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Abstract: Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible
for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are main-
tained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to
adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs
and myofibers. An emerging body of literature supports the notion that muscle plasticity is critically
dependent upon nuclear mechanotransduction, which is transduction of exterior physical forces
into the nucleus to generate a biological response. Mechanical loading induces nuclear deformation,
changes in the nuclear lamina organization, chromatin condensation state, and cell signaling, which
ultimately impacts myogenic cell fate decisions. This review summarizes contemporary insights
into the mechanisms underlying nuclear force transmission in MCPs and myofibers. We discuss
how the cytoskeleton and nuclear reorganizations during myogenic differentiation may affect force
transmission and nuclear mechanotransduction. We also discuss how to apply these findings in the
context of muscular disorders. Finally, we highlight current gaps in knowledge and opportunities for
further research in the field.
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1. Introduction

Skeletal muscle is a highly organized tissue designed to produce force and move-
ment. It is composed of differentiated, multinucleated and aligned myofibers responsible
for contraction, and also contains a population of mononucleated muscle cell precursors
(MCPs), that are maintained in a quiescent state under homeostatic conditions. Fusion of
tens of thousands of differentiated MCPs (myocytes) produces multinucleated myotubes
which mature into myofibers, composed of a regular array of contractile elements, the
sarcomere [1]. Skeletal muscle is remarkable in its ability to adapt in response to the
demands imposed on it, a property referred to as muscle plasticity. Low physical activ-
ity and some disease conditions lead to the reduction in myofiber size, called atrophy,
whereas hypertrophy refers to the increase in myofiber size induced by high physical
activity or intrinsic factors such as anabolic hormones/drugs. Molecular mechanisms that
regulate changes in skeletal muscle mass in response to mechanical load have been de-
tailed [2–5]. In post-mitotic muscle cells, mechanical loading impacts translational events,
thereby regulating the rate of protein synthesis leading to changes in myofibrillar protein
content [2]. In addition, mechanical loading triggers changes in the cell cycle rate [6,7]
and MCP proliferation [5]. The fusion of MCPs to the growing fiber allows the addition
of new myonuclei, which are likely to contribute to sustained and harmonious muscle
growth [8]. Finally, the nucleus triggers diverse cell responses in response to nuclear
envelope deformation: nuclear accumulation of the transcription factors yes-associated pro-
tein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) [6,9,10], activation
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of the ataxia telangiectasia and Rad3-related protein kinase [11,12], calcium release [13],
activation of the calcium-dependent cytosolic phospholipase A2 [14] and rupture of the
nuclear envelope (NE) associated with DNA damage [15,16].

The nucleus is generally the stiffest element of all eukaryotic cells [17]. In addition
to being the site for storage of genetic material and gene transcription, the nucleus plays
crucial roles in mechanotransduction, which is the transduction of exterior physical forces
to generate a biological response [18]. Nuclear mechanotransduction is likely to play
important roles in skeletal muscle physiology and adaptation. Force transmission from the
cell periphery to the nucleus involves the cytoskeleton, the LINC complex (Linker of Nu-
cleoskeleton and Cytoskeleton) and the proteins associated with the NE, including emerin
and lamins. Mechanical force induces changes in nuclear lamina polymerization and chro-
matin condensation state, thereby regulating translational capacity and efficiency, nuclear
elasticity, and deformability [2,19–23] and in turn, the cell response to mechanical stress.

Nuclear mechanotransduction is essential to help the muscle to adapt in response
to changes in physical activity [4,24] or in mechanical stimuli arising from the surround-
ing extracellular matrix or from neighboring cells [25]. Numerous studies have gained
insights into the molecular mechanisms associated with muscle mechanotransduction and
their role in skeletal muscle growth [26–31]. The role of the cytoskeleton in regulating
nuclear shape via interaction with the NE has been detailed in different cell types including
muscle cells [32–34]. Interestingly, cytoskeleton and nuclear architectures are dynamically
regulated. They respond to the mechanical environment and differ according to the myo-
genic state [34]. In addition, signaling molecules and transcription factors such as YAP,
TAZ, and serum responsive factor have emerged as important signaling pathways to relay
mechanical signals and regulate dynamics of cytoskeleton, gene expression, and in turn
myogenic development of striated muscle [28,31,35–38]. Importantly, because intracellular
structures and signaling pathways are developmentally regulated, the myogenic process is
likely to modulate in turn the nuclear mechanotransduction, thus differentially modulating
the force response on MCPs, myotubes and terminally differentiated myofibers. Finally,
direct or indirect mechanisms responsible for defective cytoskeleton and nuclear architec-
tures are likely to impact the nuclear response and contribute to muscle dysfunction in
muscle diseases.

