based on interesting translational research that can explain the role of the
intestinal microbiome in the pathogenesis of steatosis in humans. Those include changes
in intestinal permeability, translocation of bacterial products, bile acid modulation and
production of other bacterial metabolites.
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6.2. Changes in Intestinal Permeability, Translocation of Bacterial Products and Activation of
Innate Immunity and Oxidative Stress

Some patients with steatosis have increased intestinal permeability [44]. Microbial
compounds such as lipopolysaccharides (LPS or endotoxin, specifically of Gram-negative
bacteria), known as pathogen associated molecular patterns (PAMPs), can then pass through
the intestinal wall and reach the liver via the portal vein. In the liver, these compounds can
activate TLRs (TLR4), leading to hepatic inflammation, and in particular to the activation
of liver resident macrophages (Kupffer cells), the first immune cells implicated in hepatic
insulin resistance and in the development of steatohepatitis [17,45-47]. PAMPs are also
bound by other pattern recognition receptors (PRRs) inducing mitochondrial reactive
oxygen species (ROS) production and nuclear gene expression [48]. Chronic oxidative stress
is one of the key mechanisms responsible for inflammation and disease progression [48].
Oxidative stress markers such as urinary 8-iso- prostaglandin F2x and serum soluble
NOX2-derived peptide levels are indeed correlated with serum cytokeratin 18-M30 levels,
a marker of liver damage [49]. However, an increase in intestinal permeability has not been
demonstrated in all patients with steatosis [50]. In ALD, a decrease in immune defenses in
the digestive tract has been shown to play a major role in the spread of bacterial fragments
from the damaged intestinal mucosa [51-53]. This impaired gut immunity is apparently
specific to ALD and not present in MAFLD patients [53].

6.3. Bile Acid Modulation

The liver produces an average of 500 milliliters of bile per day. Bile acids are produced
by the liver and play an indispensable role in the emulsification of dietary fat. However,
bile acids also act in the regulation of lipid metabolism and glucose homeostasis. Primary
bile acids (cholic acid and chenodeoxycholic acid) are synthesized from cholesterol through
the action of a cytochrome P450 enzyme, cholesterol 7«-hydroxylase (CYP7A1), conjugated
in hepatocytes (with glycine and taurine) and reach the duodenum after being secreted
in the bile ducts (Table 2). Many intestinal bacteria are capable of deconjugating (such as
Clostridium) and dehydroxylating (such as Bacteroides) bile acids into deoxycholic and
lithocholic acid (Table 2). When fibrosis increases, there is a decrease of the proportion of the
primary bile acids, especially chenodeoxycholic acid [54]. The primary chenodeoxycholic
acid is the most important activator of the farnesoid X receptor (FXR) while secondary bile
acids are Takeda G-protein-coupled receptor 5 (TGR5) agonists. Those two receptors are
now important targets for NASH treatment [55,56]. Since bile acids are metabolized by
microbes in the gastrointestinal tract, it is therefore understandable that bacterial changes
can modulate bile acid proportions and thus affect host metabolism.

Table 2. Bacterial metabolites with potential implication in metabolic dysfunction-associated fatty
liver disease (MAFLD) pathogenesis.

Metabolite Source Involved Bacteria Effect Reference
More hydrophobic/toxic molecules?
Clostridium sp. Easier reabsorption,
Secondary bile acids Primary bile Lactobacillus reduction of gu’F b117e salt
LCA and DCA Acids Enterococcus concentration? [57]
Bifidobacterium Less FXR activation than
Bacteroides CDCAHigher TGRS activation than
CDCA and CA
Lachnospiriaceae fam. . .
Short chain fatty acids: Ruminoc](g)ccacecae ?ar?n. gut inflammation
y ' . Eubacterium rectale gut barrier
butyrate, propionate, Polysaccharides Faecalibacterium prausnitzii [26]
acetate P GLP-1 production

Roseburia sp.
. 2N .
Anaerostzpes . steatosis
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Table 2. Cont.

