
cells

Article

Diurnal Response of Photosystem I to Fluctuating Light Is
Affected by Stomatal Conductance

Ting-Yu Li 1,2,†, Qi Shi 2,3,†, Hu Sun 2,3, Ming Yue 1, Shi-Bao Zhang 2,* and Wei Huang 2,*

����������
�������

Citation: Li, T.-Y.; Shi, Q.; Sun, H.;

Yue, M.; Zhang, S.-B.; Huang, W.

Diurnal Response of Photosystem I to

Fluctuating Light Is Affected by

Stomatal Conductance. Cells 2021, 10,

3128. https://doi.org/10.3390/

cells10113128

Academic Editor: Hazem M. Kalaji

Received: 14 September 2021

Accepted: 27 October 2021

Published: 11 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Life Sciences, Northwest University, Xi’an 710069, China; litingyu@mail.kib.ac.cn (T.-Y.L.);
yueming@nwu.edu.cn (M.Y.)

2 Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
shiqi@mail.kib.ac.cn (Q.S.); sunhu19@mails.ucas.ac.cn (H.S.)

3 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: sbzhang@mail.kib.ac.cn (S.-B.Z.); huangwei@mail.kib.ac.cn (W.H.);

Tel.: +86-0871-65223128 (W.H.)
† These authors contributed equally to this study.

Abstract: Upon a sudden transition from low to high light, electrons transported from photosystem
II (PSII) to PSI should be rapidly consumed by downstream sinks to avoid the over-reduction of
PSI. However, the over-reduction of PSI under fluctuating light might be accelerated if primary
metabolism is restricted by low stomatal conductance. To test this hypothesis, we measured the
effect of diurnal changes in stomatal conductance on photosynthetic regulation under fluctuating
light in tomato (Solanum lycopersicum) and common mulberry (Morus alba). Under conditions of high
stomatal conductance, we observed PSI over-reduction within the first 10 s after transition from low
to high light. Lower stomatal conductance limited the activity of the Calvin–Benson–Bassham cycle
and aggravated PSI over-reduction within 10 s after the light transition. We also observed PSI over-
reduction after transition from low to high light for 30 s at the low stomatal conductance typical of
the late afternoon, indicating that low stomatal conductance extends the period of PSI over-reduction
under fluctuating light. Therefore, diurnal changes in stomatal conductance significantly affect the PSI
redox state under fluctuating light. Moreover, our analysis revealed an unexpected inhibition of cyclic
electron flow by the severe over-reduction of PSI seen at low stomatal conductance. In conclusion,
stomatal conductance can have a large effect on thylakoid reactions under fluctuating light.

Keywords: electron transport; fluctuating light; photosynthesis; photosystem I; stomatal conductance

1. Introduction

Fluctuating light (FL) is the typical light condition under natural field conditions [1].
A sudden drop in light intensity will cause a decrease in CO2 assimilation rate without
photoinhibition [2,3]. By contrast, when the light intensity abruptly increases, the resulting
rapid rise in photosystem II (PSII) electron flow is accompanied by relatively slower kinet-
ics of CO2 assimilation [4]. As a result, ATP and NADPH produced by linear electron flow
cannot be immediately consumed by the primary metabolism. Such imbalance between
light and dark reactions then leads to the accumulation of electrons in PSI, which manifests
as PSI over-reduction [5–7]. Under such conditions, the transfer of electrons from PSI
electron carriers to oxygen (O2) increases, producing reactive oxygen species (ROS) [8].
Because antioxidant systems cannot immediately scavenge the ROS generated within PSI [9],
the FL-induced over-reduction of PSI causes significant PSI photoinhibition [6,10–12]. Ow-
ing to the important role of PSI in the operation of photosynthetic electron transport,
PSI photoinhibition significantly suppresses CO2 assimilation, photoprotection, and plant
growth [13–16].