In this review, the cellular and molecular mechanisms regulating nuclear mechan-
otransduction in skeletal muscle are updated, and findings regarding nuclear force trans-
mission and nuclear response to mechanical forces in MCPs and multinucleated myofibers
are summarized. Based on data from diverse cell types including myogenic cells, we will
focus on how myogenic differentiation can affect force transmission to the nucleus. Finally,
we will discuss how to apply these findings in the context of muscular disorders.

2. Cytoskeletal Components Relevant for Force Transmission to the Nucleus

The cytoskeletal components relevant for force transmission to the nucleus include
actin filaments (F-actin), microtubules (MTs) and intermediate filaments (IFs), whose
structural and functional organization, including assembly sites, dynamics, turnover
and integration with other cell components, determine function [39–41]. The perinuclear
cytoskeleton provides a structural network to transmit and focus pushing or pulling
forces onto the nucleus [40,42] through specialized proteins that comprise the LINC
complex [43–45]. The amount and organization of the cytoskeletal and LINC components
are tissue-specific and developmentally regulated (see below).

Major reorganization of the cytoskeleton network occurs during the process of muscle
differentiation (Figure 1), with functional consequences on force transmission to the nuclear
envelope and thus on the nuclear response. Although force transmission to the nucleus is
crucial for MCP fate, a major contribution of the distribution of the cytoskeleton in mature
striated muscle fibers could be to transmit force to the extracellular matrix (ECM) while
protecting myonuclei from the axial contractile force generated by the contractile apparatus.
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Figure 1. Schematic representation of cytoskeleton and force transmission in the myoblast and 
myofibril. (A) Radial distribution of the actin, microtubule and intermediate filament (IF) net-
works in myoblast favors the transmission of extra- and intra-cellular forces (red arrows) to the 
nucleus. Direct connections between focal adhesions and the actin cytoskeleton transmit the force 
along actin fibers towards the nucleus. Reciprocally, intracellular forces can be transmitted from 
the cell interior to the extracellular matrix (ECM). Perinuclear cytoskeleton is tethered to the nu-
cleus via Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. (B) Paraxial arrays of F-
actin, microtubules and IFs in myofibrils. Main directions of force transmission from the contrac-
tile apparatus to the ECM are indicated (red arrows). In skeletal muscle, contractile force can be 
transmitted laterally between the z-disks of neighboring myofibrils to the ECM through specific 
cell–matrix adhesions called costameres. 

2.1. The Perinuclear Actin Network and Muscle Differentiation 
In different cell types, perinuclear actin emerges as a critical component for proper 

nucleo-cytoskeletal connections [39,40,46]. On the dorsal side of the nucleus of cells grown 
in 2D culture, perinuclear actin comprises the actin cap formed by dorsal stress fibers [47] 
(Figure 2A) and the so-called transmembrane actin-associated nuclear (TAN) lines [48] 
(Figure 2B,C). The actin cap is composed of thick parallel and highly contractile acto-my-
osin filaments, tightly connected to the nucleus, and attached to basal focal adhesion sites 
on both extremities [47,49–51]. The perinuclear actin cap accumulates upon mechanical 
stimulation [49,50] and has important roles in nuclear mechanotransduction [50,52]. 

Figure 1. Schematic representation of cytoskeleton and force transmission in the myoblast and
myofibril. (A) Radial distribution of the actin, microtubule and intermediate filament (IF) networks
in myoblast favors the transmission of extra- and intra-cellular forces (red arrows) to the nucleus.
Direct connections between focal adhesions and the actin cytoskeleton transmit the force along actin
fibers towards the nucleus. Reciprocally, intracellular forces can be transmitted from the cell interior
to the extracellular matrix (ECM). Perinuclear cytoskeleton is tethered to the nucleus via Linker
of Nucleoskeleton and Cytoskeleton (LINC) complex. (B) Paraxial arrays of F-actin, microtubules
and IFs in myofibrils. Main directions of force transmission from the contractile apparatus to the
ECM are indicated (red arrows). In skeletal muscle, contractile force can be transmitted laterally
between the z-disks of neighboring myofibrils to the ECM through specific cell–matrix adhesions
called costameres.