Metabolite Source Involved Bacteria Effect Reference
Dietar liver macrophage
Indole M Escherichia coli activation [58-60]
tryptophan
>| gut endotoxin
. Klebsiella pneumoniae Alcohol in the (portal) blood,
Ethanol Polysaccharides Escherichia oxidative stress and liver damage [40,61]
Phenylacetate Phenylalanine Proteobacteria steatosis [39]
Trimethyl-5- Enterococcus faecalis 7
aminovaleric acid Trimethyllysine . steatosis [62]
(TMAVA) Pseudomonas aeruginosa
Succinate Polysaccharides Pr.evotellaceae Controversial data [63]
Veillonellaceae

LCA: lithocholic acid; DCA: deoxycholic acid; CDCA: chenodeoxycholic acid; CA: cholic acid; FXR: farnesoid X
receptor; TGR5: Takeda G-coupled receptor 5.

6.4. Production of Bacterial Metabolites: Short-Chain Fatty Acids, Indole, Ethanol, Phenylacetic
Acid and Trimethyl-5-aminovaleric Acid

Short-chain fatty acids (SCFA) are the main products of the fermentation of dietary
fibers and carbohydrates by intestinal (colonic) bacteria (Table 2) [26]. These include bu-
tyrate, propionate and acetate. The effects of these short-chain fatty acids on the metabolism
are varied and sometimes contradictory [26]. Butyrate and propionate reduce intestinal
inflammation and maintain the integrity of the intestinal barrier. Butyrate also increases
GLP-1 secretion, inhibits lipogenesis and increases fatty acid oxidation [26]. Butyrate also
has effects on muscle, decreasing insulin resistance [64]. Propionate also inhibits lipogen-
esis while acetate is a substrate for lipogenesis [26]. Acetate is also a metabolic stimulus
involved in the activation of T cells, triggering auto-aggression in NASH [65]. Interestingly,
these SCFA are among the breath volatile metabolites (BVM) that can partly be measured in
exhaled air [66]. We can therefore imagine respiratory tests to assess the severity of the liver
disease or the impact of an intervention. Butyrate, for example, is significantly increased in
subjects after taking dietary fiber (chitin glucan) [67]. Animal experiments have shown that
Roseburia is able to promote butyrate production from chitin [68].

Another bacterial metabolite with a beneficial effect on the liver is indole, derived from
dietary tryptophan (Table 2). Indole derivatives (such as indole-3-acetic acid or IAA) act as
ligands for the aryl hydrocarbon receptor (AhR), present on epithelial and immune cells
and thus playing a role on intestinal barrier function and immunity. Subjects with obesity
or diabetes have less fecal IAA compared to non-obese subjects [69]. In animals, indole
supplementation has a beneficial effect not only on gut permeability and immunity [60]
but also on liver macrophage activation [58,59]. Importantly, liver macrophage activation
is the first step associated with MAFLD development in humans [45] and associated with
hepatic insulin resistance [17].

Other microbial metabolites could have the opposite effect and contribute to liver
damage. Microbial fermentation of polysaccharides in the gut can lead to actaldehyde and
finally to endogenous ethanol production (Table 2), even in the absence of alcohol con-
sumption. NASH patients exhibit significantly elevated blood ethanol levels compared to
healthy controls [40]. Klebsiella pneumoniae and Enterobacteriaceae including Escherichia are
notably involved in this production (Table 2) [40,61]. This endogenous ethanol production
by the gut microbiota can contribute to the development but also to the progression of
MAFLD [40]. Klebsiella pneumoniae has been identified in more than half of the patients
with steatosis in some series. Fecal transplantation of Klebsiella pneumoniae in animals leads
to the development of steatosis [61].
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Finally, gut microbes also produce phenylacetic acid (PAA), a bacterial metabolite of
phenylalanine and trimethyl-5-aminovaleric acid (TMAVA) from trimethyllysine that in-
duces steatosis (Table 2) [39,62]. Interestingly, its level is associated with steatosis in humans
and the chronic treatment with these compounds in animals trigger steatosis [39,62]. Succi-
nate, produced by the metabolism of non-digestible polysaccharides, plays a controversial
role [63].

