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Abstract: The commonly used greenhouse crop yield prediction models today have their specific
application scenarios, which may not ensure the accuracy of the results if the greenhouse environment
changes. This greatly restricts their use in the greenhouse environment. To solve this problem, two
widely used tomato growth models were compared in the study: TOMGRO and Vanthoor, and
then an integrated model was obtained. Through the extended Fourier amplitude sensitivity test
(EFAST), the model parameters were divided into three categories: optimized, fixed and ignored.
In addition, Bayesian optimization was used as an optimization algorithm, through which the
parameters applicable to the greenhouse can be optimized based on the greenhouse data. Compared
with TOMGRO and Vanthoor, the output of the integrated model was more reasonable and universal,
and the RMSE in the integrated model was 2.5974 while that in TOMGRO and Vanthoor both were
over 17, reflecting the fact that the model output was closer to the actual value. According to the
verification results of four-year greenhouse data, the model had high performance in predicting yield.

Keywords: greenhouse crop growth model; TOMGRO; Vanthoor; sensitivity analysis; EFAST;
Bayesian optimization

1. Introduction

Crop growth model is an essential part for the optimization of the cultivation management.
Besides, it can also benefit the environment control. As we all know, the greenhouse environment is a
complex system with multi-variables, nonlinearity, strong coupling and large inertia. The crop growth
greatly affects the environment factors with the transpiration and photosynthesis. However, due to
the complex mechanism and numerous parameters, the growth model has few applications in the
greenhouse and the several widely used growth models are based on specific application scenarios,
which is not applicable if the environment changes. The lack of growth models has led to insignificant
increases in crop yields and unsatisfactory control effects in greenhouses microclimate. Therefore,
there is an urgent need for a more versatile and applicable crop yield model.

Growth models mainly consist of two categories according to the principle: descriptive model
and explanatory model [1,2]. The descriptive model based on the existing theoretical knowledge
and practical experience, determines the correlation between the research factors through statistical
regression analysis of mass crop data [3]. Based on the dynamics principle, the explanatory model
describes the relationship between environmental factors, cultivation management and crop growth,
morphological development and yield forming process [3].

The two types of model above have their own advantages and disadvantages, but the explanatory
model is more practical to reflect the actual growth process of crops. Moreover, with the deep research
on crop physiological mechanisms and the development of computer technology, the explanatory
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model will be a trend for crop model development. For many years, scholars have conducted extensive
researches on the explanatory model of crop growth. Jones et al. [4] proposed the TOMGRO model for
the growth and development of tomato, parameters of which were mainly based on crop stems.
Heuvelink [5] proposed the TOMSIM model, which focused on the study of crop canopy light
interception and referenced the SUSROS87 model for the accumulation of dry matter. Israel and
other countries [6] developed the common-use growth model HORTISIM, which provided the effective
strategies for greenhouse environmental control and management. Van Keulen [7,8] proposed the
SUCROS model, which simulated the weight of dry matter in various organs of wheat using solar
radiation as the main factor affecting crop growth. Ritchie et al. [9–12] proposed the CERES model,
which simulated the process of crop growth, soil and water balance, as well as energy balance.
This study selected two representative tomato explanatory models that can be used for yield prediction
for comparison: TOMGRO and Vanthoor.

TOMGRO is a tomato growth model proposed by Jones et al., which focuses on the study of
the relationship between the growth of tomato and greenhouse environmental factors such as solar
radiation, temperature and CO2 to scientifically manage and predict the whole growth process of
tomato. TOMGRO describes the entire model by using seven basic crop physiological factors (leaves
number, nodes number, fruit number, leaves dry weight, nodes dry weight, fruit dry weight and
leaf area index), and it is the most representative model in current greenhouse tomato growth and
development simulation research [13–15]. The principle of TOMGRO is based on the source-sink
theory. The biggest weakness of TOMGRO is that it is difficult to obtain some key parameters such
as the potential growth rate in the real greenhouse environment, which has restricted the scope of its
application [16].

Vanthoor is a well-structured explanatory model and its simulation performance has been
extensively validated in European and North American greenhouses [17]. Vanthoor is actually a
greenhouse environmental system model which includes a greenhouse microclimate model and a
greenhouse crop growth model. Its crop growth model uses the buffer theory and basically obtains
two crop growth status results (leaf area index and dry matter) [18–20]. The buffer theory is more
abstract than the source-sink theory, because the former is an artificially added concept. Notably,
many of its variables are more affected by microclimate parameters such as temperature or average
temperature rather than by crop parameters. This makes it difficult to intuitively reflect some of the
physiological characteristics of crops, but relatively, the value of its variables is easy to be obtained in
the greenhouse.