2.1. The Perinuclear Actin Network and Muscle Differentiation

In different cell types, perinuclear actin emerges as a critical component for proper
nucleo-cytoskeletal connections [39,40,46]. On the dorsal side of the nucleus of cells grown
in 2D culture, perinuclear actin comprises the actin cap formed by dorsal stress fibers [47]
(Figure 2A) and the so-called transmembrane actin-associated nuclear (TAN) lines [48]
(Figure 2B,C). The actin cap is composed of thick parallel and highly contractile acto-myosin
filaments, tightly connected to the nucleus, and attached to basal focal adhesion sites on
both extremities [47,49–51]. The perinuclear actin cap accumulates upon mechanical
stimulation [49,50] and has important roles in nuclear mechanotransduction [50,52].
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Figure 2. Components of the perinuclear actin network in muscle cell precursors (MCPs). (A) Actin cap formed by dorsal 
stress fibers. (B) transmembrane actin-associated nuclear (TAN) lines. (C) Illustration of the molecular composition of a 
TAN line. 

The actin cap is developmentally regulated, being present in myoblasts but absent in 
undifferentiated embryonic stem cells [53] and terminally differentiated muscle cells [27]. 
The structural and functional organization of actin cytoskeleton in the perinuclear region 
of myotubes remain partly unknown. During skeletal myofiber formation, nuclei are ini-
tially in the center of the myofiber and then move towards to myofiber periphery [54]. It 
has been shown that amphiphysin-2/BIN1, which is mutated in centronuclear myopa-
thies, triggers peripheral nuclear positioning to the periphery of myofibers via N-WASP 
and actin, thus implicating the actin cytoskeleton in nuclear movement [55]. In addition, 
perinuclear actin may significantly alter the nuclear shape [27]. However, nuclear posi-
tioning to the myofiber periphery is mediated by centripetal forces arising from myofibril 
contraction around the nucleus [27]. Furthermore, it has been proposed that a nucleus–
cytoskeleton connection is not required for peripheral nuclear movement [27]. Future 
work should address how structural and functional connections between perinuclear ac-
tin network and nuclei are modified during skeletal myofiber formation. In addition to 
extensive cytoskeletal reorganization, shifts in expression of actin components from non-
muscle to muscle isoforms occur during skeletal myogenesis [56–58]. The muscle-specific 
isoform α-actin becomes the predominant actin in terminally differentiated myofibers and 
localizes to the sarcomeric thin filaments, where it interacts with myosin to produce a 
contractile force [59,60]. The non-muscle actins γ and β that are present around the nu-
cleus in myoblasts [61] are downregulated during terminal differentiation of myoblasts 
into myotubes. In terminally differentiated myofibers, γ- and β-actins reside in the cortical 
cytoskeleton and at costameres [62–65]. The costameric F-actin network is thought to con-
tribute with other proteins to the radial transmission of contractile force outward from the 
sarcomere to the extracellular matrix, adjacent muscle fibers, and beyond [64]. Therefore, 
non-muscle F-actin could serve opposite force transmission direction according to the 
state of myogenic differentiation. The direction could be predominantly external to inter-
nal, toward NE in myoblasts, but predominantly internal and sarcomeric to external, to-
ward extracellular matrix, in myofibers (Figure 1). 

  

Figure 2. Components of the perinuclear actin network in muscle cell precursors (MCPs). (A) Actin cap formed by dorsal
stress fibers. (B) transmembrane actin-associated nuclear (TAN) lines. (C) Illustration of the molecular composition of a
TAN line.