7. Interventional Studies Targeting the Microbiota in MAFLD

Possible interventions targeting the gut microbiota in humans include the administra-
tion of antibiotics, probiotics, prebiotics, synbiotics or fecal microbiota transplantation. The
use of postbiotics, although little tested in humans, is also presented.

7.1. Antibiotics

The most studied antibiotic is rifaximin (Table 3). Although not all studies agree on
a positive effect [70-72] (Table 3), a randomised placebo-controlled study with long-term
intervention in patients with histologically proven NASH showed beneficial effects on both
transaminase levels, disease activity assessed by circulating levels of cleaved cytokeratin 18
(CK-18) and insulin resistance [72].

Table 3. Clinical trials with antibiotics, probiotics, prebiotics, synbiotics or fecal microbiota transplan-
tation in metabolic dysfunction-associated fatty liver disease (MAFLD) or non-alcoholic steatohepati-
tis (NASH).

Compound and Number of

Intervention . Time Disease Stage Main Results Reference
Patients
ALT
leax“;‘ﬁ‘ i”tr: :ta ];etfore vs: 28days ~ MAFLD + NASH (in all patients) [70]
er treatme AST (only in NASH
patients)
e =ALT
Antibiotic leaxmell;?eintr_e:’gi{eiifore - 6 weeks NASH = HOMA-IR [71]
= steatosis (MRS)
ALT
Rifaximi =21 laceb AST
ifaximin (zin—_ 21))VS. placebo 6 months NASH CK8 [72]
liver fibrosis score
HOMA-IR
fatty liver index
Bifidobacterium, Lactobacillus, = ALT
Lacto;occus, Propionibacterium 8 weeks MAFLD AST (73]
strains (n = 30) vs. placebo
Probioti (n=28) vGT
robiotic TG
(Pasteurized) Akkermansia AST
muciniphila (n = 12) vs. placebo 12 weeks Overweight vGT [74]

n=11)

insulin
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Table 3. Cont.
Intervention Compound an d Number of Time Disease Stage Main Results Reference
Patients
Oligofructose vs. placebo N
(1= 7 in total) 8 weeks MAFLD AST [75]
NAS
Oligofructose (1 = 8) vs. placebo
(n=6) 36 weeks NASH ( steatosis) [76]
=ALT
= steatosis
Inulin (n = 9) vs. MAFLD + (vs. placebo)
Prebiotic inulin-propionate ester (1 = 9) 42 days NASH? steatosis (7]
(post. vs. pre)
AST
=ALT
Inulin + inulin-rich vegetables MAFLD body weight [78]
(n = 75) vs. maltodextrin + 3 months Obesity = steatosis (controlled
inulin-poor vegetables (controls, attenuation parameter, TE)
n="75) = Fibrosis (TE)
responders [79]
Steptocaceus oy e R acr
N - .
+ fructooligosaccharides (n = 38) 12 weeks MAFLD liver stiffness (801
vs. placebo (n = 37) body weight
. e . ALT
Synbiotic Inulin + Bzﬁdobactermm (n=34) YGT
vs. conventional yogurt (n = 34) 24 weeks MAFLD [81]
or controls (1 = 34) TG
steatosis (US)
Fructo-oligosaccharides + . . .
Bifidobacterium (n = 55) versus 10-14 months MAFLD Steatosis = (MRS) Fibrosis [82]
= (TE)
placebo (n = 49)
Allogenic FMT (n = 15) versus One Steatosis =
Fecal autologous FMT (1 = 6) infusion MAFLD (MRI-PDFF) [83]
microbiota _y
transplantation ~ FMT (n = 27) versus non-FMT 3-day MAFLD Steatosis ' [84]
(n = 20) infusion (controlled attenuation

parameter, TE)

