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Abstract: Mesenchymal stem or stromal cells (MSC) have proven to offer great promise 
for cell-based therapies and tissue engineering applications, as these cells are capable of 
extensive self-renewal and display a multilineage differentiation potential. Furthermore, 
MSC were shown to exhibit immunomodulatory properties and display supportive 
functions through parakrine effects. Besides bone marrow (BM), still today the most 
common source of MSC, these cells were found to be present in a variety of postnatal and 
extraembryonic tissues and organs as well as in a large variety of fetal tissues. Over the last 
decade, the human umbilical cord and human amnion have been found to be a rich and 
valuable source of MSC that is bio-equivalent to BM-MSC. Since these tissues are 
discarded after birth, the cells are easily accessible without ethical concerns. 
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1. Introduction 

Mesenchymal cells derived from amniotic membrane have been referred to in various ways by 
different research groups, including human amnion/amniotic mesenchymal stromal cells (hAMSC[s]), 
amniotic membrane mesenchymal stem cells (AM-MSC), amniotic membrane-human mesenchymal 
stromal cells (AM-hMSC), amnion-derived MSC, amniotic mesenchymal fibroblasts, human amnion 
stromal cells (hASC), human amniotic mesenchymal tissue cells (AMTC), human amniotic 
mesenchymal cells (HAMc), mesenchymal cells derived from human amniotic membrane (MC-HAM), 
human amniotic mesenchymal stem cells (hAMs), human amniotic membrane-derived mesenchymal 
cells (hAMCs or hAM-MSC) and human amnion-derived fibroblast-like cells (HADFIL) [1 25]. 
During the first meeting of Stem Cell S was 
agreed that the nomenclature of these cells should be unified as 

 (hAMSC) [19]. 
hAMSC are derived from the extraembryonic mesoderm [19] and are found dispersed in the 

collagenous stroma underlying the epithelial monolayer of the amniotic membrane [2,16]. 
The nomenclature of umbilical cord (UC)-derived MSC has not been unified yet and the cells have 

been referred to in many ways, mainly depending on from which compartment of the cord the cells 
have been isolated. The UC usually comprises two arteries and a vein, which are immersed within a 
mucoid connective tissue, the so-
epithelium. At least four separate regions were found to contain mesenchymal cells. Thus, MSC could 
be isolated from the subendothelium [26 28], the WJ [29 39], the perivascular region [40,41], and the 
umbilical cord blood [42 46]. Parts of this review will focus on UC tissue-derived MSC which will be 
referred to as UC-MSC. 

2. Isolation, Expansion and Characterization of hAMSC 

Amniotic membrane is mechanically peeled off the chorionic membrane by blunt dissection, 
washed several times in a buffered solution and cut into small pieces. In most cases, hAMSC are 
obtained in subsequent enzymatic digestions. After complete removal of human amniotic epithelial 
cells (hAEC) by trypsin digestion, hAMSC are digested with various types and concentrations of 
collagenase (0.75 2 mg/mL) with or without adding DNase (20 75 g/mL) [8,11,17,19,23,47 52]. 
Lisi et al. [14] have additionally added trypsin; Tawagawa et al. [53] have supplemented dispase and 
papain. Some groups have published that pure fractions of hAMSC can be obtained without previous 
isolation of hAEC treatment [10,49,52,54,55]. Due to the varying concentrations of collagenase used 
by the different groups, also the applied incubation times vary between 30 min and up to 3 h. For 
gaining both hAMSC and hAEC also reversed isolation protocols (hAEC after hAMSC) are  
published [52,56].  
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According to Parolini et al. [19], one single amnion should theoretically contain 5 × 108 hAMSC. 
Typically, one gram tissue yields in about 1 2 × 106 hAMSC [2,19]. Media used for expansion are 
usually composed of a basal medium, supplemented with fetal calf serum, antibiotics and antimycotics. 
The detailed compositions and some further used supplements that have been published for hAMSC 
expansion are listed in Table 1 

Table 1. Media used for expansion of human amnion/amniotic mesenchymal stromal cells 
(hAMSC); Abbreviations: FCS fetal calf serum, DMEM 
medium, EGF epidermal growth factor, M199 medium 199, b-ME beta-mercaptoethanol, 
NEAA nonessential amino acid, LIF leukemia inhibitory factor, MEM minimal essential 
medium eagle. 

 
basal 

% 
FCS 

further supplements 

Bilic [47,57] 
DMEM:Ham'sF12 

1:1 
10 

50 ng/mL EGF, 2.5 g/mL insulin, 5 g/mL 
transferrin, 0.1 ng/mL tri-iodothyronine 

Bilic [2] 
DMEM:Ham'sF12 

1:1 
10 for some experiments 10 ng/mL EGF 

Diaz-Prado [4] DMEM 20 
In't Anker [8] M199 10 20  EGF, 8 U/mL heparin 

Kang [10] alphaMEM 10 
Kim [11] DMEM 10 3.7 mg/mL sodium bicarbonate 

König [12] DMEM 15 
Lisi [14] DMEM 10 10 ng/mL EGF, 55 M b-ME 

Paracchini 
[18] 

DMEM 10 
1% sodium pyruvate, 1% NEAA, 55 M b-ME,  

10 ng/mL EGF 

Stadler [21] DMEM 10 
1% NEAA, 55 M 2-mercaptoethanol, 1 mM sodium 

pyruvate 

Sudo [56] alphaMEM 10 
without any further supplements or 10 ng/mL EGF or 

10 ng/mL EGF + 105 U/mL LIF 
Tamagawa 

[53] 
alphaMEM 10 10 ng/mL EGF, 10 ng/mL LIF 

Whittle [54] DMEM 10 
Zhao [25] DMEM 10 

Some groups cultivate the cells in endothelial growth medium-2 (EGM-2) [12,13,21,55], which is a 
2% serum medium supplemented with hydrocortisone, heparin, ascorbic acid, gentamicin sulfate and 
various growth factors (insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), 
epidermal growth factor (EGF) and fibroblast growth factor FGF)). 