The actin cap is developmentally regulated, being present in myoblasts but absent in
undifferentiated embryonic stem cells [53] and terminally differentiated muscle cells [27].
The structural and functional organization of actin cytoskeleton in the perinuclear region of
myotubes remain partly unknown. During skeletal myofiber formation, nuclei are initially
in the center of the myofiber and then move towards to myofiber periphery [54]. It has been
shown that amphiphysin-2/BIN1, which is mutated in centronuclear myopathies, triggers
peripheral nuclear positioning to the periphery of myofibers via N-WASP and actin, thus
implicating the actin cytoskeleton in nuclear movement [55]. In addition, perinuclear
actin may significantly alter the nuclear shape [27]. However, nuclear positioning to the
myofiber periphery is mediated by centripetal forces arising from myofibril contraction
around the nucleus [27]. Furthermore, it has been proposed that a nucleus–cytoskeleton
connection is not required for peripheral nuclear movement [27]. Future work should
address how structural and functional connections between perinuclear actin network
and nuclei are modified during skeletal myofiber formation. In addition to extensive
cytoskeletal reorganization, shifts in expression of actin components from non-muscle to
muscle isoforms occur during skeletal myogenesis [56–58]. The muscle-specific isoform
α-actin becomes the predominant actin in terminally differentiated myofibers and localizes
to the sarcomeric thin filaments, where it interacts with myosin to produce a contractile
force [59,60]. The non-muscle actins γ and β that are present around the nucleus in my-
oblasts [61] are downregulated during terminal differentiation of myoblasts into myotubes.
In terminally differentiated myofibers, γ- and β-actins reside in the cortical cytoskeleton
and at costameres [62–65]. The costameric F-actin network is thought to contribute with
other proteins to the radial transmission of contractile force outward from the sarcomere to
the extracellular matrix, adjacent muscle fibers, and beyond [64]. Therefore, non-muscle
F-actin could serve opposite force transmission direction according to the state of myogenic
differentiation. The direction could be predominantly external to internal, toward NE in
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myoblasts, but predominantly internal and sarcomeric to external, toward extracellular
matrix, in myofibers (Figure 1).

2.2. The MTs

MTs are three orders of magnitude stiffer than actin, IFs being the softness among
the three major types of cytoskeleton filaments [65]. Their radial, centrosome-dominated
distribution in myoblasts [66,67] may favor the transmission of external mechanical forces
to the NE and influence nuclear shape [68] and function [69] (Figure 1A). During the
differentiation process, there is a large reorganization of the centrosome proteins: myoblasts
possess a morphologically recognizable centrosome with characteristic marker proteins
concentrated in the pericentriolar material, whereas myotube differentiation requires
relocalization of centrosome proteins to the surface of the nucleus [67,70,71]. Centrosome
proteins are critical for MT nucleation and/or anchoring; therefore, MT orientation is
extensively redistributed into a more ordered paraxial array in myotubes [66,67,72,73]
(Figure 1B). Mature myofibers also exhibit a perinuclear network of MTs, comprising a
cage-like structure of a high-density meshwork that may be responsible for nuclear shaping
and mechanical protection, and a circular and radial-anisotropic MTs, which are either
polarized in the direction of contraction or in the lateral direction [74]. MT post-translational
modifications such as increased detyrosinated [75,76] and binding of MTs to MT-associated
proteins (MAPs), including EB1 and spectraplakin [74], confers stability to the MTs and
has been shown to be essential for maintaining myonuclear morphology [74]. Additionally,
it has been proposed that the spectrin domains of nesprin confers elastic features of the
MT–spectraplakin–EB1 perinuclear network during the contraction of striated muscle [74].
As a consequence, primary defects in the nuclear-associated networks of MTs have been
implicated in strain-induced myonuclear damage [27,74,77].

2.3. Cytoplasmic IFs

IFs have emerged as a perfect candidate for maintaining proper nuclear mechano-
response because they are able to resist high mechanical stresses, i.e., bending and stretch-
ing, to a considerable degree [65]. IFs are surprisingly flexible [78–82] and can undergo
strain-stiffening [83–85]. This is due to the short persistence length of intermediate fila-
ments (1–3 µm) [65]. In the cytoplasm, they can form mechanically relevant links to each
other, to other cytoskeletal filaments, to membrane complexes, and to internal organelles
including the nucleus [82,86] (Figure 1). These mechanical properties and interconnec-
tions enable the IFs to serve as mechanical stress absorbers that protect the cytoplasm
and organelles, including the nucleus, against large deformations [51,87,88]. This idea is
supported by the fact that IFs can withstand deformations of up to 300% of their initial
length without rupturing [89]. Several IFs are expressed and developmentally regulated in
human skeletal muscle cells [90–93]. Non muscle-specific proteins vimentin and nestin are
expressed in MCPs and myoblasts and are downregulated during later differentiation [94].
Desmin, the muscle-specific IF protein, is expressed at low levels in MCPs and its expres-
sion continuously increases to become the prominent IF in mature myofibers [94,95]. It
can form copolymers with synemin, another non-muscle specific IF, around the α-actinin-
rich Z-lines [92]. In undifferentiated myoblasts, vimentin and desmin are stably linked
to the outer nuclear membrane [96] via plectin [97], thus contributing to the perinuclear
cage-like structure. During terminal muscle differentiation, desmin accumulates and
forms a three-dimensional network between the contractile apparatus, the extracellular
matrix, and other cell organelles such as mitochondria, T-tubules, and nuclei [95,98–100]
(Figure 1). Close to the nucleus, desmin filaments extend from the Z-lines of striated
muscles towards the NE, where they interact with plectin. Terminal differentiation-induced
desmin redistribution is associated with post-translational modifications such as phospho-
rylation and ADP-ribosylation [101], which in turn regulate IF assembly and disassembly
as well as interactions between IFs and other cell components and structures [102]. In
mature muscle fibers, the primary role of desmin is to link adjacent myofibrils to each
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other and to the extracellular matrix, via costameres [39,103–105]. Consequently, a func-
tional reduction in desmin is associated with structural instability of the sarcomeres [106].
Accumulating evidence indicates that desmin is also crucial as a stress-transmitting and
stress-signaling network [98,107–110]. Desmin interactions with the nucleus are required to
maintain nuclear architecture in cardiomyocytes [111] and to prevent nuclear and muscle
damage in response to mechanical challenges [111,112]. Future studies will determine the
contribution of desmin scaffolds in myonucleus architecture and function.