To protect PSI under FL, plants have evolved alternative electron flow pathways to
partially alleviate PSI over-reduction. In general, cyclic electron flow (CEF) around PSI
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is thought to be the main player regulating the PSI redox state under FL [8]. During CEF
around PSI, electrons from ferredoxin are transported to the plastoquinone pool and are
mediated by the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-LIKE1 (PGRL1)
and NAD(P)H DEHYDROGENASE (NDH) pathways [17,18], which are coupled to proton
translocation from the stroma to the thylakoid lumen [19–21]. Therefore, CEF generates
a proton gradient (∆pH) across the thylakoid membrane without NADPH production.
When transitioning from low to high light, CEF is rapidly activated to help with ∆pH
formation [22–24], which not only downregulates the oxidation of plastoquinone but also
enhances the ATP/NADPH production ratio [25], both of which can prevent uncontrolled
PSI over-reduction and thus protect PSI under FL [6]. However, CEF cannot avoid a
transient PSI over-reduction under FL in many angiosperms [5,6,26], suggesting that
the PSI redox state under FL is also largely affected by the electrons downstream of
PSI [27–29]. In angiosperms, electrons in PSI can be transported to NADP+ and O2 [30].
The former is dependent on the operation of primary metabolism including CO2 fixation
and photorespiration [31], whereas the latter is attributed to the water–water cycle [32].
The activity of the water–water cycle is negligible in most angiosperms [33–35], although
it can significantly regulate PSI redox state under FL in some plants, such as those in the
Camellia genus [36], Bryophyllum pinnatum [37], and the orchid Dendrobium officinale [38].
Therefore, the outflow of electrons in PSI under FL largely relies on the operation of primary
metabolism. However, the effect of CO2 assimilation on the regulation of PSI redox state
under FL is not well known.

Many studies have examined photosynthetic regulation under FL in the model
plants Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) grown under constant
light [4,6,8,29,39,40]. However, the diurnal photosynthetic regulation under FL in wild
plants grown under full sunlight has rarely been investigated. Under natural field con-
ditions, diurnal changes in photosynthetic CO2 assimilation rate are largely affected by
stomatal conductance [41–43]. Stomatal conductance determines the extent of CO2 diffu-
sion from the air to the intercellular space. A decrease in stomatal conductance lowers
the total CO2 diffusion conductance, thus restricting CO2 fixation owing to the low CO2
concentration in chloroplasts [44]. Under such conditions, the consumption of NADPH is
blocked, leading to a decrease in the NADP+/NADPH ratio. Because the linear electron
flow is largely controlled by the NADP+/NADPH ratio [45], electron flow from PSI to
NADP+ at low stomatal conductance is limited by the lack of NADP+ [46]. Therefore,
when stomatal conductance decreases, the restriction of CO2 fixation will suppress the
outflow of electrons from PSI to NADP+, aggravating PSI over-reduction under FL. Thus,
we speculate that stomatal conductance plays an important role in the regulation of the
PSI redox state under FL and that the response of PSI to FL is likely affected by diurnal
changes in stomatal conductance.

In this study, we measured diurnal photosynthetic regulation under FL in tomato
(Solanum lycopersicum) and common mulberry (Morus alba). The main aims were to (1) de-
termine whether a decrease in stomatal conductance accelerates PSI over-reduction under
FL and (2) assess whether the diurnal response of PSI to FL is controlled by stomatal
conductance.

2. Materials and Methods
2.1. Plant Materials

Tomato (Solanum lycopersicum Miller cv. Hupishizi) and common mulberry (Morus alba)
plants were cultivated in full sunlight. The day/night air temperatures were approximately
30 ◦C/20 ◦C, and the maximum sunlight intensity at noon was approximately 2000 µmol
photons m−2 s−1 (measured by a Li-1400 datalogger, Li-Cor Biosciences, Lincoln, NE,
USA). Seedlings were grown in plastic pots with humus soil with an initial soil N con-
tent of 2.1 mg/g. Plants were fertilized with Peter’s Professional water-soluble fertilizer
(N:P:K = 15:4.8:24.1) once every 2 days. To prevent any water stress, the plants were wa-
tered every day. We used Fv/Fm to quantify stress. All leaves used for measurements
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had Fv/Fm values higher than 0.80. The youngest fully developed leaves were used
for measurements.