One characteristic property of mesenchymal stem cells such as hAMSC is their plastic adherence. 
However, some groups published coating of the culture dishes with gelatin or fibronectin [8,12]. To 
remove non-adherent cells, medium is removed after a time of two h [18] up to seven days [1,8,14] 
after cell seeding. After reaching confluence of 70% 100%, cells are usually detached with trypsin 
(0.05% or 0.25%) with or without EDTA (0.02%) [1,4,8,11,14,18,21,53,56]. Alternatively, also 
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application of accutase is reported [12]. There is a great variability regarding seeding density, reaching 
from 1 × 103 c/cm2 [1] up to 1.27 × 105 c/cm2 [56].  

Expansion of hAMSC is possible for at least five passages without any morphological  
alterations [1,2,9,14,19]. Some groups have even kept the cells in culture for 15 to 20 passages before 
reaching senescence [53,57].  

hAMSC show fibroblast-like cell morphology, being spindle-shaped [4,11,19,53]. Regarding the 
ability to form colonies, there are differing reports. Soncini et al. [52] and Kim et al. [11], have shown 
clonal colony formation, whereas Bilic et al. [2] did not detect any clonal outgrowth, supposedly due 
to the lack of telomerase reverse transcriptase (TERT). 

Analyzing the surface antigen profile by flow cytometry, polymerase chain reaction or 
immunocytochemistry staining, hAMSC are found to express the mesenchymal markers CD73, CD90 
as well as CD105 and are further positive for CD10, CD13, CD29, CD44, CD49c, CD49d, CD49e, 
CD54, CD140b, CD166, CD349, STRO-1 and HLA-ABC [1,2,6,8,12,14,19,20,50,55,58]. Weak 
expression has been reported for CD271 [19,20] and CD117 (ckit) [2,4], in one case only being 
detected using PCR [58]. The hematopoietic markers CD34 and CD45, the monocyte marker CD14, 
the endothelial markers CD31 and CD133, as well as CD3 and CD11 are not expressed on  
hAMSC [1,2,5,6,8,12,14,19,50]. HLA-DR is reported to be absent or expressed at very low  
levels [1,2,6,8,12,14,49,55]. Paracchini et al. [18] analyzed low levels of EpCAM and CD49f in fresh 
hAMSC cultures, but these markers were rapidly decreasing during expansion. Immunofluorescence 
staining of amniotic membrane did not reveal SSEA-3 and SSEA-4 [59], however, surface expression 
of these markers on hAMSC is reported by several groups [4,6,11,18,19,58 60]. Furthermore, RNA 
levels of the transcription factor Oct-4 are reported [2,6,55,58] to be even higher than in bone marrow 
derived mesenchymal stem cells [1]. Transmission electron microscopy of hAMSC has revealed 
ultrastructural characteristics of mesenchymal as well as epithelial cells, showing a sign of 
multipotentiality [61]. 

3. Isolation, Expansion and Characterization of UC-MSC  

Besides the umbilical cord blood the umbilical cord tissue was also found to be a rich and valuable 
source of MSC. For the isolation of the cells many protocols have been proposed mainly depending on 
from which compartment the cells should be isolated. An overview of different techniques applied 
during isolation is given in Figure 1. Basically the isolation procedure starts with a mechanical 
treatment of the tissue. This may contain a segmentation of the cord, chopping into small tissue pieces 
or scraping o . Often the umbilical arteries and vein are removed and discarded 
before further processing [31,33,39,62] but the perivascular regions, the vessels and the sub 
endothelium of the vein can also serve as a source of MSC [26 28,40,41,63]. Most of the protocols 
contain steps of enzymatic digestion of the tissue with several enzymes (e.g., Collagenase I or II, 
Hyaluronidase and Trypsin) followed by filtration and or centrifugation steps [31,33,39,62,64 67] but 
explant culture approaches are also described [68 71]. By cutting down the tissue into approximately 
0.5 cm3 large pieces and incubating them in appropriate culture media at 37 °C and a humidified 
atmosphere with 5% CO2, adherent cells will start to grow out of the tissue after approximately  
10 days resulting in a confluent culture after two weeks [70]. 
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Figure 1. Different techniques used during isolation of mesenchymal stem or stromal cells 
(MSC) from umbilical cord (UC) tissue. Basically enzymatic digestion or explant culture 
approaches are used. 

 

Freshly isolated UC-derived MSC are mainly fibroblast-like spindle-shaped cells. Although isolated 
from different compartments of the cord by several isolation techniques, all UC-derived cells are found 
to meet the minimal criteria for defining multipotent mesenchymal stromal cells as proposed by the 
ISCT. Thus, besides growing adherent to plastic and exhibiting a multi-lineage differentiation 
potential, the cells express CD105, CD73 and CD90, and lack the expression of CD45, CD34, CD14 
or CD11b, CD79 alpha or CD19 and HLA-DR. An overview of further reported intra- and  
extra-cellular markers expressed by UC-derived MSC is given in [72]. 

However, some groups observed varying phenotypes among UC-derived primary cells (see Figure 2). 
The cultures displayed a broad cell size distribution and when using counterflow centrifugal elutriation 
(CCE) the cells could be separated according to their size leading to MSC subpopulations that, 
although sharing the same immunophenotype, displayed significant differences in cell growth and 
biochemical marker expression [73].  

Additionally, when cells isolated from the  were compared to UC arterial- and 
venous-derived cells significant differences could be observed with regard to proliferative and 
osteogenic differentiation potential [63]. These results demonstrate the demand for further 
investigations concerning UC-MSC from different UC-compartments and MSC sub-populations but 
also raise the question whether the proposed minimal criteria are still sufficiently defined to identify 
MSC not only from UC but other tissues. In this context, several groups have proposed new surface 
antigens as universal markers for the identification of MSC from bone marrow and other tissues 
(reviewed in [74]) such as CD271 [75,76], MSCA-1 [75], SSEA-4 [77,78], and the neural ganglioside 
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GD2 [79]. To our knowledge MSCA-1 expression in UC-MSC cultures have not been investigated yet. 
Additionally UC-derived cell populations were found to be negative for CD271 surface antigen 
expression but express SSEA-4 [63,68]. Furthermore, UC-tissue was shown to harbor a subset of 
GD2+ cells that exhibit a high clonogenicity as well as proliferation capacity but also a significantly 
stronger multi-differentiation potential than GD2  cells, indicating GD2 to be a potential marker useful 
for the isolation of multipotent MSC from UC-tissue [80].  

Figure 2. Primary UC-derived cell cultures can contain broad cell size distributions (I < II < III).  