It can be seen from the above comparison that TOMGRO is more suitable for cultivation
management of crops and Vanthoor is more suitable for environmental regulation of greenhouses.
In order to get a greenhouse tomato growth model with a wider applicable scope, the above two model
was compared and obtained an integrated model in this study.The model combined the strength of
TOMGRO and Vanthoor, that is, it retained a large number of crop physiological parameters, and
ensured the capturing of key parameters in the greenhouse as well, greatly improving the practicality of
the model. However, the model alone cannot dynamically adjusted parameters according to different
greenhouse environments, so combination with the sensitivity analysis and optimization algorithm
should be a good way for the repeating use of the model in various greenhouses.

2. Materials and Methods

The greenhouse data was collected from the Experimental Station (318500 N, 1218330 E), of
the National Facility Agricultural Engineering Technology Center of China, in Chongming County,
Shanghai City, China. Tomato plants, Gorioso, were grown in a 680 m2, 5 m high Venlo-type glass
greenhouse with numerous actuators such as the ventilation equipment (roof-windows, side-windows
and fans), heating equipment (heating pumps), curtains (shading screens and energy screens),
lighting equipment (high voltage sodium lamps and light-emitting diodes) and irrigation equipment.
The greenhouse contains eighteen rows of tomato crop. Crop planting density was 2.5 plants/m2.
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The data collection began on September 20 and ended on December 28 each year (2014–2018).
During the period, the side branches of tomatoes were cut off regularly, only the main stem were kept.
The harvested fruit was weighed manually and recorded its weight daily. The crop was grown in the
organic substrate (Rice husk charcoal), and sufficient irrigation was performed daily with the nutrient
solution through the drip. Greenhouse climate data such as temperature (T, ◦C), CO2 concentration
(CO2, ppm), photosynthetically active radiation (PAR, µmol/m2/s), humidity (H, %) and so on were
recorded every hour by sensors.

2.1. Integrated Model

The main difference between TOMGRO and Vanthoor is that the division of the growth stages
in TOMGRO is mainly based on the number of plant nodes, while that in Vanthoor is based on the
temperature. In addition, the main calculation time scale in TOMGRO is days, while that in Vanthoor
is seconds. Though based on different growth theories, TOMGRO and Vanthoor are similar in the
structure of computing the net dry matter. By comparing the two models, an integrated model was
obtained, which can be summarized as the following five steps:

(1) Dividing crop organs into different age classes.
(2) Calculating the amount of dry matter provided by the environment: SUPPLY.
(3) Calculating the amount of dry matter required by crops: DEMAND.
(4) Comparing SUPPLY and DEMAND to screen out two situations: oversupply and undersupply.
(5) Obtaining the final change rate of net dry matter, according to different supply and demand

situations.

Based on the five steps, the integrated model is described in detail as below:
Step 1: dividing age classes:

Consistent with TOMGRO and Vanthoor, the integrated model divided crop organs into different
age classes that crop physiological characteristics in the same age group were considered the same.
The physiological age of the crop took reference to the idea of TOMGRO, which is described by the
current number of nodes, in other words, the number of crop organs in a certain age class is related to
the number of crop nodes. Taking the age group i as an example, the rate of change in the number of
stems (ṄS(i)), leaves (ṄL(i)) and fruits (ṄF(i)) was as shown in Equations (1)–(3):

ṄS(i) =


GENRS · nPlants − rL · nF · NS(1) i = 1
(NS(i− 1)− NS(i)) · rL · nF 1 < i < nF
NS(i− 1) · rL · nF i = nF

(1)

ṄL(i) =


GENRL · nPlants − rL · nF · NL(1) i = 1
(NL(i− 1)− NL(i)) · rL · nF 1 < i < nF
NL(i− 1) · rL · nF − PL i = nF

(2)

ṄF(i) =


GENRF · nPlants · Rc − rF · nF · NF(1) i = 1
(NF(i− 1)− NF(i)) · rF · nF 1 < i < nF
NF(i− 1) · rF · nF − PF i = nF

, (3)

where i represented the i-th age group. The newest crop organs were in the first group and the oldest
ones in the last group. GENRS, GENRL and GENRF are the appearance rate of new nodes, leaves
and fruits respectively (no./plant/d), nPlants is the plant density (no./m2), Rc is the ratio of supply and
demand, rL and rF are the development rate function of leaves (nodes) and fruit respectively (1/d), nF
is the number of organ age classes, NS(i), NL(i) and NF(i) are the number of nodes, leaves and fruits
in the i-th age class respectively (no./m2), and PL and PF are the leaves and fruit mortality respectively
(no./m2/d).