For effect on measurable outcomes, an upward effect is denoted by (), a downward effect is denoted by (),
and no effect is denoted by (=). AST, aspartate aminotransferase; ALT: alanine aminotransferase; Chol, cholesterol;
LDL-c, low-density lipoprotein cholesterol; NAFLD, nonalcoholic fatty liver disease; NAS, NAFLD activity score;
NASH, nonalcoholic steatohepatitis; TG, triglycerides; US, ultrasonography; VLDL, very-low-density lipoprotein;
YGT, gamma-glutamyltransferase; MRS: magnetic resonance spectroscopy; FMT, fecal microbiota transplantation;
TE, transient elastography; MRI-PDFF, magnetic resonance imaging derived proton-density-fat-fraction.

7.2. Probiotics

Probiotics are live micro-organisms that provide a health benefit to the host when
administered at adequate levels. Some data also show promising results (Table 3). The
administration of Bifidobacterium, Lactobacillus, Lactococcus, Propionibacterium strains has
been tested versus placebo in a 8-week intervention. A decrease in the fatty liver index,
AST and yGT is noted, without impact on ALT level or liver elasticity [73]. A proof-of-
concept prospective study shows the feasibility of culturing and administering Akkermansia
muciniphila to humans [74]. Interestingly, the administration of its pasteurised form to
overweight subjects induces indirect changes in liver status with a significant decrease
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in YGT and AST levels compared to controls, in addition to an improvement in insulin
resistance [74].

7.3. Prebiotics

Prebiotics are substrates used by host micro-organisms that confer a health benefit. In
a small placebo controlled trial on 7 MAFLD patients, the administration of oligofructose
significantly decreased serum AST levels after 8 weeks (Table 3) [75]. The only study that
included a biopsy after the procedure also included only a small number of patients [76].
In 8 patients, the histological severity score of non-alcoholic steatohepatitis decreased with
oligofructose administration but only due to regression of the steatosis stage [76]. There was
no impact on transaminases [76]. It is also important to note that the first comparison biopsy
was sometimes performed 5 years before inclusion in the study [76]. Inulin, administered
for 42 days, showed no beneficial effect versus placebo in a small study [77]. An increase
in steatosis level at the end of the study compared to the beginning was also noted [77].
When given to patients with obesity and steatosis during 3 months, a significant decrease
in AST and weight was noted compared to placebo [78]. Interestingly, the research group
was able to identify patient-specific characteristics associated with a positive impact of
inulin (Table 3) [79].

7.4. Synbiotics

Synbiotics (combination of probiotics and prebiotics) have also been studied in patients
with MAFLD. In a randomized, controlled, nonblinded trial, patients receiving Lactobacillus,
Bifidobacterium, Streptococcus thermophilus strains and fructooligosaccharides for 12 weeks
had a decrease in ALT and liver stiffness compared with placebo [80]. An indirect beneficial
impact on liver tests and steatosis severity of ultrasound was noted in one study [81].
In another study, no indirect change in steatosis assessed by MRI or fibrosis assessed by
elastography was found (Table 3) [82].