 

4. Differentiation Potential of hAMSC 

Besides differentiating into the typical mesenchymal lineages osteogenic, chondrogenic, adipogenic
hAMSC are also capable to differentiate into cells of all three germ layers: ectoderm (neural, glial), 
mesoderm (skeletal muscle, endothelial, cardiomyocytic) and endoderm (pancreatic, hepatic). 

The osteogenic lineage was one of the first being demonstrated for hAMSC [8,50]. Osteogenic 
stimulatory media that have been applied (listed in detail in Table 2) are at least supplemented with  
beta-glycerophosphate, dexamethasone and ascorbat-2-phosphate or ascorbic acid. Mineral  
deposition upon osteogenic induction has been demonstrated by von Kossa and Alizarinred S  
staining [1,2,4,8,10,18,21,24,56,81]. Further, alkaline phosphatase activity, as well as staining  
for alkaline phosphatase and osteocalcin, have been used to proof osteogenic  
differentiation [2,8,21,56,57,81]. Differentiation efficiency has been further evaluated by PCR for 
specific markers involved in osteogenesis: the early marker RUNX2, ALP, followed by later markers 
BGLAP, BMPR1B and BMPR2 [21,24,81]. Stadler et al. [21] have demonstrated the impact of four 
different in vitro protocols for osteogenic differentiation  the media according to Pittenger et al. [82], 

 et al. [8] and Portmann-Lanz et al. [50] as well as hMSC Mesenchymal Stem Cell 
Osteogenic Differentiation Medium (OKit, Lonza). Moreover, hAMSC grown on microcarriers have 
been demonstrated to differentiate into osteogenic lineage with improved potency [81]. These 
hAMSC-laden microcarriers were further used for fabricating a macroscopic bone construct in a 
cylindrical perfusion culture chamber. 

Differentiation towards the adipogenic lineage has been achieved with the media listed in Table 2. 
The formation of multivacuolated cells was proven by Oil Red O staining [1,4,10,18,21,24,56,57] and 
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the induction of mRNA levels of the adipo-specific genes PPARgamma, leptin, lipoprotein lipase 
and fatty acid binding protein aP2 were demonstrated [24,56]. Comparing three different induction 
media for adipogenic differentiation the media according to Pittenger et al. [82],  

 et al. [8] as well as Portmann-Lanz et al. [50] Stadler et al. [21] have reported two of four 
donors being capable of adipogenic conversion. Paracchini et al. [18] observed morphological changes 
as well as formation of lipid droplets starting from one week after induction. However, due to 
considerable donor variability and potentially also due to the use of different protocols, only few 
hAMSC donors have been shown to be capable of converting into adipocyte-like cells [2,21,24,56].  

Chondrogenic differentiation has mostly been demonstrated in pellet cultures using between  
2.5 × 105 and 5.0 × 105 cells per pellet [1,4,10,56]. For induction of chondrogenic differentiation of 
hAMSC, transforming growth factor-beta (TGF-b) was supplemented in all 3D-cultures. Detailed 
media compositions are listed in Table 2. hAMSC differentiated towards the chondrogenic lineage 
produced abundant extracellular matrix visualized by toluidin or alician blue staining. Further they 
stained positive for collagen type II and expressed mRNA of SOX-9, SOX-5, SOX-6, BMP-2, BMP-4, 
BMP receptor (BMPR)-1A, BMPR-1B, BMPR-2, COMP, osteocalcin and aggrecan [1,4,10,23,50,56]. 
Although 3D-culture may be preferential to support chondrogenic differentiation chondrogenic 
differentiation has even been demonstrated in a confluent monolayer [23,50]. 

Myogenic differentiation, another mesodermal lineage, has first been proven by  
Portmann-Lanz et al. [50], showing expression of the transcription factor MyoD as well as skeletal 
muscle myosin heavy chain in 15% 35% of induced hAMSC. Confirming these results, Alviano et al. [1] 
evaluated mRNA expression levels of MyoD and Myogenin after 7 and 14 days, respectively. 
Immunocytochemical staining further visualized desmin-positive cells after 3 weeks.  

Alviano et al. [1] demonstrated also that hAMSC differentiate towards the angiogenic lineage in the 
matrigel assay, showing increased expression of FLT-1, KDR and ICAM-1. Adding VEGR even 
induced expression of CD34 and von Willebrand factor (vWF). However, there are controversial 
reports regarding angiogenic differentiation. Kim et al. [83] confirmed endothelial differentiation of 
hAMSC being cultured in EGM-2 demonstrating FLT-1, KDR, Tie-2 and vWF. König et al. [12] 
demonstrated morphological changes towards endothelial-like appearance, uptake of acetylated  
low-density lipoprotein as well as formation of endothelial-like structures in the matrigel assay. 
However, they have not found hAMSC positive for vWF and VE-cadherin and they assumed that 
hAMSC resisted differentiating into mature endothelial cells. They further analyzed angiogenic 
differentiation of hAMSC using microarray analysis. Interestingly, pro-angiogenic factors (tenascinC, 
Tie-2, VEGF-A, CD146, FGF-2) were found to be downregulated, whereas serpin F1, sprout 1 and 
angioarrestin were upregulated. Supplementing an endothelial cell line culture with the supernatants of 
endothelially-induced hAMSC supplied network-like structures in the matrigel assay. Kim et al. [83] 
confirmed these paracrine effects of hAMSC using conditioned media of induced hAMSC in a 
matrigel-assay with HUVEC.  

Cardiomyogenic differentiation of hAMSC has been demonstrated [25,58] and the differentiated 
cells have already been combined with a scaffold [14]. Undifferentiated hAMSC inherently express 
cardiac-specific genes and transcription factors: Myosin light chain-2a (MLC-2a), MLC-2v, GATA-4, 
cardiac troponin (cTn) T, cTnI and the cardiac-specific ion channel genes alpha1c and Kv4.3 [25]. 
After stimulation with bFGF and activin A, also the cardiac-specific transcription factor Nkx2.5 and 
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human atrial natriuretic peptide were expressed. Co-culturing hAMSC with rat heart explants revealed 
integration and transdifferentiation of hAMSC into cardiomyocyte-like cells. Tsuji et al. [58] could 
increase cardiomyogenic transdifferentiation pretreating hAMSC with interleukin-10 or progesterone 
and even demonstrated spontaneously beating cells derived from hAMSC when co-cultured with fetal 
murine cardiomyocytes. Moreover, hAMSC stimulated with S-nitroso-N-acetylpenicillamine towards 
the cardiomyogenic lineage have been combined with a s-IPN PEtU-PDMS/fibrin scaffold, 
demonstrating increased cardiac and vascular markers [14]. 