According to Jones et al. (1991), the appearance rate of new nodes was GENRS = GENRAT ·
FN(T) · F(CO2), in which GENRAT is a constant depending on tomato varieties. However, Cooman et
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al. (2006) [21] stated that GENRAT is a linear function related to the number of stems. Given that the
data of nodes in the conditions of specific temperature and humidity cannot be obtained in the actual
greenhouse, and relevant studies [22] found that CO2 inhibition function in TOMGRO had little effect
on the appearance rate of the nodes, the integrated model used the calculation equation of the nodes
as shown in Equation (4). The appearance rate of fruit in Vanthoor: GENRF = a + b · T24

Can is a linear
function related to the daily average temperature. Temperature is a parameter that indirectly reflects
crop growth, so it was much more inaccurate than that in TOMGRO. Therefore, the equations of stems
appearance rate (GENRS), leaves appearance rate (GENRL) and fruit appearance rate (GENRF) in the
integrated model were finally shown in Equations (4)–(6):

GENRS =
(
ag + bg · NS

)
· FN(T) (4)

GENRL =
GENRF
1 + TPL

(5)

GENRF = GENRS · FPN, (6)

where ag and bg are function coefficients of organ appearance rate, FN(T) is the temperature inhibition
function, TPL is the ratio of new trusses to new leaves, and FPN is the ratio of new fruit to new nodes.

A set of experimental results of leaves and fruit development rates at different temperatures were
given in TOMGRO, and the development rate in Vanthoor and Cooman was the linear function related
to daily average temperature. Therefore, it was concluded that the linear function of daily average
temperature was more accurate when characterizing the development rate, so the development rate of
leaves (rL) and fruit (rF) in the integrated model is shown in Equations (7) and (8):

rL = arL + brL · Td (7)

rF = arF + brF · Td, (8)

where arL and brL are function coefficients of leaf development rate, arF and brF are function coefficients
of fruit development rate and Td is the daily average temperature (◦C).

When the leaf area index (LAI) exceeded the critical value (XLAIM) in TOMGRO, the mature
leaves fell off (the last age class) and the pruning operation (all age groups) was carried out; when
LAI exceeded XLAIM in Vanthoor, the extra leaf carbohydrates were totally subtracted. Therefore, a
leaf mortality (PL) equation of leaves was proposed as shown in Equation (9) by combining the leaf
mortality of the above two models. It simulated the leaf death and pruning based on age groups and
maximum LAI; and the older leaves fell off and were trimmed more possibly. Although TOMGRO
proposed the concept of fruit mortality, no specific equation and description were given, and there was
no concept of fruit mortality in Vanthoor. Therefore, the study adopted Cooman’s fruit mortality (PF)
equation, a linear function of Rc, as shown in Equation (10):

PL(i) =

{
NL(i) ·

(
1− XLAIM

LAI·k·i

)
LAI ≥ XLAIM

k·i
0 LAI < XLAIM

k·i
(9)

PF = aPF − bPF · Rc, (10)

where XLAIM was the critical LAI (m2/m2), aPF and bPF were the function coefficients of fruit
mortality, and k was the regulatory factor.
Step 2: calculating supply:

Supply represented the amount of carbohydrates produced by crops after absorbing external
energy. Accordingly, this step was mainly used to calculate the photosynthesis rate and respiration
rate of crops. Since most of the results from the photosynthesis models were similar, the integrated
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model here was consistent with TOMGRO. Equations (11)–(13) showed the calculation formula of
SUPPLY, photosynthesis rate (A) and respiration rate (Rm):

SUPPLY = E · (A− Rm) (11)

A = D
Pmax

K
ln

(1−m)Pmax + ε · K · PPFD
(1−m)Pmax + ε · K · PPFD ·e−(K·LAI)

(12)

Rm = Q0.1(T−20)
10 (RESPL · (WL + WS) + RESPF ·WF) , (13)

where E is the conversion efficiency (g{DM}/g{CH2O}), D was the unit conversion factor
(g{CH2O}/umol{CO2}/3600), Pmax is the maximum photosynthesis rate (µmol/m2/s), K is the
light extinction coefficient, m is the light transmission coefficient, ε is the quantum efficiency
(mol{CO2}/mol{photons}), PPFD is the photosynthetic photon flux density (µmol/m2/s), Q10 was
the sensitivity to temperature, RESPL and RESPF are the relative respiration requirement of leaves and
fruit respectively (g{CH2O}/g{DM}/d), and WL, WS and WF were dry matter of the leaves, nodes
and fruit respectively (g/m2).
Step 3: Calculating demand:

Demand represented the amount of carbohydrates required for the growth of crop organs.
TOMGRO was consistent with Vanthoor in the fruit dry matter demand. Because Vanthoor did
not set the age groups of leaves and nodes, it had no formula to calculate the required volume of the
leaves and nodes. Therefore, the integrated model was consistent with TOMGRO in the calculation of
the leaves and nodes. In addition, the CO2 inhibition function had little effect on the results in the step,
and there was no CO2 inhibition function in Vanthoor, so the function was removed in the integrated
model. The dry matter demand of stems (Sdem), leaves (Ldem) and fruit (Fdem) and leaf area change rate
(ȦLP) were as shown in Equations (14)–(17):

Sdem(i) =
Ldem(i) · FRSTM · NS(i)

NL(i)
(14)

Ldem(i) =
(1 + FRPET) · ȦLP(i)

SLA
(15)

Fdem(i) = POF(i) · FN(T) · NS(i) (16)

ȦLP(i) = NL(i) · POL(i) · FN(T), (17)

where FRSTM is the ratio of node growth rates to leaf growth rates, FRPET is the ratio of petiole
weight to blade weight, SLA is the average specific leaf area (m2/g{DM}), POF (g{DM}/ f ruit/d)
and POL (g{DM}/lea f /d) are the potential growth rate of fruit and leaves respectively (Equations
(18) and (19)).

The experimental data of the potential growth rate of fruit and leaves at different organ
development stages were given in TOMGRO, and the empirical equation at the development stages
was used in Vanthoor. They were more precise than the discrete data in TOMGRO, so using a
combination of Vanthoor and other related researches [21,23], the potential growth rates of fruit (POF)
and leaves (POL) in the integrated model were as shown in Equations (18) and (19):

POF(i) = 0.0458 · aF · e−bF(SFD−cF) · bF · e−bF(SFD−cF) (18)

POL(i) = 1.248 · aL · e−bL(SLD−cL) · bL · e−bL(SLD−cL), (19)

where aF, bF and cF are the coefficients in the potential growth rate function of fruits, SFD is the fruit
development stage, aL, bL and cL are the coefficients in the potential growth rate function of leaves,
and SLD is the leaf development stage.
Step 4 Comparing supply and demand:
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In TOMGRO, the supply–demand ratio was compared daily to determine the Rc, so that the
actual organ dry matter growth rate was obtained, while Vanthoor used the idea of the cumulative
amount of difference between supply and demand to determine whether to distribute dry matter, that
is, it only carried out dry matter distribution when the supply reached a certain level. In comparison,
the processing in TOMGRO was finer, so the integrated model used the idea of TOMGRO to handle
the relationship of supply and demand. The supply–demand ratio (Rc) and the actual dry matter
growth rate of fruit (gF), stems (gS) and leaves (gL) were shown in Equations (20)–(23):

Rc =
SUPPLY

DEMAND
(20)

gF(i) =

{
Fdem(i) Rc ≥ 1

Fdem(i) · Rc 0 ≤ Rc < 1
(21)

gS(i) =

{
Sdem(i) Rc ≥ 1

Sdem(i) · Rc 0 ≤ Rc < 1
(22)

gL(i) =

{
Ldem(i) Rc ≥ 1

Ldem(i) · Rc 0 ≤ Rc < 1
(23)

Step 5: Calculating dry matter:
TOMGRO and Vanthoor had similar structure in calculating the rate of change of dry matter: the

dry matter change rate in a specific age group = the actual dry matter growth rate in the current age
group + the dry matter coming the previous age group − the dry matter entering into the next age
group. So the change rate of the dry matter of stems (ẆS), leaves (ẆL) and fruit (ẆF) in the integrated
model were shown in the following Equations (24)–(26):

ẆS(i) = gS(i) + (WS(i− 1)−WS(i)) · rL · nF (24)

ẆL(i) = gL(i) + (WL(i− 1)−WL(i)) · rL · nF (25)

ẆF(i) = gF(i) + (WF(i− 1)−WF(i)) · rF · nF. (26)

See from the above description of the integrated model, the model used the shared structure of
the source-sink theory and the buffer theory. The idea of dividing the age classes according to the
number of nodes in TOMGRO was mainly adopted. With the rapid development of technologies such
as computer vision, TOMGRO used the more intuitive data of nodes to reflect the state of crop growth,
providing an interface for subsequent application of computer vision in greenhouse control such as
fruit picking and pest warning, while the temperature in Vanthoor can only reflect the growth of crops
indirectly. In addition, the integrated model provided empirical equations for parameters that were
hard to be obtained based on other relevant models and studies such as Vanthoor, and optimized some
of the content in the growth model, such as removing the CO2 inhibition function when calculating
the appearance rate of the new nodes and optimizing the leaf area processing function, etc.

