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Abstract: An on-farm research study was carried out on two small-plots cultivated with two cultivars
of durum wheat (Odisseo and Ariosto). The paper presents a theoretical approach for investigating
frequency vegetation indices (VIs) in different areas of the experimental plot for early detection
of agronomic spatial variability. Four flights were carried out with an unmanned aerial vehicle
(UAV) to calculate high-resolution normalized difference vegetation index (NDVI) and optimized
soil-adjusted vegetation index (OSAVI) images. Ground agronomic data (biomass, leaf area index
(LAI), spikes, plant height, and yield) have been linked to the vegetation indices (VIs) at different
growth stages. Regression coefficients of all samplings data were highly significant for both the
cultivars and VIs at anthesis and tillering stage. At harvest, the whole plot (W) data were analyzed
and compared with two sub-areas characterized by high agronomic performance (H) yield 20% higher
than the whole plot, and low performances (L), about 20% lower of yield related to the whole plot).
The whole plot and two sub-areas were analyzed backward in time comparing the VIs frequency
curves. At anthesis, more than 75% of the surface of H sub-areas showed a VIs value higher than
the L sub-plot. The differences were evident also at the tillering and seedling stages, when the 75%
(third percentile) of VIs H data was over the 50% (second percentile) of the W curve and over the 25%
(first percentile) of L sub-plot. The use of high-resolution images for analyzing the frequency value of
VIs in different areas can be a useful approach for the detection of agronomic constraints for precision
agriculture purposes.
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1. Introduction

Monitoring the spatial and temporal variability of wheat within a season is crucial to
decision-making in precision farming. Precision agriculture is a modern farming management
concept using digital techniques to monitor and optimize agricultural production processes. Precision
agriculture can play an important role in enhancing crop yield and ensuring sustainability [1]. Among
the tools used to acquire information, unmanned aerial vehicles (UAVs) equipped with visible
and near-infrared cameras, provide, in a fast and easy way, field data for precision agriculture
applications [2,3]. The resolution of information from satellite data typically ranges from 5 to 30 m
pixels and is unsuitable in agronomy trials given the limitations of real-time monitoring and accuracy [4].
In contrast to satellite imagery and aircraft-based remote sensing, UAVs can be used frequently during
the entire growth period [5]. Furthermore, vegetation indices (VIs) of UAV imagery have the same
ability as ground-based recordings to quantify crop responses to experimental treatments [6]. UAVs are
a useful technology for crop monitoring at different scales and can be used for agronomic experiments
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where space, resource, and time constraints limit manual sampling [7]. Furthermore, UAVs provide
images at small pixel sizes (3–5 cm2 pixels), with a higher resolution than an aerial or satellite
platform [8–10]. Moreover, a field can be frequently surveyed to study ongoing different phenological
development phenomena [3]. Unmanned aerial vehicles equipped with near-infrared (NIR) and
multispectral sensors have been useful in the research environment for determining principal spectral
patterns and wavebands that relate to plant stress, through the estimation of vegetation indices (VIs),
which are based on formulations fitted with the canopy light reflected at different wavelengths [11,12].
Starting from wavebands and spectral patterns, different VIs have been developed and were related to
vegetation canopies including plant nutrient status, plant growth rate, physiological conditions, and
crop yields [13–16]. Among VIs, the normalized difference vegetation index (NDVI) and optimized
soil-adjusted vegetation index (OSAVI) are generally employed as the typical quantitative data for the
estimation indicator of crop growth. Crop phenotyping involves the measurement and evaluation
of physical characteristics such as biomass, leaf area index (LAI), height [17,18] and that represents
a bottleneck for the fine-tuning management of field crops [19]. Crop phenology is characterized
by a set of growth stages; it is well known that a single crop trait in a single growth stage plays
an important role in establishing the final grain yield [20,21]. These phenological events affect the
vegetation index (VI) value and provide essential information for the detection of the agronomic
practices and the identification of sub-field areas having the same yield-limiting factors or similar
attributes that significantly affect crop yield [22].