Due to their multipotency, hAMSC are also able to differentiate into endodermal lineages including 
hepatocyte-like and pancreatic cells. Undifferentiated hAMSC already express albumin,  
alpha-fetoprotein, cytokeratin (CK) 18 and alpha1-antitrypsin [53]. Following hepatic induction the 
expression of these factors was increased and additionally storage of glycogen was clearly detected. 
Another hepatocyte differentiation protocol was recently published by Paracchini et al. [18]. Beside 
weak expression of alpha1-antitrypsin, increased numbers of cells expressed CK7, albumin and CK19. 
Furthermore, functionality of cytochrome P450-dependent mixed function oxidase was demonstrated.  

Pancreatic differentiation of hAMSC was first demonstrated by Wei et al. [84] although they 
reported higher differentiation efficiency when using hAEC. Tamagawa et al. [22] designed a three 
step procedure (details listed in Table 2) demonstrating successful pancreatic differentiation of 
hAMSC. Morphology changed to rounder epithelial-like cells and many islet-like clusters were 
observed during the second step applying matrigel. Initial mRNA expression of CK19, Pdx-1 and 
Nkx2.2 were increased and insulin, glucagon, Isl-1, GLUT-2, GCK, PAX-6, Nkx6-1 and NeuroD were 
detected after induction. Immunostaining even revealed the proteins insulin, glucagon and 
somatostatin. Kim et al. [11] recently published the generation of functional insulin-secreting cells 
derived from hAMSC in a one step procedure. They could confirm that undifferentiated hAMSC 
already showed low levels of expression of mRNA of pancreatic cell-related genes (NEUROD1, 
GLUT1, PC2 and GCK). Upon induction, hAMSC showed increased expression of INS, PDX,  
Nkx6-1, NEUROG3, ISL1, NEUROD1, GLUT1, PC1/3, PC2, GCK, PPY, SST and GCG. Moreover, 
induced cells secreted insulin as well as c-peptide in a glucose-dependent manner.  

hAMSC are further capable to differentiate towards cells derived from the ectodermal lineages. 
Portmann-Lanz et al. [50] differentiated hAMSC towards the neurogenic lineage revealing 
subpopulations stained positive for CD133, nestin and neurofilament 200. Phenotypes of neuroglial 
progenitor cells were observed applying the protocol of Sakuragawa et al. [51]. Unstimulated hAMSC, 
which express mRNA of the typical neural markers nestin and Musashi1, were induced to increase 
expression of these genes as well as significantly upregulate beta-tubulin isotype III (Tuj1) and 
neurofilament-medium (NF-M). Furthermore, also the number of glial fibrillary acidic protein (GFAP) 
positive cells increased. Tamagawa et al. [85] have demonstrated morphological changes retracted 
bodies, long processes, neuron network-like structures and expression of neuron specific enolase, 
NF-M, TUJ1, GFAP as well as myelin basic protein after neural induction. Manochantr et al. [57] 
evaluated a commercially available neural medium AdvancesSTEM Neural Differentiation Medium 
(HyClone) demonstrating sharp, elongated bi-or-tripolar cells expressing MAP-2, TUJ1 and GFAP. 
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Table 2. Media used for differentiation 

dexamethasone, AAP ascorbic acid or ascorbat-2-phosphate, b-GP beta-glycerophosphate, 
MEM minimal essential medium eagle, vit D3 1alpha,25dihydroxyvitamin D3, b-ME  
beta-mercaptoethanol, IBMX 3-isobutyl-1-methylxanthin, IM indomethacin, ITS  
insulin-transferrin-selenium, TGF-b transforming growth factor-beta, BSA bovine serum 
albumin, BMP-2 bone morphogenetic protein-2, MCDB medium complete with trace 
elements, LA linoleic acid, bFGF basic fibroblast growth factor, VEGF vascular 
endothelial growth factor, IGF-1 insulin like growth factor-1, EGF epidermal growth 
factor, HGF hepatic growth factor, NEAA nonessential amino acid, IMDM Is
modified DMEM, DMSO dimethyl sulfoxide, KCl potassium chloride, PDGF  
platelet-derived growth factor, AMP adenosine monophoshpate. 

lineage reference media description protocol 

osteogenic Pittenger [82] 
DMEM-LG, 10% FCS, 10 7 M dexa,  

50 M AAP, 10 mM b-GP, 10 mM vit D3  

 
In't Anker [8] 

alphaMEM, 10% FCS, 10 7 M dexa,  
50 g/mL AAP, 5 mM b-GP 

b-GP was added from 
day 7 on, 21 days 

 
Portmann-Lanz [50] 

DMEM-HG, 10% FCS, 10 mol/L dexa, 
50 g/mL AAP, 10 mol/L b-GP,  

10 nmol/L vit D3 
18 21 days 

 
Alviano [1] 

DMEM, 10% FCS, 10 8 M dexa,  
0.2 mM AAP, 10 mM b-GP 

21 28 days 

 
Sudo [56] 

DMEM-HG, 10% FCS, 10 7 M dexa,  
0.5 M AAP, 10 mM b-GP 

28 days 

 
Chen [81] 

DMEM, 10% FCS, 100nM dexa,  
0.1 M AAP, 10 mM b-GP, 5 × 10 5 M b-ME 

induction on day 8 for 
20 days 

 
Bilic [2], Diaz-Prado 
[4], Paracchini [18] 

hMSC Mesenchymal Stem Cell 
Osteogenic Differentiation Medium 

(Lonza) 

14 (Bilic) or 21 days 
(Diaz-Prado, 
Paracchini) 

 
Stadler [21], Wolbank 

[24] 
MesenCult Osteogenic Stimulatory Kit 

(OKit, Stemcell Technologies)  
21 (Wolbank) or 28 

(Stadler) days 

 
Manochantr [57], Kang 

[10] 
NH Osteodiff medium (Miltenyi)  14 days (Kang) 

adipogenic Pittenger [82] 
medium 1: DMEM-HG, 10% FCS,  

0.5 mM IBMX, 0.1 M dexa, 10  
insulin, 100 M IM,  

medium 1: 48-72h, 
medium 2: 24h; 3 
repeated cycles;  

  
medium 2; DMEM-HG, 10% FCS,  

10 g/mL insulin 
28 days (Stadler) 