3. Mechanical Linkages between the Cytoskeleton and the Nucleoskeleton

LINC complexes provide direct physical nucleo-cytoskeletal coupling between the
cytoskeleton network and the NE [113,114] (Figure 3). The LINC complexes comprise outer
nuclear transmembrane proteins, called nesprins (NE Spectrin-Repeat Proteins) defined
by the Klarsicht-ANC1-Syne-homology (KASH) domain. This domain directly interacts
with the luminal domain of the inner nuclear membrane proteins Sad1 and UNC-84 (SUN)
proteins 1 (SUN1) or 2 (SUN2) [44,113] within the perinuclear space of the nuclear envelope.
SUN proteins form trimers and span the inner nuclear membrane, with their N-amino-
terminal nucleoplasmic domains interacting with lamins and lamin-associated proteins
within the nucleoplasm [115]. By crossing the outer nuclear membrane, nesprins provide a
mechanical link from the cytoskeleton to the nucleoskeleton.Cells 2020, 9, x 7 of 18 
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2α1 can interact with kinesin and microtubules [119,123] (Figure 3). Nesprin1-α2 is the 
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Figure 3. LINC complexes in skeletal muscle. LINC is a complex of proteins including SUN1/2 and nesprins that connect
the cytoskeleton to the nucleoskeleton. Different nesprin isoforms are expressed during myogenesis: in MCPs, nesprin-1G
and -2G can interact with actin and microtubules in the cytoplasm and with SUN1/2 proteins, emerin and lamins, on
the inner nuclear membrane. Shorter nesprin-1α2 and nesprin-2α1 are expressed during myotube differentiation and
can bind with microtubules in the cytoplasm via kinesin and other proteins such as A-kinase anchoring protein. Short
nesprin-1α2 can also interact with intranuclear proteins such as lamins and emerin. INN: inner nuclear membrane; ONM:
outer nuclear membrane.



Cells 2021, 10, 318 7 of 18

To date, six genes encoding for different nesprins (-1,-2,-3,-4, lymphoid-restricted
membrane protein (LRMP) and KASH5) have been identified in mammals [97,116,117].
Giant nesprins-1 and -2 are ubiquitously expressed with highest representation in striated
muscle [118,119]. The SYNE-1 and SYNE-2 genes encode the nesprin-1G (1008 kD) and
nesprin-2G (792 kD), respectively, with calponin domains at their N-termini that bind the
actin cytoskeleton [116]. Nesprins-1G and -2G also bind to the MT motors dynein and
kinesin via their C-terminal cytoplasmic stretch [113,120–122]. Kinesin-1 interacts with
nesprin-1G and -2 via their LEWD motifs [119,120].

SYNE-1 and SYNE-2 have multiple internal promotors giving rise to shorter nesprin
isoforms which lack the actin-binding domain [119,123] (Figure 3). Alternative splicing also
generates short isoforms that lack the C-terminal KASH domain as well as short isoforms
that lack both the KASH domain and CH domains [124].