2.2. Sensitivity Analysis

The integrated model should first find the parameters that have a great impact on the output and
change with the greenhouse environment before optimization in a specific greenhouse environment.
The main principle of finding the parameters to be optimized is to obtain these parameters by changing
the input parameters, and the analysis of the influence degree of the model parameters on the model
output generally depends on sensitivity analysis.
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The sensitivity analysis is divided into two major categories: local sensitivity analysis and global
sensitivity analysis [24,25]. The local sensitivity analysis is mainly applicable to scenes with no
influence between the parameters in the model, while global sensitivity analysis is applicable to
scenarios where the parameters in the model affect each other, and the related study [26,27] shows that
global sensitivity analysis has better effect on crop model parameters analysis than local sensitivity
analysis. Most of the parameters in the integrated model are coupled to each other, so the global
sensitivity analysis was used in the study.

The global sensitivity analysis is composed of Morris method, sobol method, FAST method,
EFAST method [28–31], etc. Currently, sobol and EFAST method are more commonly used. Because
the EFAST method combines the FAST and sobol methods, it has the advantages of stability, high
precision and fast calculation compared with other methods [32,33]. Therefore, the EFAST method is
used to analyze the sensitivity of the relevant parameters in the integrated model.

According to the data collection table (see Appendix A) of the integrated model in the study,
13 parameters were selected for sensitivity analysis (because the parameters POL and POF which
determine the sink-strength were one-dimensional vectors of the crop age class, it was difficult to
conduct sensitivity analysis in the study. However, according to related studies [23] and simulations,
POF has a great influence on the yield, so it needs to be optimized by default). The parameter range was
set according to the average value of the parameters provided by Cooman [21], and it took reference to
the +/−10% principle [34–36]. In this range, the parameters were evenly distributed [37,38], as shown
in Table 1.

Table 1. Parameters for sensitivity analysis.

Parameters Description Ranges Distribution

GENRAT Maximum rate of node initiation [0.45,0.55] uniform
FPN Fruit initiated per new node [0.45,0.55] uniform

K Light extinction coefficient [0.522,0.638] uniform
m Leaf light transmission coefficient [0.09,0.11] uniform
ε Leaf quantum efficiency [0.058,0.071] uniform
τ Carbon dioxide use efficiency [0.062,0.076] uniform

Proot Supply of photosynthesis for root growth [0.063,0.077] uniform
SCO2 Effect of CO2 on new stems [0.00027,0.00033] uniform

E Conversion efficiency [0.675,0.825] uniform
RESPL Relative respiration requirement for leaf [0.0135,0.0165] uniform
RESPF Relative respiration requirement for fruit [0.009,0.011] uniform

rL Leaf development rate [0.009,0.011] uniform
rF Fruit development rate [0.018,0.022] uniform

2.3. Optimization Algorithm

After the integrated model was determined and sensitivity analysis was conducted, parameters
optimization was carried out. It covered three cases: (1) the input and output data corresponding to the
parameters to be optimized can be obtained in reality.In this case, the actual data can be directly used
for optimization; (2) the input and output data corresponding to the parameters to be optimized cannot
be actually obtained, but can be obtained indirectly from other parameters.In this case, the actual data
can also be used for optimization; (3) The input and output data of the parameter to be optimized
cannot be actually obtained. This requires optimization by soft measurement, such as state-based
estimation. The sensitive parameters in the integrated model were not the first case. Taking the rF
parameter as an example, it actually indicated the transfer rate of the number of fruits between the age
groups.In TOMGRO, it was obtained in a laboratory environment based on a large number of data
such as the fruit dry matter, but it was impossible to obtain them in a real greenhouse. Therefore, the
method of indirect parameter optimization was adopted. Take the parameter arF and other parameters
in the equation where rF is located (see below) as an example.
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rF = arF + brF · Td (27)

ṄF(i) =


GENRF · nPlants · RC − rF · nF · NF(1) i = 1
(NF(i− 1)− NF(i)) · rF · nF 1 < i < nF
NF(i− 1) · rF · nF − PF i = nF

(28)

Therefore, the above equation was calculated to obtain the relationship between the total number
of fruits at the current moment and rF.