 
In't Anker [8] 

alphaMEM, 10% FCS, 0.5 mM IBMX, 
10 7 M dexa, 1.60 M insulin, 50 M IM, 

50 g/mL AAP 
days (Stadler) 

 
Portmann-Lanz [50] 

DMEM-HG, 10% FCS, 0.5 mmoL/L 
IBMX, 1 mol/L dexa, 10 mol/L insulin, 

200 mol/L IM 

18 21d (Portmann-
Lanz, Wolbank) or 28 

days (Stadler) 
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Table 2. Cont. 

lineage reference media description protocol 

 
Alviano [1] 

DMEM, 10% FCS, 0.5 mM IBMX, 10 6 
M dexa, 10 g/mL insulin, 200 M IM 

14 21 days 

 
Sudo [56] 

medium 1: DMEM-HG, 10% FCS,  
0.5 mM IBMX, 1 M dexa, 10 ng/mL 

insulin, 0.2 mM IM 

medium 1: 3 days, 
medium 2: 3 days; 
repeated cylces for 

24 30 days 

  
medium 2; DMEM-HG, 10% FCS,  

10 ng/mL insulin  

 
Kang [10] 

DMEM-LG, 10% FCS, 1mM dexa, 0.5 mM 
IBMX, 1  insulin, 200 M IM 

21 days 

 
Diaz-Prado [4], 
Paracchini [18] 

hMSC Mesenchymal Stem Cell 
Adipogenic Differentiation Medium 

(Lonza) 
21 days 

 
Bilic [2], Manochantr 

[57] 
NH Adipodiff medium (Miltenyi)  21 days 

chondrogenic Sudo [56] 
alphaMEM, 3.5 g/mL glucose, 1% ITS, 
100  sodium pyruvate, 0.2 mM 
AAP, 10 7 M dexa, 10 ng/mL TGF-b3 

28 30 days, pellet 
culture 

 
Alviano [1] 

DMEM, 1 mM sodium pyruvate, 0.1 mM 
AAP, 10 7 M dexa, 10 ng/mL TGF-b3, 

6.25  insulin, 6.25  
transferrin, 6.25  selenous acid, 
5.33  linolenic acid, 0.35 mM 

proline, 1.25 mg/mL BSA,  
1/1.000 monotioglycerol 

21 28 days, pellet 
culture 

 
Diaz-Prado [4] 

medium 1: DMEM, 15% FCS, 5 mg/mL 
AAP 

first 2 days medium 1,  

  

medium 2: DMEM, 15% knockout serum, 
1 L/mL AAP, 10 M dexa, 1 ng/mL 
TGF-b3, 6  transferrin, 107 M 

retinoic acid 

followed by 21 days 
medium 2; pellet 

culture 

Kang [10] NH chondrogenic medium (Miltenyi)  21 days, pellet culture 

 
Portmann-Lanz [50] 

DMEM-HG, 1% FCS, 50 ng/mL AAP,  
10 ng/mL TGF-b1, 6.25 g/mL insulin 

18 21 days, 
monolayer 

 
Wei [23] DMEM. 10% FCS, 200 ng/mL rhuBMP-2 

induction 21 days 
after confluence,  

14 days 

myogenic Portmann-Lanz [50] 
DMEM-HG, 10% FCS, 50  

hydrocortison, 0.1 mol/L dexa 
18 21 days 

 
Alviano [1] 

DMEM, 5% FCS, 40% MCDB-201, 10 8 M 
dexa, ITS-LA*BSA 1×, 10 4 M AAP,  

10 ng/mL bFGF, 10 ng/mL VEGF,  
10 ng/mL IGF-1 

21 days 
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Bilic [2] 

DMEM-HG, 10% FCS, 5% horse serum, 50 M 
hydrocortison, 0.1 M dexa 

7 days 

angiogenic Alviano [1] DMEM, 2% FCS, 50 ng/mL VEGF 
7 days, followed by 

matrigel assay 

 
König [12] 

Endothelial Growth Medium-2 (Lonza) +/   
50 ng/mL VEGF 

at least 10 days, 
followed by matrigel 

assay 
Kim SW [83] Endothelial Growth Medium-2 (Lonza) 10 20 days 

cardiomyogenic Zhao [25] 
DMEM, 10% FCS, 2nd d addition of 10 ng/mL 

bFGF or 50 ng/mL activin A 

(a) 7 days after 
addition of growth 

factors; (b) coculture 
with rat heart explants 

 
Tsuji [58] unknown 

coculture with fetal 
murine cardiomyocytes 

 
Lisi [14] 

DMEM, 10% FCS, 10 ng/mL EGF,  
55 M b-ME, d2-4: + 0.4 M S-nitoso-N-

acetylpenicillamine 

seeded on s-IPN 
PRtU-PDMS/fibrin 
scaffold, 14 days 

hepatic 
Tamagawa 

[53] 

alphaMEM, 10% FCS, 0.1 mmoL/L dexa,  
20 ng/mL hHGF, 10 ng/mL hFGF,  

10 ng/mL oncostatin 
21 days 

 
Paracchini 

[18] 
medium 1: DMEM, 10% FCS, 1% NEAA, 55 M 

b-ME, 10 ng/mL EGF 
first 8 days medium 

1,  

  
medium 2: IMEM, 10% FCS, 10 7 M dexa, 1% 

NEAA, 55 M b-ME, 10 ng/mL EGF 
followed by medium 

2 until day 21 
pancreatic Wei [84] DMEM, N2 supplement, 0.1 mmoL/L nicotinamide 

 
Tamagawa 

[22] 
medium 1: DMEM-HG, 10 6 M retinoic acid 

first 2 days medium 
1, medium 2 and 3 in 

matrigel 

  

medium 2: DMEM-LG, 10% FCS, 1 × N2 
supplement, 10 mM nicotinamide,  

20 ng/mL hEGF 
 

medium 3: DMEM-LG, 10 nM exendin-4 

 
Kim J [11] 

medium 1: DMEM-HG, 10% FCS,  
10 mmoL nicotinamide, 4 nmol activin A, 10 nmol 

GLP-1 

first 7 days medium 
1,  

  

medium 2: DMEM-LG, 10% FCS,  
10 mmoL nicotinamide, 4 nmol activin A, 10 nmol 

GLP-1 

followed by 14 days 
medium 2 

neural 
Portmann-
Lanz [50] 