7.5. Postbiotics

The concept of postbiotics is based on the observation that the beneficial effects of
the microbiota could be due to the secretion of various metabolites. Initially, postbiotics
were defined as a substance released by or produced through the metabolic activity of the
microorganism which exerts a beneficial effect on the host, directly or indirectly [85]. Be-
cause of the risks of infection or antibiotic resistance (probiotics strains that carry antibiotic
resistance genes themselves [86]) associated with the administration of probiotics, there
is some interest in postbiotics [85]. Many results are available in animals, with positive
results, for example, on insulin sensitivity and adiposity in mice fed a high fat diet and
treated with butyrate [64]. Among the postbiotics tested in humans, the most detailed
results concern ursodeoxycholic acid (a secondary bile acid which can be considered as
postbiotic [36]). Although its administration reduces transaminases and insulin resistance
in some studies [87,88], it does not provide histological improvement [89]. The modified
or semi-synthetic bile acids currently being tested [55] are not discussed here as they are
not found in humans (norursodeoxycholic acid or obeticholic acid, for example). To date,
other data on postbiotics in humans only concern butyrate. Butyrate supplementation does
not increase blood butyrate levels, but it improves both peripheral and hepatic insulin
sensitivity assessed by clamp studies in lean individuals without metabolic syndrome but
not in individuals with metabolic syndrome [90]. This suggests a positive impact, but too
little in the face of a pro-inflammatory trigger. Finally, we have to mention that, in 2021,
the International Scientific Association of Probiotics and Prebiotics decided to change the
definition of postbiotics and to apply the term to inanimate microorganisms and/or their
components conferring a health benefit on the host [91]. The term would therefore no longer
include purified metabolites alone, in the absence of cellular biomass [91]. The use (benefi-
cial in a small group of subjects) of the pasteurised form of Akkermansia muciniphila [74]
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described above (Table 3) may therefore fit this new definition. This new definition has
been critical because few studies using postbiotics actually use inanimate bacteria [92].

7.6. Fecal Microbiota Transplantation

Fecal microbiota transplantation has been tested in MAFLD patients. One infusion
was not associated with decreased liver steatosis in one study [83]. In another, a 3-day
infusion induced a modest, although significant decrease in steatosis severity (Table 3) [84].

8. Why Do We Observe Variable or Weak Responses in Interventional Studies?

Several factors are identified below that may be responsible for the inconsistent, weak
or negative results obtained in the studies.

8.1. Varied Endpoints

The gold standard for the diagnosis of NASH and the estimation of its severity is a liver
biopsy. Two histological endpoints for approval of new drugs have been designated: reso-
lution of steatohepatitis without worsening of fibrosis and at least one-point improvement
in fibrosis stage with no worsening of steatohepatitis [55,93]. However, biopsy remains
a technique with certain limitations such as the analysis of only a small fragment of the
entire liver, the cost, the invasiveness and the inter- and intra-individual variability in the
analysis. The measurement of liver fat content via magnetic resonance imaging has been
proposed and is now used in some early-phase phase NASH clinical trials [94,95]. In the
field of pre, pro or synbiotic studies, the targets are not uniform. MRI or biopsy are not
frequently used.

8.2. Presence of Metabolic Cofactors or Concomitant Medications

The presence of MAFLD is always associated with other elements also described as
related to gut microbiota changes (Figure 1). These include obesity, insulin resistance, type
2 diabetes, high blood pressure, etc. Drugs used in these situations or comorbidities can
also have a profound impact on the gut microbiota, e.g., metformin, and therefore prevent
the effect of pre- or probiotics targeting it [96]. It may also be possible that gut microbiota
manipulation can have effects on the biotransformation of drugs taken by the patient
(e.g., modification of drug metabolizing genes or enzymes in host liver or intestine) or the
production of factors that may be involved in the patient’s assessment (e.g., vitamin K is
also produced by the gut microbiota, and cholesterol levels are dependent on secondary
bile acids that are gut microbial-derived) [97].
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Figure 1. Many factors can influence the composition or activity of the gut microbiota, which can
also be used or targeted in the assessment and management of metabolic dysfunction-associated
fatty liver disease. This figure was partly created using Servier Medical Art templates (https://smart.
servier.com) (accessed on 5 July 2022).