At specific time t, the total number of fruits was the sum of the number of fruits in all age groups:

NFt =
nF

∑
i=1

NFt(i). (29)

From Equations (28–(30) can be calculated:

NFt = NFt−1 + GENRF · nplants · Rc. (30)

It was found from Equation (30) that rF disappeared during the calculation, that is, rF was only
an intermediate variable, which had no effect on the total number of fruits at a certain moment. In fact,
Equation (30) indicated that the current number of fruits was the number of fruits in the previous
moment plus the number of new fruits. This physical meaning can also verify the reason why rF
disappeared.

What rF really affected was the number of mature fruits.The number of mature fruits was NF
(10) (assuming the total age groups are 10), and it was related to the number of fruits in the previous
age group, while the number of fruits in the previous age group was actually not available in the
real greenhouse. It can be found that it was difficult to optimize the parameters locally in the model,
therefore, the study finally selected the model’s microclimate as input and the mature fruit yield as the
output, and used the overall growth model for parameter optimization. There were two reasons for
this choice: 1. Microclimate and mature fruit yield data can be obtained in the real greenhouse; 2. all
the sensitive parameters for yield can be optimized at one time.

Therefore, the optimized objective function was set as the RMSE between the predicted yield and
the actual yield in the whole growth cycle, as shown in Equation (31).

fBO =

√√√√ 1
n

t

∑
i=1

(WM(i)−WMA(i))
2, (31)

where WM was the simulated yield, WMA was the actual yield, n was the simulated days.
Take the commonly used optimization algorithm particle swarm optimization (PSO) as an

example, it took more than one minute for the integrated model to run once (it simulated crop
growth for 100 days on a i7-7700HQ PC with 8 GB RAM), and the time multiplied the iterations
and populations quantity to get a very long optimization time. This problem was fundamentally a
costly optimization problem, that is, it took a long time to calculate the objective function. Usually,
the solution to such problem in the field of evolutionary computing is to use a surrogate model, or
Bayesian optimization. Bayesian optimization is often used to calculate the target value that is costly
and time-consuming [39]. It is equivalent to introducing domain knowledge during the search process,
so the search efficiency is much faster than that of grid and random search.

In this paper, the Bayesian optimization selected the LCB function as acquisition function
(Equation (32)) and the iterations were set to 100.

LCB = −µ(x) + kσ(x), (32)
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where µ(x) is the mean value of a certain point, σ(x) was the variance of a certain point, and k was the
adjustment parameter.

In Equation (32), the mean represented the final expected effect of the point; the smaller the mean
value, the better the final index of the model. The variance indicated the uncertainty of this point;
the larger the variance was, the more the point should be explored. The algorithm steps for Bayesian
optimization were shown in Algorithm 1:

Algorithm 1 Outline. Steps of Bayesian optimization algorithm.
Input: Microclimate data (T, CO2, PAR), mature fruit yield (WMA), and the range of variables.
Output: The best vector (solution).
Step 1: Randomly sample n points in the sample space, and calculate the posterior probability
distribution of the first n points by Gaussian process regression to obtain the expected mean and
variance of each hyperparameter at each value point.
Step 2: Get the next sample point according to the acquisition function (Equation (33)), and calculate
the objective function value of the sample point (Equation (32)).
Step 3: Determine whether the accuracy requirement or the number of iterations is reached. If the
condition is not met, add the sample points to the sample point set, repeat the above steps; and if the
conditions are met, stop the iteration.

3. Results and Discussion

The equipment used in the relevant simulations and experiments is an Intel® CoreTM i7-7700HQ,
armed with a 2.80 GHz processor and 8.00 GB in RAM; the OS of the computer is WindowsTM 10
Professional Edition, and the machine is equipped with the MATLABTM R2017a version software.

3.1. Integrated Model Validation

For the output of the integrated model, such as the dry weight of mature fruit and leaves, the
comparison among the integrated model, TOMGRO and Vanthoor was shown in Figure 1.

(a) dry weight of mature fruit (b) dry weight of leaves

Figure 1. Model result comparison.© (blue): TOMGRO; (red): Vanthoor;4 (yellow): integrated model.

According to Figure 1, the dry weight of mature fruits of the integrated model was within the
range of the output of TOMGRO and Vanthoor. The dry weight of leaves in the integrated model
changed more gently compared to TOMGRO when the leaf area approached the designated maximum
(the maximum leaf area index was consistent, both were set to 2m2/m2), while it was different from
the dry weight of leaves in Vanthoor which remained completely constant after a certain time, and was
closer to the actual situation. Figure 1 indicated the rationality of the results of the integrated model.
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3.2. Parameter Analysis Results

After the integrated model was obtained, the parameters to be optimized were sorted out through
sensitivity analysis and then the optimization algorithm was carried out.In this paper, EFAST was
selected as the sensitivity analysis algorithm. The table and figure of sensitivity analysis results were
shown in Table 2 and Figure 2:

Table 2. Sensitivity analysis results.