Indeed, there are still many aspects to be analyzed in order to discriminate homogeneous
agronomic areas, starting from spectroradiometric data, because many agronomic factors affect spatial
and temporal crop variability. For precision agriculture purposes it is important to define, within each
field, sub-areas having similar biotic or abiotic factors that are expected to affect yield significantly [23]
and point out an automatic technique to detect homogeneous sub-areas. The most appropriate time to
start crop monitoring for defining sub-plot areas remains unsolved [22]. Several cluster methods [24],
among vegetation indices, and crop and soil parameters for delineating management zones maps have
been used. Candiago et al., [3] proposed a new approach for analyzing the high-resolution contents of
the VI images based on relative frequency distributions of VIs on vineyard and tomato crop, identifying
best and worst vegetative areas, stating however that the main limitation of the study was the lack of
ground measurements.

In the present paper, a new approach is proposed based on the combination of cluster analysis,
relative frequency distribution of VIs and ground agronomic data of winter wheat cultivars.

Since each VI has its own peculiar suitability for specific purposes and practical applications,
ground agronomic data of Odisseo (O) and Ariosto (A) at seedling, tillering, and anthesis have been
linked to NDVI and OSAVI indices to verify the ability of VIs to detect yield and yield components.

Once the ability to detect crop parameters has been verified, within each cultivar, the relative
frequency value of high-resolution VI data of the whole plot and of two homogeneous sub-areas
identified by cluster analysis [22], one with high yield (HO and HA) and the second one with low yield
(LO and LA) were investigated. The whole plot and the sub-areas were analyzed backward in time to
assess the power of high-resolution VI data to detect, explain, and quantify the agronomic spatial and
temporal variability.

2. Materials and Methods

2.1. Study Area and Field Measurements

An on-farm research study was carried out in Central Italy (411081.29 E, 4730618.48 N; UTM-WGS84
zone 33N Italy), in a flat area at 75 m above sea level, in the 2015 crop season. The experimental
field (2 hectares) was cultivated with different plots of durum and winter wheat. Two cultivars of
durum wheat, Odisseo and Ariosto, were cultivated on small plots 24 m × 30 m (720 m2), previously
cultivated with soybean. Sowing was performed in December 2014 (200 kg of seeds ha−1) and the crop
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was harvested in July 2015. The soil was prepared with the help of minimum-tillage equipment and
basic fertilization was performed with 200 kg ha−1 of P2O5 (27%). Nitrogen was applied at the end of
March (tillering) with a slow release nitrogen fertilizer, 35% N; 23% SO3, and at April (booting/stem
elongation) with 150 kg ha−1 of fertilizer with 30% N; 23% SO3 and with two foliar nitrogen application.
The weed and pest control scouting was carried out with chemical pesticides during the crop cycle.

A standard agro-meteorological station was placed in the experimental fields and temperatures,
rainfall, wind, humidity, and radiation were recorded. The minimum temperature (−1 ◦C) was
recorded in December 2014, while the maximum (36.2 ◦C) was recorded in July 2015. Through the
whole cropping season (December 2014–July 2015), precipitation amounted to 680.2 mm; a good half
of the total precipitation was recorded in 6 weeks, from the final third of January to the first third of
March. From tillering to anthesis, rainfall was scarce, while from anthesis to ripening, rainfall was
considerable. Air temperatures were mild from emergence to anthesis and afterwards, maximum air
temperatures were around 30 ◦C, as expected.

The phenological stages of the wheat crop were periodically recorded according to the Zadoks Scale
(ZS), which is a standardized reference scale used to evaluate and measure plant growth stage in cereals [25].
During the crop growth, sampling was carried out for each cultivar: 10 at seedling growth 13—ZS
(February 23), 12 at tillering 25—ZS (March 30), 11 at anthesis 65—ZS (May 14), and 11 at harvest—99 ZS
(July 7). Plants from 0.5 m2 were georeferenced and hand cut for the calculation of yield-related traits
(biomass, green leaf area index—LAI, number of spikes, plant height, yield, and thousand kernels weight).
For each cultivar, 44 georeferenced samplings during crop growth were collected.

Whole plant dry mass was determined after oven drying the fresh plant material at 75 ◦C until
constant weight for 48 h. The sampling points based on visual-spatial crop variability and identified by
low-resolution orthoimages of flight were processed in real time in the field. Ground truth coordinates
of target locations were recorded with GPS Leica Viva GS15 (Leica Geosystems AG, Heerbrugg,
Switzerland) at each sampling and flight.