In contrast to SUN proteins, nesprins-1 and -2 switch localizations and isoforms dur-
ing myogenesis [118,119]. Nesprin-1 increases at the nuclear rim during early myogenesis
but is partially replaced by nesprin-2 at later stages of muscle development [118,119]. How-
ever, nesprin-1 appears to be critical in synaptic and non-synaptic myonuclear anchoring
in skeletal muscle [125,126], due to its ability to form interactions between myonuclei
and actin cytoskeleton [125–127]. Expression of two shorter α isoforms, nesprin-1α2 and
nesprin-2α1, is switched on during myogenesis [121,122,128] and becomes dominant in
mature skeletal muscle [118]. They are found almost exclusively in skeletal and cardiac
muscle [122,128] and form a complex with emerin and A-type lamins at the inner nuclear
membrane [129,130]. At the outer nuclear membrane, nesprin-1α2 and nesprin-2α1 can
interact with kinesin and microtubules [119,123] (Figure 3). Nesprin1-α2 is the main short
form of nesprin-1 in skeletal muscle [131]. It is located mainly at the nuclear rim in early
myotubes and immature muscle fibers, but then declines in most mature, adult muscle
fibers [131], being restricted to neuromuscular junction nuclei [116,119]. Nesprin1-α2 is
required for the correct positioning of myonuclei [77,120,132,133] and MT nucleation from
the NE [119], by recruiting A-Kinase Anchoring Protein-450 to the NE [77]. Nesprin-3
lacks actin-binding domains but can indirectly connect to the cytoskeleton by binding to
another protein with tandem actin-binding calponin homology domain [134]. Although
nesprin-3 exists as two isoforms, nesprin-3α and nesprin-3β, only nesprin-3α can at-
tach to the cytoskeleton. For instance, nesprin-3α can anchor IFs to the NE through
plectin [121–123,126], a plakin family member that can also interact with actin filaments
and MTs [97,135–137]. This plectin–nesprin interaction requires the dimerization of plectin
and takes place between the N-terminal actin-binding domain of plectin and the first
spectrin repeat of nesprin-3α [135]. Nesprin-3β does not interact with IFs because it lacks
this spectrin-like repeat of nesprin-3α [135].

The different components of the LINC complexes have been associated with a number
of pathogenic modifications in humans as well as in animal models. Perturbation of LINC
complexes induces defective signal transduction across the NE [138,139], and prevents
centrosome reorientation [48], chromatin organization [77,140–143], and abnormal nuclear
positioning [116,121,131,144–146]. It has been shown that mutations in nesprins-1 and
-2 cause Emery–Dreifuss muscular dystrophy [77,125,147–150] and dilated cardiomyopa-
thy [149]. It has been proposed that the giant nesprin-1 regulates a feedback loop by which
MCPs adapt their intracellular tension to the softness of their native extracellular microenvi-
ronment through nucleo-cytoskeletal connections [150]. In addition, nesprin mutations can
impair the interaction of nesprin with lamins, emerin and/or SUN proteins, thus affecting
diverse functions including gene expression, nuclear shape and positioning [149]. As yet,
no mutation in nesprin-3 has been found to be responsible for skeletal muscle diseases.
However, acute depletion of nesprin-3 does lead to rapid shrinkage and unfolding of
nuclei in a microtubule-dependent manner in rat ventricular cardiomyocytes [111]. Loss
of nuclear integrity is concomitant with compromised contractile function and has been
proposed to contribute to the pathophysiological changes observed in desmin-related
myopathies [111]. Further investigations are required to elucidate the complex mecha-
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nisms behind LINC-mediated nucleo-cytoskeletal linkages in skeletal muscle. Finally,
although LINC complexes are critical for force transmission across the NE, alternative
LINC-independent mechanisms have also been proposed [151]. For instance, it has been
proposed that cell boundaries can drive nuclear flattening during cell spreading on rigid
substrates [152]. It was shown that a direct compressive force by LINC-anchored apical
actin cables is not required for nuclear flattening [152]. According to this model, the
overall nuclear shape is primarily dictated by passive forces generated within the actin cy-
toskeleton, with cell spreading and forces transmitted by the actin cap or LINC complexes
contribute to a lesser degree [151,153].

4. The Nuclear Lamina

The nuclear lamina is a filamentous network of proteins mainly composed of the
type V IF lamin proteins that assemble into a meshwork underneath the inner nuclear
membrane [154,155]. The lamina is composed of lamins and lamin-associated proteins
and provides structural support to the NE [156]. Lamins can be categorized as A-type
(lamin A/C) or B-type (lamin B1, B2) lamins. They are key components of the nuclear envi-
ronment and interact with a large number of proteins [140,157–159], the nuclear membrane,
and chromatin [157,160] to influence mechanical cues and signaling pathways crucial for
cellular proliferation and differentiation [161]. In addition, lamins are involved in the
epigenetic regulation of chromatin with drastic consequences for gene regulation [162].