2.2. Experimental Design

In a preliminary experiment, stomatal conductance at 15:00 and 18:00 was measured
in tomato leaves, which revealed that stomata were closed at 18:00 relative to 15:00. Fur-
thermore, the photosynthetic response to FL in tomato leaves was significantly different at
15:00 and 18:00, indicating that the PSI redox state under FL can be affected by stomatal
conductance. To confirm this finding, diurnal photosynthetic responses to FL were mea-
sured in the wild plant Morus alba. After measurement of incident stomatal conductance,
leaves were exposed to a high light intensity of 1809 (or 1455) µmol photons m−2 s−1 for
5 min to activate photosynthetic electron sinks. Afterwards, leaves were exposed to FL
alternating between 59 and 1809 (or 1455) µmol photons m−2 s−1 every 2 min. For leaves
of Morus alba, the light saturation point is approximately 1455 µmol photons m−2 s−1.
For leaves of tomato, 1809 µmol photons m−2 s−1 is needed for maximum photosynthesis.

2.3. Stomatal Conductance Measurements

The diurnal changes in stomatal conductance were measured with a leaf porometer
(SC-1 porometer; Decagon Devices, Inc., Pullman, WA, USA) on intact leaves. The incident
stomatal conductance was measured under ambient sunlight.

2.4. PSI and PSII Measurements

We used a Dual-PAM 100 measuring system (Heinz Walz, German) to measure PSI
and PSII parameters under atmospheric CO2 conditions [47]. The 635 nm actinic illumi-
nation from an LED array was used as the light source. A 5 min dark incubation was
used to measure Pm. The PSI parameters were calculated as follows: Y(I) = (Pm’ − P)/Pm;
Y(ND) = P/Pm; Y(NA) = (Pm − Pm’)/Pm. Y(I), the quantum yield of PSI photochemistry;
Y(ND), the quantum yield of PSI non-photochemical energy dissipation due to donor
side limitation; Y(NA), the quantum yield of PSI non-photochemical energy dissipation
due to acceptor side limitation. The effective quantum yield of PSII photochemistry
was calculated as Y(II) = (Fm’ − Fs)/Fm’. The relative photosynthetic electron trans-
port rate through PSI and PSII was calculated as: ETRI = PPFD × Y(I) × 0.84 × 0.5;
ETRII = PPFD × Y(II) × 0.84 × 0.5. ETRI minus ETRII was assumed to be the rate of CEF.

2.5. Statistical Analysis

All results are shown as mean values of five individual experiments. Tukey’s multi-
ple comparison test was used to determine the significant differences between different
treatments (α = 0.05). The software SigmaPlot 10.0 was used for graphing and fitting.