Furthermore, at harvest, within each cultivar, yield data and yield components of the whole
plot (720 m2) were measured, as well as for four sub-areas, 10 m2 each was characterized by the
different yield levels in Figure 1 (H = high yield and L = low yield). The sub-areas were selected
within the homogeneous areas detected using a hierarchical clustering method, Ward’s minimum
variance approach, as reported in a previous paper for Odisseo [25] and calculated for Ariosto. NDVI
and OSAVI high-resolution data of the four areas were analyzed backward in time to deliver relative
frequency histograms of VI values.
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2.2. UAV System and Flight Missions

Four flight missions were carried out in the same dates to measure the destructive plant samples: for
seedling (February 23), tillering (March 30), anthesis (May 14), harvest (July 7), with eBee UAV (senseFly,
Cheseaux-sur-Lausanne, Switzerland). The eBee, designed as a fixed-wing UAV for application in
precision agriculture (payload of 150 g). All flights were carried out in stable ambient light conditions
from 11:30 a.m. to 1:00 p.m., with excellent visibility and wind below 5 m s−1, at a flight altitude
of 97 m (A.G.L.). The imaged area of the experimental field, including the surroundings, is about
15 hectares so that 96 camera stations (single flight) and 15 min flight were needed. The autopilot
analyzes (continuously) the inertial measurement unit (IMU) and onboard GPS data to control every
aspect of the eBee’s flight. The integration of the UAV and sensors with GPS and IMU enables obtaining
direct georeferencing imaging after image processing. At any acquisition date, two flights were carried
out, the first one by a Canon Powershot S110 photo camera (visible spectrum, RGB-red/green/blue) for
visible RGB image (orthophoto) to run a rapid analysis for visual crop variability. The second flight
used a Canon Powershot S110 NIR camera (near infra-red, NIRGB—near infra-red/green/blue) which
provides maximum absorption peaks at 550 nm (green), 625 nm (red), and 850 nm (NIR) wavelengths,
respectively, allowing the computation of VIs.

The S110 RGB and S110 NIR camera characteristics were: weight 0.7 kg, resolution 12 million
pixels, sensor size 5.58 × 7.44 mm2, pixel pitch 1.33 µm, and format images RAW JPEG. The S110 RGB
camera acquired the true-color, while the S110 NIR acquired the false-color image data at 0.55 µm
(green), 0.625 µm (red), and 0.85 µm (NIR) bands.

To avoid geometric distortion due to low altitude, 96 overlapping pictures from each camera and
flight were used for mosaicking to produce an ortho-image. An 80% frontal overlap and an 80% side
overlap were used.

To relate and orient UAV imagery to the ground, ten ground control points (GCPs) were distributed
across the field at the beginning of the season, to obtain photogrammetric imagery with uniform
vertical and horizontal accuracy. The GCPs were 25 cm × 25 cm square, with a specific albedo for
camera calibration (atmospheric corrections). The GCP coordinates were ensured with a Leica Viva
GS15 (Leica Geosystems AG, Heerbrugg, Switzerland) GPS (horizontal accuracy of 0.025 m-vertical
accuracy of 0.035 m). Fixed targets were used for a more accurate geo-referencing of UAV aerial
imagery and for overlaying the measurements from multiple dates.

2.3. Data Processing

The acquired images were processed by the eMotion software (senseFly, Cheseaux-sur-Lausanne,
Switzerland) to generate low-resolution visible (RGB) images of the crops. The eBee’s supplied
software to build a project using the drone’s geo-tagged images. The project is loaded on a laptop in
Pix4Dmapper Ag (senseFly, Cheseaux-sur-Lausanne, Switzerland) to run a rapid analysis for visual
crop variability.

The multiple overlapped images of the whole plot were stitched and ortho-rectified to create
the geo-referenced ortho-mosaicked image. In the laboratory, data processing (orthomosaicking) of
acquired images were performed with Postflight Terra 3D software package, a customized version of the
Pix4D digital photogrammetric solution specifically optimized for the eBee, to generate ortho-images.
Postflight Terra 3D incorporates a scale-invariant feature transform (SIFT) algorithm to match key
points across multiple images [26] and process data in three key steps: (1) initial processing, (2) point
cloud densification, and (3) orthomosaic generation.