DMEM-HG, 10% FCS, 30 mol/L all trans retinoic 
acid 

18 21 days 

 
Sakuragawa 

[51] 

DMEM, 100 M butylated hydroxianisole, 10 M 
forskolin, 2% DMSO, 5 U/mL heparin, 5 nM 

K252a,  
25 mM KCl, 2 mM valporic acid, 1 × N2 

supplement, 10 ng/mL bFGF, 10 ng/mL PDGF 
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Tamagawa 

[85] 
medium 1: alphaMEM, 10% FCS, 1 × N2 

supplement, 10 ng/mL bFGF, 10 ng/mL EGF 

48 h medium 1, 
followed by 96 h 

medium 2 

  

medium 2: alphaMEM, 1 M all trans retinoic acid, 
200 M butylated hydroxianisole, 1× N2 

supplement, 1 mM dibutyryl cyclic AMP, 0.5 mM 
IBMX 

followed by 96 h 
medium 2 

 
Manochantr 

[57] 
AdvancesSTEM Neural Differentiation Medium 

(HyClone) 
until neural like cells 

were observed 

5. Differentiation potential of UC-MSC 

Similar to MSC from BM and other sources, UC-derived MSC, as widely investigated by several 
groups, could be shown to differentiate into adipocytes [26,27,30,33,38,40,63 65,67,68,70,86 108], 
chondrocytes [27,29,33,38,40,63,68,70,86 91,93,94,96,98,99,103,104,106,108,109], and  
osteocytes [26 28,30,33,38,40,41,63 65,67,68,73,86 106,108,110 114]. An overview of the reported 
differentiation potential of UC-derived MSC is given in Table 3. 

Besides  lineages differentiation of UC-MSC into cells of all three 
germ layers has been described. Thus it has been shown that UC-derived MSC could be differentiated 
into functional endothelial progenitor cells after induction with VEGF and bFGF [93,101,115]. 
Furthermore, vessel-like structure formation and even differentiation into skeletal myocyte-like cells 
could be observed [30,86,93]. 

Table 3. Overview of the reported differentiation potential of UC-derived MSC 

lineage reference 

osteogenic 
[26 28,30,33,38,40,41,63

65,67,68,73,86 106,108,110 114] 

adipogenic 
[26,27,30,33,38,40,63 65,67,68,70,86

108] 

chondrogenic 
[27,29,33,38,40,63,68,70,86

91,93,94,96,98,99,103,104,106,108,109] 
myogenic [30] 

angiogenic [86,93,101,115] 

cardiomyogenic [38,68,92,96,116 118] 

hepatic [109,119,120] 

pancreatic [121 124] 

neural [31 33,35,36,65,68,91,104,125 128] 

For the cardiomyogenic differentiation of UC-MSC 5-azacytidine was shown to be a potent agent to 
induce differentiation into cardiomyocyte-like cells shown by changing morphology to a typical 
cardiac phenotype and the expression of specific cardiac markers like N-cadherin, cardiac troponin, 
desmin, alpha sarcomeric actin, and myosin heavy chain [38,68,92,116,117]. Additionally 
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Sphingosine-1-phosphate (S1P) was shown to induce cardiomyogenic differentiation of UC-derived 
MSC, as well [118]. In response to S1P UC-MSC displayed a cardiomyocyte-like morphology and 
expressed alpha-actinin and myosin heavy chain proteins. Furthermore, differentiated cells displayed a 
cardimyocyte-like action potential and voltage gated currents when patch clamping recording was 
applied. However, other groups could not detect cardiac marker expression after induction of 
cardiogenic differentiation of UC-MSC and to our knowledge, only one group reported slightly 
spontaneous beating of differentiated cells after 21 days of culture [96,116]. 

Studies by several groups indicate that UC-derived MSC can also differentiate into cells of the 
endodermal lineage. Thus it could be shown that UC-MSC, when applying appropriate culture 
conditions, can differentiate into hepatocyte-like cells [109,119,120]. After induction with several 
growth factors, like hepatocyte growth factor (HGF), bFGF, or FGF-4 cells displayed a hepatocyte-like 
morphology and expressed several hepatic markers like albumin, alpha-fetoprotein, cytokeratin-19, 
connexin-32, and dipeptidyl peptidase IV. Furthermore, differentiated cells displayed typical 
hepatocyte-specific functions, including albumin secretion, urea uptake, glycogen storage, and  
low-density lipoprotein uptake. Noteworthy first results indicate that UC-MSC do not lose their  
in vitro immune privilege after differentiation underlining that the UC-tissue is a favorable source of 
MSC for clinical applications [120]. However, it should be mentioned that some authors pointed out 
that they did not observe some important characteristics of functional liver cells in hepatic 
differentiated UC-MSC suggesting that these cells can only be differentiated into immature 
hepatocytes [119].  

Regarding other cell types of the endodermal lineage UC-MSC could also be shown to form  
islet-like cell clusters secreting insulin in response to glucose challenge and expressing pancreatic  
beta-cell development-related genes like PDX-1 after induction with appropriate agents like 
nicotinamide or beta-mercaptoethanol [121 124]. Additionally it could be shown that differentiated 
insulin-producing UC-derived cells could alleviate hyperglycemia in diabetic mice [122].  

Investigating the potential of UC-derived MSC to differentiate into cells of the ectodermal lineage 
several groups reported differentiation into neural-like cells [31 33,35,36,65,68,91,104,125 128]. 
Upon stimulation with potent agents like b-FGF, or retionic acid morphological changes and  
neuro-specific marker exp -tubulin III, or neurofilament M, could be observed on 
the mRNA as well as protein level.  