3. Results
3.1. A Decrease in Stomatal Conductance Induces PSI Over-Reduction under FL in Tomato

We measured the photosynthetic responses to FL at 15:00 and 18:00 in tomato leaves.
The stomatal conductance at 18:00 was much lower than that at 15:00 (Figure 1A), which was
accompanied by a decrease in maximum PSII electron flow (ETRIImax) under FL (Figure 1B).
Within 10 s after the transition from 59 to 1809 µmol photons m−2 s−1, the quantum yield
of PSI non-photochemical energy dissipation due to the donor side limitation (Y(ND))
increased from 0 to approximately 0.5 at 15:00, but only reached approximately 0.1 at
18:00 (Figure 1C). This moderate rise in Y(ND) at 18:00 led to severe PSI over-reduction,
as indicated by the high value measured for the quantum yield of PSI non-photochemical
energy dissipation due to the acceptor side limitation (Y(NA)) (Figure 1D). Y(NA) then
decreased to its lowest value starting 30 s after the light transition at 15:00, but remained
high at 18:00. These results indicated that the PSI redox state under FL changed during
diurnal photosynthesis. When stomata were closed at 18:00, ETRII was not affected
under low light but decreased by half under high light compared with values obtained
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at 15:00 (Figure 1E). To analyze the effect of stomatal closure on CEF performance under
FL, we evaluated CEF by subtracting ETRII from ETRI in accordance with established
published methods [48,49], although Y(I) can be under/over-estimated depending on the
redox state of PC [50,51]. Under low light, CEF activation did not differ between 15:00 and
18:00. However, after transition from low to high light for 10 s, CEF rapidly increased to
reach its maximum value at 15:00, but showed a much more modest rise at 18:00 (Figure 1F).
CEF required a full 30 s after the transition to increase to its peak value at 18:00. Therefore,
lower stomatal conductance substantially influenced the activation speed of CEF under FL.
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Figure 1. Assessment of diurnal photosynthetic performance in tomato leaves measured at 15:00 and
18:00: (A) stomatal conductance (gs); (B) maximum electron transport rate through PSII (ETRIImax);
(C–F) changes in photosynthetic parameters during fluctuating light alternating between 59 and
1809 µmol photons m−2 s−1; (C) Y(ND), quantum yield of PSI non-photochemical energy dissipation
due to the donor side limitation; (D) Y(NA), quantum yield of PSI non-photochemical energy dissi-
pation due to the acceptor side limitation; (E) ETRI, electron transport rate through PSI; (F) estimated
CEF performance, calculated as ETRI–ETRII. Asterisk indicates a significant difference between 15:00
and 18:00 samples. Data are shown as mean ± standard error (SE, n = 5).
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Because the decreases in stomatal conductance and ETRII were accompanied by
variation in Y(NA) under FL, we examined the relationships between stomatal conductance,
ETRII, and Y(NA) after transition from low to high light for 10 and 30 s. As shown in
Figure 2, low levels of stomatal conductance and ETRIImax were associated with an increase
in Y(NA) within the first 30 s after transition from low to high light. With the increases
in stomatal conductance and ETRIImax, PSI over-reduction was gradually relaxed to the
minimal value of approximately 0.1. These results suggest that restricting CO2 fixation
significantly aggravates PSI over-reduction under FL. Furthermore, the severe PSI over-
reduction observed after transition from low to high light for 10 s at 18:00 inhibited the
activation of CEF (Figure 3). Once PSI over-reduction was relaxed, CEF was fully activated.
Therefore, the activation of CEF in high-light phases under FL is likely affected by PSI
redox state.
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Figure 2. Exploration of correlations between PSI redox state and photosynthetic parameters: rela-
tionship between (A) stomatal conductance (gs) and Y(NA) after transition from low to high light
for 10 s (Y(NA)10 s), between (B) maximum electron transport rate through PSII (ETRIImax) and
Y(NA)10 s, between (C) stomatal conductance (gs) and Y(NA) after transition from low to high light
for 30 s (Y(NA)30 s), and between (D) ETRIImax and Y(NA)30 s in tomato leaves. The data for Y(NA)
were taken from the second low/high light cycle, as shown in Figure 1.
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3.2. Diurnal Response of PSI to FL in Morus alba Is Controlled by Stomatal Conductance