Ortho-rectification by aero-triangulation and mosaicking were elaborated for processing, starting
from the exterior position and orientation parameters provided by the UAV internal system
(roll, pitch, and yaw angles). Orthoimages were produced from the flights, with a pixel resolution
of 5 cm. Ten GCPs (Leica Viva GS15 (Leica Geosystems AG, Heerbrugg, Switzerland) were used to
complete the external camera orientation. The orthomosaic was georeferenced to UTM-WGS84 zone
33N Italy. The final outputs were an RGB (Visible) GeoTIFF with a resolution of 5 cm2 pixels.
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The normalized difference vegetation index (NDVI) and the soil-adjusted vegetation index (SAVI)
layers were generated in a raster calculator from extracted red (R) and near infra-red (NIR) channels.
The index calculator function of Postflight Terra 3D was used for generating VI maps. A certificate of
calibration of Canon S110 NIR was uploaded in the software to optimize internal camera parameters,
such as focal length, principal points, and lens distortions. The ten GCPs with a known albedo for
Red, Green, and NIR channel (reflectance panel) were used to calibrate the camera to achieve uniform
quality of image (exposure and brightness) and for atmospheric correction in the software section
“processing options,” point 3 DSM, orthomosaic, index and for creating VIs map. The resolution of
the reflectance map has been set at 5 cm2 pixels, the whole map was elaborated for each VI and date,
and the NDVI and OSAVI formula were selected (index map function). The final outputs were an
NDVI GeoTIFF and an OSAVI GeoTIFF, both with a resolution of 5 cm2 pixels. GeoTIFF images and
georeferenced sampling data were processed for agronomic purpose with QGIS 2.8.1.

2.4. Vegetation Indices

The normalized difference vegetation index (NDVI) was calculated according to Equation (1):

NDVI = (NIR − RED)/(NIR + RED) (1)

The NDVI ranges from −1.0 to 1.0, where positive values indicate increasing greenness and
negative values indicate non-vegetated features. It has some disadvantages though such as saturation
in later growth stages [27,28].

The optimized soil-adjusted vegetation index (OSAVI) was calculated according to Equation (2).
The OSAVI index was proposed by Rondeaux et al. [29] using reflectance in the red and near-infrared
bands; through the following formulation:

OSAVI = (NIR − RED)/(NIR + RED + 0.16) (2)

where 0.16 is the soil adjustment coefficient, selected according to the optimal value to minimize soil
background variations.

2.5. Statistical Analysis

Regression analysis, coefficients of determination, significance levels, and RMSE were computed
on two sets of geo-referred data: ground crop samplings (LAI, Biomass, and spikes for square
meter) and remote UAV data using the statistical package Origin PRO 8 (Origin Lab Corporation,
Northampton, MA, USA). H and L sub-area were selected starting from homogeneous areas identified
in a previous paper [22] as follow: the yield-related traits and VIs data were analyzed using the
hierarchical clustering Ward’s minimum variance approach [30] to classify observations into groups,
in which the group members have common properties. Statistical procedures were computed using
OriginPRO 8. The difference between H and L sub-areas were recorded by the analysis of variance.

3. Results and Discussion

Ground agronomic data (biomass, green leaf area index, spikes, and plant height) of each cultivar
have been correlated to high-resolution multispectral images (NDVI and OSAVI). The correlation of
the whole crop cycle data was performed in accordance with van Ittersum et al. [31], who states that
it is essential to study the relationship among VIs and crop traits, to evaluate and estimate the yield
potential and the yield gap (Table 1). In the present study, polynomial regressions were found to be
the simplest adjustment to report the time-course variability along the growth stage, starting from
seedling to harvest. Moreover, significant relationships with different R2 values were found for both
the indices and crop growth traits. The spectro-radiometric response of the wheat canopy was not
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linear during the growing period in accordance with Aparicio et al. [32] and Dang et al. [33], since the
high sensitivity of the VIs when LAI is lower (early season) and less sensitive after the canopy closes.

The relationships among VIs and crop parameters were highly significant: the R2 for NDVI vs.
biomass reached 0.953 for Odisseo and 0.859 for Ariosto, while the R2 of OSAVI vs. biomass was
0.943 for Odisseo and 0.857 for Ariosto. The relationships among each VI and LAI showed an R2 of
0.910 for NDVI Odisseo and R2 of 0.777 for Ariosto, and it was 0.879 for OSAVI Odisseo and 0.763
for Ariosto. The relationships among each VI and height showed an R2 of 0.828 for NDVI Odisseo
and 0.817 for OSAVI Odisseo and R2 of 0.518 for both NDVI and OSAVI for Ariosto. Ground truth
georeferenced data of the number of spikes per square meter at harvest stages were also related to
NDVI and OSAVI data; significant relationships were found with an R2 of 0.788 for Odisseo and 0.769
for Ariosto recorded for NDVI index and an R2 of 0.790 for Odisseo and of 0.597 for Ariosto recorded
for OSAVI index.