The published data gives strong evidence that UC-derived MSC are mulitpotent cells which are 
capable of differentiating into cells of all three germ layers. However, since UC-MSC are a rather 
heterogenic population, especially when isolated from whole UC-tissue or the WJ, it still remains to be 
investigated whether all or only cells from a distinct compartment of the cord are capable of 
differentiating into all cell types mentioned above. For instance Sarugaser et al. showed that 
perivascular-derived UC-cells displayed a high osteogenic differentiation potential, but could not be 
differentiated into neuron-like cells [41]  et al. reported an only poor 
osteogenic potential of UC vein subendothelial tissue-derived cells [99] and Karahuseyinoglu et al. 
could identify sub-populations in WJ-derived cell cultures from which one, predominately expressing 
cytokeratin, could not be differentiated into neuron-like cells [33]. 
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6. Immunological properties of hAMSC and UC-MSC 

Besides their multi-lineage differentiation potential, MSC were also found to be only weakly 
immunogenic and exhibit immunomodulatory properties which means that they escape immunological 
defense mechanisms and are able to suppress several functions of immunocompetent cells. It has been 
reported that hAMSC and UC-MSC possess an immunoprivileged status as well, which is in part due 
to the expression of low to moderate levels of surface MHC-I, and the presence of low or even absent 
levels of MHC II and costimulatory molecules (e.g., CD40, CD80, CD86) [6,8,11,19,55,65,129 131]. 

Implantation of hAMSC into animals resulted in successful and persistent engraftment in multiple 
organs and tissues. hAMSC survived for at least two months in xenotransplanted myocardial infarcts in 
rat hearts, showing low immunogenicity [25]. Tsuji et al. [58] found hAMSC transdifferentiated 
towards the cardiomyogenic lineage surviving for more than 4 weeks after implantation into infracted 
myocardium in non-immunosuppressed rats. Similarly, implantation of hAMSC into the subfacial 
space of the abdominal muscle in mice and intraperitoneal or intravenous injection into neonatal swine 
did not lead to transplant rejection during the observed experimental period of 35 and 61 days, 
respectively [23,132].  

Implantation of porcine UC-MSC into rat brains resulted in engraftment and proliferation of the 
cells for up to eight weeks without immune rejection or the formation of teratomas [133]. Furthermore, 
when human UC- , the cells did 
not induce the formation of brain tumors or immune rejections but mitigated induced motor deficits [39]. 
Further studies could reveal survival and proliferation of xenotransplanted UC-derived cells for five 
and eight weeks, respectively [134,135].  

In vitro, immunological tolerance was demonstrated by low or absent allogenic reaction, 
coculturing unstimulated allogenic peripheral blood mononuclear cells (PBMC) or other immune cells 
and hAMSC [49,55] and UC-MSC [129,130,136,137], respectively. 

Various in vitro studies have been conducted to define the immunomodulatory potential of MSC 
and the underlying mechanisms are still not fully understood. In this context it is still under discussion 
whether the regulatory effects depend on cell-to-cell contacts or are mediated by soluble factors. 
Several groups have used in vitro co-culture setups to analyze the inhibitory effects of hAMSC and 
UC-MSC on the proliferation of PBMC or other immunocompetent cells stimulated by mixed 
lymphocyte reaction or mitogens (e.g., phytohemagglutinin (PHA)) which was found to be inhibited 
by hAMSC and UC-MSC in a dose-, cell-contact-dependent as well as factor-mediated  
manner [129 131,136 140]. Interestingly cryopreservation of hAMSC significantly decreased the 
immunomodulatory potential, which could, however, not be linked to changes in the expression of 
MHC-I and -II [55]. With regard to soluble factors, several groups have reported that MSC 
constitutively or upon stimulation secrete a variety of mediators among which prostaglandin E2 
(PGE2), indoleamine 2,3-dioxygenase (IDO) and nitric oxide (NO) seem to be key molecules in 
immune regulation. Chen et al. used transwell co-cultures of stimulated PBMC with UC-MSC to show 
that immunosuppression was mainly mediated through a PGE2-dependent mechanism since  
PGE2-production was enhanced upon co-cultivation and blocking of PEG2 biosynthesis completely 
abolished immunosuppressive effects [129]. Furthermore, studies by Cutler et al. implicate monocytes 
as a key intermediary in UC-MSC induced suppression of T cell proliferation since function and the 
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allostimulatory capacity of monocytes are downregulated, which is in part mediated by  
UC-MSC-derived PGE2 [141]. 

Kang et al. confirmed the inhibitory effect of hAMSC on mitogen-stimulated PBMC [10]. 
IFNgamma and IL-17 produced by PBMC was shown to decrease, whereas interleukin (IL)-10 
increased. Concomitantly hAMSC increased levels of secreted TGF-b, HGF, PGE2 and IDO. 
Pretreatment of hAMSC with IFNgamma was shown to enhance their anti-proliferative effects on 
stimulated PBMC and T cells [13]. Whereas CD105 and surface density of CD90 decreased, CD54, 
HLA-DR, CD40, as well as the inhibitory co-stimulatory molecules PD-L1 and PD-L2 were 
upregulated. Coculturing PBMC and IFNgamma-treated hAMSC revealed downregulation of 
chemokines (RANTES, IP-10, MIG, MIP-1alpha, MIP-1beta, MCP-1), cytokines (IL-21, IL-12p70, 
IL-9, IFNgamma, IL-13, TNFalpha, IL-17A, IL-12/IL23p40, IL-4, IL-10) and sFAS-L as well as 
sCD40L, whereas IL-11, IL-6, IL-8 and LIF were upregulated. Quite similar results were obtained 
when analyzing the secretome of stimulated T cell in presence of hAMSC (except for MCP-1 and  
IP-10 which were increased). Two subpopulations of hAMSC have been described which differently 
express MHC-II, CD45, CD14 and CD86, thus resulting in both suppressive and stimulatory  
properties [49]. The stimulatory effect on anti-CD3-primed T cells at low concentrations was reported 
to be attributed to the HLA-DR positive subpopulation. These cells were shown to have characteristics 
similar to human monocytes but have proven to be of fetal origin. 