The B-type lamins, lamins B1 and B2, coded for by the LMNB1 and LMNB2 genes,
are expressed in all somatic cells. B-type lamins have an important role in nuclear
shape [86,163] and structure [155,164,165] and may provide nuclear elastic resistance [164],
particularly in cells with low A-type lamins [86,163,166]. However, B-type lamin expression
differs minimally across solid tissues or in response to matrix stiffness [167] and does not
appear to play a major role in nuclear stiffness [86], In contrast, A-type lamins, encoded
for by the LMNA gene, are critical for the appropriate nucleus stiffening [166] and dictate
the nuclear strain stiffening that dominates nuclear resistance to large deformations [20].
Indeed, upon nuclear mechanostimulation, nucleoplasmic domain of the inner nuclear
membrane protein emerin becomes phosphorylated by the protein proto-oncogene ty-
rosine protein kinase Sarcoma (Src) [168,169]. The Ig fold domain of lamin A is able to
partially unfold, leading to stretching of the protein [170]. A-type lamins undergoes de-
phosphorylation of the S22 residue, associated with relocalization of the nucleoplasmic
fraction to the nuclear lamina [166,168,171]. This in turn reinforces the nuclear lamina
by stabilization and assembly of A-type lamins and increases nuclear stiffness [161,166].
Conversely, in reduced mechanical constraints, the mobility and turnover of A-type lamins
increases [166,171,172]. It has also been shown that, under compression, the coiled coils
in the rod domains of A-type lamin polymers are able to slide over each other to contract
the length of the rod, behaving as a compression spring able to absorb pressure [173]. The
expression of A-type lamins can be correlated with tissue stiffness [166], stiff tissues such
as muscle having higher A-type lamin expression and stiffer nuclei than those in softer
tissues such as brain [166]. Moreover, the expression and stability of A-type lamins increase
during myogenic differentiation [86], leading to nuclear stiffening [174].

Importantly, force-induced remodeling of the nuclear lamina may affect gene transcrip-
tion by changing the binding properties of NE proteins and transcription factors. Indeed, it
is known that chromatin containing actively transcribed genes exists in a less condensed
state (i.e., euchromatin) compared to the more compact regions (i.e., heterochromatin)
that contain silent genes. Chromatin contained in lamin-associated domains (LADs) is
generally heterochromatin [175]. Force changes trigger rapid reorganization of the hete-
rochromatin at the nuclear lamina and are associated with changes in global patterns of
gene expression [176]. Nuclear stretch decreases the levels of repressive histone H3K9me3
at the nuclear periphery and increases chromatin mobility [177]. According to studies
from Wickström’s lab, this chromatin response relies on ER Ca2+ release [22]. A-type lamin
levels and nuclear stiffness determine the sensitivity of the ER calcium release, where
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stiffer nuclei are more prone to respond [22]. Interestingly, myogenic differentiation is
associated with specific developmental gene repositioning to and from the nuclear periph-
ery, generally associated with the repression of genes inhibitory to myogenesis and the
activation of genes required for myotube differentiation [178]. Muscle-specific NE trans-
membrane proteins (NETs), including NET39, Transmembrane Protein 38A, and wolframin
ER transmembrane glycoprotein, direct specific myogenic genes to the nuclear periphery
to facilitate their repression and their combined knockdown almost completely blocks
myotube formation [178]. There is also evidence that the disrupted tethering of myogenic
genes with NE [169,170] and muscle-specific NETs [178] could underlie muscle pathology
in NE-linked diseases. Alternatively, NET-directed gene repositioning may contribute to
nuclear stiffening during differentiation.

In line with these physiological roles of A-type lamins, mutations in the LMNA
gene cause laminopathies, a heterogeneous group of disorders, including skeletal mus-
cle dystrophies and cardiomyopathies [156,179–182]. The severity of the muscle disease
is highly variable, the most severe form being the LMNA-related congenital muscular
dystrophy [183,184]. Although the physiopathology of the disease still requires further
studies, there is clear evidence that impaired integrity of the nucleus [184–188], aber-
rant positioning of myogenic genes [178,189,190] and defective mechanotransduction
signaling [29,31,185,191,192] all contribute to the muscle diseases related to LMNA muta-
tions. Future studies will precisely determine how the combination of mechanical uncou-
pling/epigenic factors and a signaling defect could drive these skeletal muscle disorders.