Briefly, all R2 of yield components were highly correlated (p-value < 0.001) with VIs, and are
higher for Odisseo than the Ariosto.

Table 1. Polynomial regression analysis of vegetation index (VI) data and crop parameters each
based on 44 data points. LAI = leaf area index, RMSE = root mean square error. Significance level:
p-value < 0.001.

Odisseo Ariosto

NDVI OSAVI NDVI OSAVI

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Biomass 0.953 0.06 0.943 0.062 0.859 0.075 0.857 0.082
LAI 0.910 0.059 0.879 0.076 0.777 0.095 0.763 0.106

Spikes 0.788 0.067 0.790 0.075 0.769 0.042 0.597 0.065
Height 0.828 0.083 0.817 0.102 0.518 0.105 0.519 0.127

3.1. Agronomic Data and VIs at Different Crop Growth Stages

In the whole plot, the biomass at seedling stage ranged from 68 to 156 g m−2 for both cultivars
and that of LAI (0.12 to 0.47) (Table 2), while VIs ranged from 0.26 to 0.57 for NDVI and from 0.38 to
0.65 for OSAVI, for both cultivars. The light differences recorded within yield components as well as
VIs value gave no significant relationships among VIs and yield components (Table 3). This was due to
a low amount of accumulated biomass and LAI values, as well as the difficulties of simple indices to
discriminate between soil and vegetation as found also by many authors, such as Aparicio et al. [34]
and Chlingaryan et al. [24].

At the tillering stage, the spatial variability of crop traits was highly evident; thus, the most
productive data was shown by the biomass and LAI which was four times higher than the less favored
zones (Table 2).

In the most productive zones, VI values ranged from 0.85 to 0.99 (for both cultivars), which
revealed 2.5 times more than the lower value (Figure 2).

The relationships between VIs and crop parameters were highly significant for both cultivars
(Table 3). For biomass, the R2 reached 0.88 for Odisseo and 0.66 for Ariosto for LAI, the R2

reached 0.85 for Odisseo and 0.69 for Ariosto. The plant height and VI regression were not
significant for Ariosto. These results are in accordance with findings of several authors at tillering,
for example Dalla Marta et al. [35] found a highly significant (positive) relationship with biomass
weight, while Reyniers and Vrindts [36] and Magney et al. [37] found respectively an R2 of 0.76 and
R2 = 0.62 between NDVI and biomass.

At anthesis, the high spatial variability of the crop traits value and VI values were still evident
for both cultivars (Table 2, Figure 2). VIs were highly correlated to crop traits as reported in Table 3;
the values of the R2 for NDVI vs. biomass reached 0.89 for Odisseo and 0.82 for Ariosto, while the R2

of OSAVI vs. biomass was 0.80 for Odisseo and 0.78 for Ariosto (p < 0.001).
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Figure 2. Normalized difference vegetation index (NDVI) and optimized soil-adjusted vegetation index
(OSAVI) images for Odisseo (upper plot) and Ariosto (lower plot), at seedling, tillering, and anthesis
growth stages.

Table 2. Range value (min and max), mean and standard deviation (SD) of yield components (biomass,
LAI, plant height, and spike) and vegetation indices (VIs) (NDVI and OSAVI) measured at seedling,
tillering, and anthesis stages.

Growth Stages Yield Components and VIs Odisseo Ariosto

Min Max Mean SD Min Max Mean SD

Seedling

Biomass (g m−2) 72.2 156.1 102.1 30.0 67.5 145.0 97.8 26.6
LAI 0.167 0.472 0.267 0.086 0.123 0.424 0.269 0.089

NDVI 0.266 0.467 0.383 0.083 0.263 0.569 0.414 0.098
OSAVI 0.386 0.596 0.499 0.087 0.381 0.650 0.532 0.088

Tillering

Biomass (g m−2) 116 558 332 149 185.2 740.8 363.05 185.9
LAI 0.328 1.610 0.922 0.409 0.500 2.259 1.106 0.566