Parameters First Order Sensitivity Index Total Sensitivity Index

GENRAT 0.4247 0.446388
FPN 3.98 × 10−5 0.019022

K 0.0549 0.075865
m 0.000366 0.017531
ε 0.0536 0.074421
τ 0.0199 0.039272

Proot 0.000436 0.019621
SCO2 0.0064 0.027562

E 0.0966 0.116923
RESPL 0.0011 0.039419
RESPF 0.000514 0.020610

rL 0.0067 0.065230
rF 0.1290 0.148063

Figure 2. Sensitivity analysis results.

A parameter with sensitivity index exceeding 0.1 is generally considered as the sensitive
parameter [40]. The above figure indicated that among the 13 parameters selected, GENRAT, E
and rF had over 0.1 sensitivity index, suggesting these parameters had a significant impact on the
growth model. GENRAT represented the maximum appearance rate of new nodes, which had a
direct effect on the number of nodes, and the relevant studies [4] indicated that its value was related
to tomato varieties meaning that re-optimization on different tomato varieties should be arranged
to improve the accuracy of the model. E represented the conversion coefficient of photosynthesis
assimilation rate to dry matter accumulation rate, which had a direct impact on SUPPLY, but its value
was fixed in TOMGRO, so no extra optimization was conducted. rF was the fruit development rate
which had a direct impact on the number of fruits. Its value was related to tomato varieties, meaning
that re-optimization on different tomato varieties should be arranged to reduce errors of the model
like GENRAT. In order to reduce the model error, the above two sensitive parameters (GENRAT and
rF) should be optimized. Among the remaining parameters, it was found that the sensitivity value
of some parameters which had been expected to be optimized [4] was very low, such as FPN, m, τ,
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Proot, etc. Although these parameters changed with the greenhouse structure, the type of crops, etc., all
these changes had little influence on the final results of the model. Therefore, these parameters can be
considered as fixed, and their values are set as recommended values or average values according to
some studies [21]. The last remaining value SCO2 was a fixed value, and its impact on the final results
of the model was very small, verifying the idea of ignoring this parameter in the previous section.

Therefore, according to the above results, for the goal of yield, the parameter processing results
were obtained as below:

Finally, combining the results in Table 3 and the parameter that need to be optimized by default,
there are three parameters should be optimized, namely GENRAT, rF, and POF. According to
Equations (4), (8) and (18), the following parameters for optimization was obtained, and the default
recommended values were attached, as shown in Table 4. The Appendix Data Collection Table showed
the information of the remaining parameters in the model.

Table 3. Parameter processing result.

Types Parameters Approach

High sensitivity value, parameters to be optimized GENRAT,rF need to be optimized
High sensitivity value, fixed parameters E fixed

Low sensitivity value, parameters to be optimized FPN,K,m,ε,τ,RESPL,RESPF,rL fixed
Low sensitivity, fixed parameters SCO2 ,Proot ignored

Table 4. Parameters for optimization.

Parameters Default Recommended Value

arF 0.0009389
brF 0.000756
ag 0.779
bg −0.000458
aF 1.2653
bF 0.04295
cF 46.34

3.3. Results of Yield Prediction

The parameters obtained after the sensitivity analysis of the model can be optimized based on
greenhouse data, and the results of the yield prediction can be obtained finally.

The microclimate data was selected from Chongming Greenhouse in 2014 (the data selected
from September 20 to December 28, an actual growth cycle of Chongming Greenhouse). The range of
parameters to be optimized was +/−20% from the default value (After comparative testing, 20% was
a reasonable and better range). The optimization results of the Bayesian optimization algorithm were
shown in Table 5.

Table 5. Bayesian optimization algorithm results.