5. Chromatin-Mediated Mechanoresponse

Whereas the lamina has been recognized for many years as a major contributor to
nuclear stiffness, there is now evidence that chromatin and its histone modification state
also contribute to nuclear mechanics independently of A-type lamins [20,23,193–196]. It
has been proposed that chromatin dominates nuclear force responses at short extensions
of <30% strain [20]. Chromatin-based nuclear rigidity operates by inducing changes in
histone modification state. Alterations that produce more euchromatin or heterochromatin
result in decreased or increased small extension nuclear stiffness, respectively [20].

Upon mechanical stimulation, untethering LADs from the nuclear lamina could
initiated gene repositioning and transcription. Mechanical forces could also decondense
gene loci at the nuclear periphery, thus allowing better access for transcription machinery
and increased transcription. However, it is important to remember that genes located at the
nuclear envelope are not necessarily silent [197–199], and that untethering from the lamina
is not sufficient to induce changes in gene transcription [200,201]. Taking into account these
limitations, there is evidence that force can induce chromatin rearrangement and gene
activation. Indeed, the activation and transcription of many genes has been associated with
effective force transmission to the nucleus and/or to nuclear deformations [184,202–205].
In addition, force-induced chromatin reorganization could play a critical role in stem
cell differentiation [178,206,207]. Interestingly, data show that forces propagate through
lamina–chromatin interactions to directly stretch the chromatin and induce transcription
upregulation in a living cell [208]. How the altered chromatin-mediated mechanoresponse
contributes to mechanical load-mediated adaptation in normal and pathological skeletal
muscle remains open for future studies.

6. Nuclear Positioning and Mechanotransduction

Skeletal muscle fibers contain hundreds of flattened myonuclei evenly distributed
at the periphery of each cell, with 3–8 nuclei (synaptic nuclei) anchored beneath the
neuromuscular junction. How nuclei properly position themselves within each muscle
fiber remains partly obscured, especially in tissues. Myonuclear positioning in skele-
tal muscle cells is an active process that occurs during the differentiation and matura-
tion process, as well as during regeneration [209]. It involves the cytoskeletal network
of MTs, F-actin and/or IFs as follows: MTs in the initial translocation/spacing of nu-
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clei along the fiber [54,55,77,138,210], and F-actin and desmin in their movement to the
fiber periphery [27]. Mislocalization of myonuclei has been associated with a variety of
muscle disorders, characterized by muscle atrophy, muscle weakness, and reduced muscle
performance [209,211].

The unique distribution of myonuclei at the muscle fiber periphery raises questions
about the amount of intracellular force transmitted from the cytoskeleton to NE. Misposi-
tioned myonuclei within individual multinucleated muscle fibers are a hallmark of many
muscle diseases, including congenital myopathies and muscular
dystrophies [55,125,138,210,212]. Abnormal nuclear positioning is likely to affect indi-
vidual myonuclear activity by affecting force and strain transmission across the NE [74].
It has been proposed that centrally located myonuclei may experience higher contractile
forces exerted by the myofibrils around the nucleus than peripheral nuclei which could
disturb nuclear stability. However, whether or not mispositioned myonuclei are a cause or
consequence of muscle disease states still remains to be determined.

7. Conclusions and Future Directions

An increasing number of studies focusing on the importance of appropriate nuclear
mechanotransduction for muscle homeostasis, regeneration, and plasticity have appeared
in the literature since 2010. Advances in deciphering the molecular mechanisms con-
tributing to nuclear mechanotransduction strongly support the idea that defects in nuclear
mechanotransduction contribute to human muscle disorders. However, an understanding
of the mechanistic and physiological outcomes for nuclear mechanical stress response
mainly arises from studies conducted in embryonic and/or mononucleated cells and may
depend on the specific cell lines used. The majority of nuclear and cytoskeletal components
involved in nuclear mechanotransduction are developmentally regulated and largely reor-
ganized during muscle differentiation, which complicates the understanding of nuclear
mechanotransduction defects in muscle disorders.

We anticipate that future research efforts will provide new insights into how the
terminal differentiation of MCPs into multinucleated muscle fibers affects nuclear mechan-
otransduction. In addition, we foresee the elucidation of the contributive role of stress- and
strain-induced nuclear response in normal and diseased striated muscles in the future.
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