Plant height (cm) 34.5 54.5 45.8 5.43 28.3 45.6 39.1 5.2
NDVI 0.338 0.828 0.639 0.165 0.434 0.857 0.637 0.145
OSAVI 0.400 0.978 0.755 0.195 0.500 0.991 0.743 0.166

Anthesis

Biomass (g m−2) 282 1116 761 258 587.5 1453.9 911.5 251.6
LAI 0.732 2.56 1.722 0.546 1.32 2.69 1.94 0.459

Spikes (n◦ m−2) 217 527 411 91 258 651 415 119
Plant height (cm) 39.0 73.0 63.2 10.7 60.0 73.0 69.5 3.9

NDVI 0.527 0.838 0.753 0.092 0.654 0.876 0.814 0.073
OSAVI 0.631 1.004 0.892 0.112 0.725 1.067 0.955 0.105
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Table 3. Polynomial regression analysis of VIs data and crop parameters (whole plots) during crop
cycle (seedling, tillering, and anthesis). LAI = leaf area index, RMSE = root mean square error,
n.s. = not significant.

Growth Stages VIs Yield Components Odisseo Ariosto

R2 RMSE p-Value R2 RMSE p-Value

Seedling
NDVI

Biomass n.s. 0.0588 0.039 n.s. 0.082 0.012
LAI n.s. 0.0577 0.034 n.s. 0.079 0.097

OSAVI
Biomass n.s. 0.5175 0.032 n.s. 0.071 0.092

LAI n.s. 0.0684 0.079 n.s. 0.076 0.144

Tillering

NDVI
Biomass 0.882 0.063 0.001 0.665 0.077 0.007

LAI 0.852 0.070 0.001 0.689 0.089 0.005
Plant height 0.866 0.091 0.002 n.s. 0.141 0.320

OSAVI
Biomass 0.937 0.851 0.001 0.672 0.105 0.007

LAI 0.844 0.085 0.001 0.687 0.103 0.005
Plant height 0.859 0.110 0.002 n.s. 0.16 0.250

Anthesis

NDVI

Biomass 0.893 0.033 0.001 0.818 0.007 0.001
LAI 0.843 0.040 0.001 0.694 0.073 0.422

Spikes 0.725 0.060 0.001 0.768 0.044 0.001
Plant height 0.736 0.070 0.030 0.820 0.046 0.010

OSAVI

Biomass 0.804 0.756 0.001 0.777 0.055 0.002
LAI 0.745 0.063 0.002 0.672 0.106 0.470

Spikes 0.680 0.074 0.008 0.697 0.060 0.001
Plant height 0.680 0.091 0.061 0.803 0.070 0.016

These results are in accordance with the Marti et al. [38], who found the highest correlation
values between growth and NDVI measurements when performed around anthesis, such as with
Villegas et al. [39] that reported the highest values of R2 for the relationship between NDVI and crop dry
weight at anthesis. Cabrera-Bosquet et al. [40] have demonstrated a strong linear regression between
durum wheat and VIs. On the contrary, Dalla Marta et al. [35] found completely different results,
with no correlations observed between the crop parameters and the indices, due to VIs saturation.

3.2. Backward Analysis

Table 4 reports yield and yield components at harvest for the complete plot (W), as well as data of
the two sub-areas, HO and HA with high yield and LO and LA with low yield.

Table 4. Yield (t ha−1), biomass (g m−2), spike number (n◦ m−2), and plant height (cm) of Odisseo
and Ariosto at harvest stage. Mean data are related to the whole plot (W) and to the sub-areas;
Ho (high yield of Odisseo) and HA (high yield of Ariosto), LO (low yield Odisseo), and LA (low yield
Ariosto). The p-level values are related to H and L significant differences within each cultivar.

Odisseo Ariosto

W HO (SD) LO (SD) p-level W HA (SD) LA (SD) p-level

Yield (t ha−1) 5.73 6.77 (0.83) 4.66
(0.61) <0.0064 5.05 6.17 (0.44) 3.94 (0.25) 1.26 × 10−4

Biomass (g m−2) 760 1029 (106) 500 (208) <0.0398 911 1171 (200) 682 (77) <0.0039
Spikes (n◦ m−2) 412 509 (74.3) 320 (27.3) <0.0034 360 465 (25) 230 (31) 2.39 × 10−5

Plant height (cm) 63.2 72.2 (2.95) 50.5 (8.5) <0.0236 69.5 72.5 (5.57) 66.25 (4.78) n.s.