To confirm the findings obtained in tomato, we examined the diurnal photosynthetic
regulation under FL in the wild plant Morus alba. Stomatal conductance significantly de-
creased at 20:00 when compared with other sampling times (Figure 4A) and was associated
with the smallest value for ETRIImax (Figure 4B). When transitioning from low to high light,
Y(ND) did not increase to its maximum value within the first 10 s, but instead required
a full 30 s to do so (Figure 4C), leading to the concomitant increase in Y(NA)10 s after the
transition (Figure 4D). These results indicate that PSI is over-reduced under FL in M. alba.
Furthermore, Y(ND) increased much slower at 20:00 than at other time points, resulting in
sustained high Y(NA) levels under FL. Therefore, stomatal closure in the late afternoon
aggravated PSI over-reduction under FL. The ETRII values after transition to high light
decreased in the late afternoon (Figure 4E), suggesting that the CO2 assimilation rate is
largely restricted by stomatal conductance. After transition to high light, CEF first increased
to its peak value after 10 s, which was followed by a gradual decrease to reach its minimal
value after 120 s at all time points, except for 20:00 (Figure 4F). The activation of CEF at
20:00 during high light phases was higher than at other time points.
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nal response of PSI to FL is largely driven by stomatal conductance. Furthermore, we de-
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(Figure 5C,D), indicating that the light use efficiency significantly influences the PSI redox 
state under FL. These results suggest that stomatal conductance has a large effect on the 
PSI redox state under FL by modulating light use efficiency. During high light phases, 
CEF activation was strongly and positively correlated with the PSI redox state (Figure 6A), 
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Figure 4. Diurnal variation in photosynthetic performance of M. alba leaves: (A) stomatal conductance
(gs). (B) Maximum electron transport rate through PSII (ETRIImax). (C–F) Changes in photosyn-
thetic parameters during fluctuating light alternating between 59 and 1455 µmol photons m−2 s−1.
(C) Y(ND), quantum yield of PSI non-photochemical energy dissipation due to donor side limitation.
(D) Y(NA), quantum yield of PSI non-photochemical energy dissipation due to acceptor side limi-
tation. (E) ETRI, electron transport rate through PSI. (F) Estimated CEF performance, calculated as
ETRI–ETRII. In (A) and (B), different letters indicate significant differences. In C–F, asterisk indicates
a significant difference between 20:00 and the other times. Data are shown as mean ± SE (n = 6).

We determined that the extent of PSI over-reduction after transition to high light
was negatively correlated with stomatal conductance (Figure 5A,B), suggesting that the
diurnal response of PSI to FL is largely driven by stomatal conductance. Furthermore,
we detected negative relationships between ETRIImax and Y(NA) during the high light
phase (Figure 5C,D), indicating that the light use efficiency significantly influences the PSI
redox state under FL. These results suggest that stomatal conductance has a large effect on
the PSI redox state under FL by modulating light use efficiency. During high light phases,
CEF activation was strongly and positively correlated with the PSI redox state (Figure 6A),
as a higher Y(NA) was accompanied by higher CEF activation. When PSI was over-reduced
after the transition to high light, the contribution of CEF to total photosynthetic electron
transport rose (Figure 6B), which favored the formation of ∆pH and alleviated PSI over-
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reduction. Once PSI over-reduction was fully relieved, the CEF activation state decreased,
which prevented over-acidification of the thylakoid lumen. Therefore, the contribution of
CEF to total photosynthetic electron transport under FL changed diurnally according to
the incident PSI redox state in a given condition.
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4. Discussion

After transitioning from low to high light, tomato and M. alba leaves displayed a sig-
nificant transient over-reduction of PSI (Figures 1D and 4D), indicating that the electrons
transported to PSI failed to be immediately consumed by the downstream sinks of PSI. Fur-
thermore, this suggested that the water–water cycle had a negligible contribution in tomato
and M. alba, as it rapidly consumed the excess reducing power of PSI [11,36,38]. Therefore,
the electrons transported from PSII to PSI are mainly channeled toward CO2 fixation and
photorespiration. During diurnal changes in photosynthetic rates, the decrease in stomatal con-
ductance was accompanied by lower PSII electron flow (Figures 1 and 4), indicating that CO2
assimilation was restricted at low stomatal conductance. Under these conditions, the extent of
PSI over-reduction within the first 10 s after transition from low to high light was aggravated.
Furthermore, when stomatal conductance decreased in the late afternoon, we also observed
PSI over-reduction under FL after transition from low to high light for 30 s. These results
suggested that the restriction of CO2 assimilation by low stomatal conductance significantly
induced stronger and prolonged PSI over-reduction under FL. PSI over-reduction increases
the transfer of electrons to O2, resulting in the generation of ROS in the vicinity of PSI and
thus causing PSI photoinhibition [8,9,52,53]. Therefore, PSI susceptibility to photoinhibition
under FL can be affected by stomatal conductance.