Besides T cells, MSC were found to influence several other immune cells. Che et al. could show 
that UC-MSC significantly suppressed the proliferation, differentiation, and immunoglobulin secretion 
of B cells in vitro [142]. Furthermore, hAMSC have been shown to suppress differentiation and 
maturation of monocytes into dendritic cells (DC), arresting them in the G0 phase of the cell cycle. 
The presence of hAMSC inhibited the production of inflammatory cytokines including TNFalpha, 
CXCL10, CXCL9 and CCL5 in co-cultured monocytes [15]. Taken together these effects resulted in a 
diminished capacity of DC to activate T cells. Moreover, a comparison of hAMSC to human adipose 
tissue derived stem cells [143] demonstrated superiority of hAMSC regarding the inhibition of 
stimulated monocytes to differentiate into DC. In the described cell contact independent co-culture 
setting, high levels of PGE2 and HGF were found. However, this superiority of hAMSC might not be 
related merely to their early developmental stage, since bone marrow derived cells similarly suppress 
DC differentiation [144 146], whereas multipotent cord blood derived cells do not share these 
properties [147]. 

Moreover, Tsuji et al. [58] not only found surviving hAMSC transdifferentiated towards the 
cardiomyogenic lineage at least 4 weeks after implantation into rat infracted myocardium, they also 
provide an in vivo study on the immunomodulation [58]. They found that retreatment of hAMSC with 
the anti-inflammatory cytokine IL-10 increased the level of HLA-G expressed on hAMSC, which may 
play a role in initial processes of tolerance. Furthermore, regulatory T cells, defined as FOXP3 positive 
lymphocytes, were detected adjacent to implanted hAMSC into infracted myocardium of rat hearts, 
which may be involved in maintenance of tolerance. 
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7. Immortalization of hAMSC and UC-MSC 

Applying MSC for cell therapy, higher cell numbers are required. Furthermore, well characterized 
cell lines, constantly growing while maintaining their typical properties, are highly valuable for 
research. Immortalization is one opportunity to fulfill this requirement. Wolbank et al. [24] could 
successfully establish two cell lines derived from hAMSC using a retroviral transfection system for 
introduction of hTERT. hTERT overexpression in hAMSC maintained fibroblastic morphology, 
surface expression of most hematopoietic and mesenchymal stem cell marker as well as adipogenic 
and osteogenic differentiation potential. Furthermore, immunological properties were similar to 
parental cells and no chromosomal abnormalities or tumorigenic conversion was observed. 

As recently reported, also immortalized MSC from UC vein and Wharton s jelly have been 
established [148,149]. First analysis of these UC-MSC expressing ectopic hTERT revealed that the 
findings regarding immortalized hMSC from common tissues like bone marrow and amnion are 
comparable to preliminary data collected from immortalized UC-MSC. The modified cells increased 
their population doubling capacity up to more than 100 PD with no morphological or karyotypic 
alterations [149]. Flow cytometric analysis of the surface molecules revealed expression of MSC 
specific markers (CD13, CD29, CD105) and lack the expression of CD 34, CD45, HLA-DR. 
Furthermore, these cells were proven to express a set of genes like Oct-4, Nanog, ZFX, Bmi-1 and 
Nucleostemin which are known to be associated with their self-renewal capacity [148]. Immunologic 
analysis show maintenance of the MSC immunotolerance as well as the absence of any tumorigenic 
conversion in vitro or in nude mice during a period of 2 weeks [149]. Furthermore, the differentiation 
of immortalized UC-MSC in hepatocyte-like cells and subsequent analysis of liver specific markers 
showed that these MSC also maintain their multipotent differentiation potential similar to the isolated 
parental cells in early passages. 

However, less is known about the influence of such modifications to the entire expression patterns 
and the impact on hMSC behavior. Such suggestions based on the fact that immortalization via 
common transfection methods based on randomized insertion of the hTERT gene into the genome of 
hMSC. Although immortalized hMSC exhibit near limitless potential, considering the application of 
such cells in clinical trials require either the localization of the exact positions of the transgenes or 
transfection methods which allow exact gene targeting. 

8. Prospective Clinical Applications: Current State and Outlook 

Isolated from biologic waste, ethically non-problematic, stem cells from full-term umbilical cord 
tissue and amniotic membrane are easily available and may present an attractive completion to other 
classically established stem cells (e.g., from bone marrow) in different clinical approaches. Since it has 
been shown in numerous papers that MSC have the ability to down-regulate immune response and 
support tissue repair mechanisms their use has been widespread for the treatment of many different 
diseases. Currently performed studies often apply MSC from bone marrow (39 studies in different 

 clinical trials 
has been documented using MSC from bone marrow, 43 studies for UC-MSC (3 for MSC from 
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Wharton s jelly respectively) and only one is documented for MSC isolated from amniotic  
membrane [150].  

The application of UC-MSC in the documented studies include treatment of Graft vs. Host Disease 
(GvHD), hepatic cirrhosis, colitis ulcerosa, type 1 diabetes and treatment of diabetic foot wounds, 
cardiomyopathy, Alzheimer disease, different autoimmune diseases e.g., multiple sclerosis and 
muscular dystrophy, neuromyelitis optica and rheumatoid arthritis.  

UC-MSC have for instance been applied in the treatment of 160 patients after myocardial infarction in 
a double-blind, placebo-controlled, multicenter phase 2 trial (by Navy General Hospital, Beijing, 
completed July 2012) [151]. Several papers report on differentiation of UC-MSC into cardiomyocyte-
like cells [38,152,153], but functionality of these derived cells is also controversially discussed [96,154]. 

Twenty-two clinical trials use MSC for the treatment of Graft vs. Host Disease (GvHD) whereas the 
most recent studies started recruiting patients in 2012. UC-MSC have also been applied for the 
treatment of Alzheimer disease (NCT01547689) and in HIV patients (NCT01213186). Successful and 
promising preclinical studies on UC-MSC and hAMSC performed to date and their diverse properties 
offer these cells the possibility for future clinical use in the treatment of various diseases. Till then 
some major obstacles, such as translation from research to GMP-scale, market authorization and 
clinical application will need to be resolved. 

9. Conclusion 

Taken together, the results of published data and clinical trials on MSC have proven to provide 
great potential for different therapeutic applications. Due to their young age, UC-MSC and hAMSC 
possess high proliferative capacity and expansion potential; thus, the in vitro expansion process can be 
reduced with regard to time and passage number. In addition, a reduction of labor intensive work risks 
of contamination and damages (e.g., inadvertant epigentic modifications) during in vitro expansion can be 
achieved. The combination of retaining multilineage differentiation potential with their immunmodulatory 
properties make MSC from umbilical cord tissue and amnion promising cell therapeutics.  
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