The yield data of both cultivars were in accordance with those reported by Visioli et al. [41] in
Italy. The crop yield of the whole plots was 5.73 t ha−1 for Odisseo (WO) and 5.05 t ha−1 for Ariosto
(WA). The yield of HO and HA were about 20% higher than the whole plot yield, which in turn were
20% higher than LO and LA. Yield components were ranked according to the yield levels: biomass and
spikes per square meter of H were about 25–35% higher than the W and 37–50% higher than L sub-plot
areas. Differences in plant heights were less marked.
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The subplot detected at harvest was analyzed backward in time from anthesis to seedling.
At anthesis, the analysis of VI value frequencies showed the maximum evidence of different crop

status of H and L sub-areas and W plots. More than the 75% of the surface of the sub-areas showed
a value higher (H sub-plot) or lower (L sub-plot) than W plot (Figure 3). The H and L areas curves
showed a low overlapping. The H curve appeared narrow and tall. Data were confirmed by all the
yield components that were significantly different from each other in the two sub-areas and W plot.

At tillering, the histogram of VIs frequency (Figure 4) shows differences among the whole plot
data, both H and L areas. These differences were lower than those detected at the anthesis stage.

For both the cultivars and indices, the H zones showed values of the frequency which were higher
than the 75% of HO and HA, and LA, LO VI values were higher and lower respectively than the median
value of the whole plot.
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Figure 4. Relative frequency curves of the two VIs, NDVI (a–c) and OSAVI (b–d) within each cultivar,
Odisseo (a–b) and Ariosto (c–d). In grey, the whole plot (W) curves have been shown, in red the
low-yield sub-areas (L), and in blue the high-yield sub-areas (H) at the tillering stage.



Agronomy 2019, 9, 226 10 of 13

At the seedling stage, the relative frequency curves of the two VIs are presented in Figure 5.
In all the graphs, the curves appeared to be very close, except for the OSAVI of Ariosto (d) at the
seedling stage.

In all graphs, about 75% of the H data (third percentile) were higher than the second percentile of
the W curve as well as the first percentile of L data. The highest differences between H and L curves
were detected for the OSAVI index, Ariosto (d), because the index that considers soil brightness are
perform slightly better than the NDVI, as reported in different studies [42,43].Agronomy 2019, 9, x FOR PEER REVIEW 10 of 13 
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low-yield sub-areas (L), and in blue the high-yield sub-areas (H) at the seedling stage.

4. Conclusions

In the last few years, UAVs have been used as tools that provide a high number of information
per square meter for precision agriculture management and its development. The potentials of the
information provided by the drone images have not yet been fully explored. In this paper, we have
analyzed the frequency distribution curves of high-resolution VIs images of the two cultivars of
durum wheat.

Within each cultivar, two yield sub-areas were detected by cluster analysis at the harvest stage and
analyzed backward at different growth stages, in comparison with the whole plot data. The crop yield
of the whole plots revealed 5.73 t ha−1 for Odisseo (WO) and 5.05 t ha−1 for Ariosto (WA). The yield for
HO and HA recorded 20% higher than the whole plot yield, which in turn were 20% higher than LO

and LA, moreover the biomass and the spikes per square meter of H was noted 25–35% higher than the
W and 37–50% higher than L sub-plot areas, confirming the ability of cluster analysis to detect groups
with the same variability.

The analysis of frequencies of high-resolution VI images showed that the 75% of H data
(third percentile) were recorded higher than the second percentile of the W curve as well as for
the first percentile of L data. The maximum evidence of different crop status of H and L sub-areas and
W plots were detected at anthesis by both indices and cultivars.

The analysis of frequency curves provided significant differences at the seedling stage where
agronomic parameters showed only slight differences which were revealed as not significant following
the traditional approach (regression between agronomic traits and VIs). For Ariosto, the seedling
OSAVI index showed an interesting differentiation among areas, confirming the ability of OSAVI to
consider the soil brightness.
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The analysis of frequencies of high-resolution VI images provided detailed information on crop
spatial and temporal variability and can allow developing a new approach for automatic detection of
suitable vegetation indices, and spatial and temporal crop variability for precision agriculture practices.

Author Contributions: The authors, S.M. and A.A. contributed equally to this work.
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