8.3. Is the Disease too Severe or the Trigger Still Maintained?

Changes in the microbiome are involved in the pathophysiology of MAFLD, mainly in
the early stage of disease initiation (development of steatosis, early inflammatory changes,
including macrophage activation) [44]. These initial alterations may therefore respond
to measures targeting the gut microbiota. Later and more severe changes (such as the
development of NASH, liver fibrosis or even cirrhosis) may not respond to interventions
targeting the gut microbiota. However, in interventional clinical trials, patients with various
stages of the disease (both early and more severe late stages) are often included and
analyzed together. This is also evidenced in ALD. Some studies have shown an effect of
probiotic administration in mild ethanol-induced liver injury [98,99]. However, although
clear changes in the gut microbiota are also described in patients with severe alcoholic
steatohepatitis, this severe disease stage does not respond to probiotics, prebiotics or
antibiotics [100]. Finally, it is also conceivable that the persistence of the trigger of MAFLD
(obesity and in particular visceral adiposity, unchanged dietary habits) could be stronger
than concomitant attempts to modulate the gut microbiota [101]. This is why combination
therapies targeting different aspects of the disease are effective in NASH [55,93]. For
example, lanifibranor (a pan-peroxisome proliferator activated receptor agonist) shows very
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encouraging results (improvement across the whole range of liver histological lesions) by
targeting not only liver metabolism and inflammation but also adipose tissue dysfunction
that partly induces the liver disease [55,102]. Again, the same is true for ALD. The positive
results on the use of probiotics concern patients not only with a mild disease but also
following a detoxification program that allows the trigger to be stopped [98,99].

8.4. The Impact of an Intervention (Placebo Arm)

Multiple factors can modify the severity of the liver disease (change in diet, adaptation
of physical activity or concomitant medication). These changes may be facilitated by
participation in the clinical trial. A significant improvement is noted for many studies in
fibrosing NASH. A placebo effect on histological improvement (reduction of NAS score by
2 points or more) is present in about 25% of patients [103]. This correlates with the number
and the duration of visits, the change in body mass index and the severity of the initial
disease [103]. The same placebo effect is present in studies of oral antihyperglycaemic
agents [103]. This placebo effect can of course affect the results of the test intervention,
especially if the effects of the test product are mild.

8.5. The Baseline Situation: The Responder and Non-Responder Concept

Not all patients respond in the same way to an intervention. This is also true for studies
targeting the gut microbiota. Some patients respond to the intervention, sometimes very
markedly, and others do not. The initial composition of the microbiota is unique to each
individual and may be associated with the impact of the intervention [104]. Experiments
have been carried out in this area, using the gut microbiota of responder and non-responder
patients that were transplanted into antibiotic-pretreated mice and then assessing their
response to the same intervention. These experiments show that the baseline gut microbiota
determines the response to certain interventions, in particular the administration of inulin
on weight reduction or the degree of liver steatosis [79]. The magnitude of response
could therefore be influenced by a subset of bacteria (rather than one specific bacterium)
simultaneously affected by prebiotics. Similarly, the use of prebiotics such as inulin is also
more effective in patients with a certain physical activity threshold [105]. In the future, a
personalized approach based on a precise baseline analysis could be imagined for prebiotic
interventions in order to find target patients prone to having a favorable response.

9. Conclusions

The gut-liver axis is clearly established from extensive mechanistic studies in animals
and in humans. The most promising strategies so far in humans with MAFLD are the
administration of rifaximin, prebiotics and probiotics. However, the effects noted are often
indirect and this is still a developing area. Targeting the gut microbiota to treat MAFLD
is therefore not ready for prime time. Interestingly, it should be noted that the individual
response to an intervention is variable. Certain microbial signatures seem to respond
particularly well to prebiotic administration for example. Precise characterization of broad
microbial changes (bacteria, viruses, fungi) in MAFLD patients according to each disease
stage is therefore necessary, as well as adequate large intervention studies in targeted
patients with approved and reproducible endpoints in order to unravel the relevance of
microbiota interventions in the management of MAFLD.
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