Stomatal conductance is an important factor determining light use efficiency under
FL [54–56]. During the diurnal course of photosynthesis, stomatal opening under high-light
conditions increases the CO2 diffusion efficiency and facilitates CO2 assimilation [43,57]. In-
terestingly, this study determined that stomatal opening could alleviate PSI over-reduction
under FL (Figures 2 and 5), which would diminish or prevent FL-induced PSI photoinhi-
bition. When PSI is damaged, photosynthetic electron transport systems including LEF
and CEF are suppressed, leading to a lower trans-thylakoid proton gradient and a loss
of photoprotection for PSI and PSII [14,16,58]. Photosynthetic CO2 assimilation is also
restricted by the lack of ATP and NADPH [13,59,60]. Therefore, maintaining PSI activity
is a prerequisite for highly efficient CO2 assimilation under FL during diurnal photosyn-
thesis [61]. Accordingly, the diurnal stomatal opening under high light is important for
protecting PSI under FL and thus guaranteeing optimal photosynthesis over the course of
the day.

Recent studies have reported that increased stomatal conductance can enhance both
CO2 assimilation rate and biomass production under FL in rice and Arabidopsis [43,57],
which holds great potential for crop improvement and molecular breeding. A possible
explanation for these observations is that the increased conductance lowers the stomatal
limitation of photosynthesis by accelerating the diffusion of CO2 into leaves, to ensure
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efficient photosynthetic CO2 fixation. In rice and Arabidopsis, PSI is susceptible to pho-
toinhibition under FL, which leads to significant decreases in CO2 assimilation rates and
biomass when grown under FL [4,6]. Therefore, preventing FL-induced PSI photoinhibi-
tion can facilitate sustained high photosynthetic efficiency under FL. In this study, higher
stomatal conductance significantly lowered PSI over-reduction under FL (Figures 2 and 5).
Therefore, the artificial enhancement of stomatal opening by FL in rice and Arabidopsis
will favor PSI photoprotection and thus guarantee photosynthetic reactions, providing a
basis for the increase in plant biomass.

Upon transitioning from low to high light, the dynamic flexibility of CEF activity reg-
ulates the trade-off between photoprotection and photosynthetic efficiency [30,62]. Within
the first seconds after changing from low to high light, CEF was highly activated to help
generate the ∆pH necessary for ATP production, which strengthens photosynthetic control
of cytochrome b6f and enhances electron transport downstream of PSI [6,10,22]. As a
result, this transient CEF stimulation prevents uncontrolled PSI over-reduction under
FL [6,8]. When PSI over-reduction is clearly absent, CEF activity decreases to prevent
over-acidification of the thylakoid lumen [22,24,63], thus optimizing photosynthetic effi-
ciency [64]. Consistently, we observed that moderate PSI over-reduction under FL induced
the greatest CEF activation in both plant species (Figures 3 and 6). Furthermore, we no-
ticed an unexpected inhibition of CEF by severe PSI over-reduction under low stomatal
conductance (Figures 3 and 6). When Y(NA) was greater than 0.6, the small number of
photo-oxidizable P700 donors in PSI was not sufficient to maintain the normal operation
of the CEF. Such an inhibition of the CEF limited ∆pH formation, leading to prolonged
PSI over-reduction under FL at low stomatal conductance (Figures 1D and 4D). Therefore,
stomatal conductance can have a large effect on thylakoid reactions under FL.

5. Conclusions

In this study, we examined the regulation of photosynthesis over the diurnal cycle
under FL in tomato and Morus alba. The FL-induced over-reduction of PSI was modest at
noon but was severe in the late afternoon. Furthermore, the diurnal response of PSI to FL
was largely affected by photosynthetic efficiency, which itself was mainly influenced by
stomatal conductance. A relatively high stomatal conductance at noon not only ensures
efficient photosynthetic CO2 assimilation, but also favors PSI photoprotection under FL.
Our results provide new insight into the physiological function of stomatal conductance in
sustaining photosynthesis over the course of the day.
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