Parameters Parameter Range Optimization Result

arF [0.00075112,0.00112668] 0.00079752
brF [0.0006048,0.0009072] 0.00086825
ag [0.6232,0.9348] 0.63451
bg [−0.0005496,−0.0003664] −0.00046959
aF [1.01224,1.51836] 1.1745
bF [0.03436,0.05154] 0.051295
cF [37.072,55.608] 37.284

The RMSE changed in line with the iterations in Bayesian optimization algorithm and PSO were
seen as follows:
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It can be seen from the results in the Figure 3 that by using Bayesian optimization to identify the
growth model parameters, the RMSE of the yield were 2.5217, 2.5974, 2.2309, 2.5974 and 2.5096 (ran
five times continuously to reduce the impact of randomness, and the worst result was selected), The
RMSE of PSO were 2.9534, 4.0855, 2.0732, 2.7776 and 3.5322. It can be seen that most of the RMSE of
PSO were higher than the worst result of Bayesian optimization (except 2.0732), and the results of
PSO were not as stable as the results of Bayesian optimization (a large RMSE: 4.0855 appeared in the
results). In addition, the runtime of the Bayesian optimization was only about 2 h, 1/10 the time of the
PSO. The reason was that the information of all previous iterations was utilized for the next search in
the Bayesian optimization algorithm, making it more efficient than the grid and random search.

(a) Bayesian optimization (b) PSO

Figure 3. Room mean squared error (RMSE) changed with the iterations in Bayesian optimization (blue
line: min observed objective; green line: min estimated objective) and PSO.

The optimized parameters were re-substituted into the model to compare with the actual yield,
TOMGRO and Vanthoor, as shown in Figure 4:

Figure 4. Model output comparison (yield). © actual yield; integrated model (after Bayesian
optimization);4: TOMGRO (with calibrated parameters); ∗: Vanthoor (with calibrated parameters).
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In Figure 4, the RMSE between the TOMGRO and the actual yield was 17.2154, the RMSE of
Vanthoor was 17.6157, and the RMSE of the model proposed in this paper was 2.5974. It was not hard
to find that compared with the output of TOMGRO and Vanthoor (both with calibrated parameters),
the output of the model proposed in this paper was closer to the actual yield. This proved that the
model had higher accuracy in predicting greenhouse crop yield.

The integrated yield prediction model proposed in this paper also had the ability to “memorize”,
meaning that after one parameter optimization in a particular greenhouse, the model can run accurately
in the greenhouse for a long time without the second-time optimization. After conducting the
optimization algorithm with the data of Chongming Greenhouse in 2014, the study used other growth
cycle data (Chongming Greenhouse from 2015 to 2018) as a verification set to validate the scheme. The
results were shown in Figure 5.

(a) 2015 (b) 2016

(c) 2017 (d) 2018

Figure 5. Verify the scheme with data from different years (yield). © actual yield; : integrated model
(after Bayesian optimization);4: TOMGRO (with calibrated parameters); ∗: Vanthoor (with calibrated
parameters).

It can be seen from Figure 5 that after using the optimized parameters (tuned with the data
of Chongming Greenhouse in 2014),the model output can approximate the actual yield well when
different climate data (2015 to 2018) was input. By comparing with TOMGRO and Vanthoor, the RMSE
of the integrated model, TOMGRO and Vanthoor was 9.7508, 15.4559 and 27.0760 in 2015, 6.7849,
13.6584 and 14.5267 in 2016, 7.4368, 16.9145 and 49.4001 in 2017, and 14.5421, 18.7890 and 22.0839 in
2018. Therefore, this proved once again that the integrated model combined with the optimization
algorithm had a high accuracy in predicting yield. The reason was that the model combined the
advantages of TOMGRO and Vanthoor. Compared with Vanthoor, it had a more detailed simulation of
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the crop mechanism, so the model output will not deviate too much from the actual yield. Compared
with TOMGRO, it had more accurate parameters, so its output can be closer to the actual yield after
the optimization algorithm.

4. Conclusions

To solve the problem of poor reusability of the existing greenhouse crop yield prediction models,
an integrated yield prediction model for greenhouse tomato was proposed in the study, which included
an integrated model, sensitivity analysis and an optimization algorithm. The summary of this paper
was as follows:

(1) By analyzing the two representative growth theories of source-sinkand buffer on the basis of
the research of TOMGRO, Vanthoor and related growth models, an integrated model for greenhouse
tomato was proposed. Through the comparison of the model output, it was found that the output of
the integrated model is reasonable and compared with TOMGRO and Vanthoor, it was more general.

(2) Then, the sensitive parameters which have a great influence on the model output and vary
with the greenhouse environment should be determined by sensitivity analysis, and they were marked
as parameters to be optimized. Other parameters were classified into fixed and ignored.

(3) Bayesian optimization was then used as the optimization algorithm. The RMSE of the yield
in the whole growth cycle was taken as the objective function, and the actual greenhouse data
was used for parameter optimization. The comparison results of the model output showed that the
predicted value of the integrated model after parameter optimization was closer to the actual yield than
TOMGRO and Vanthoor, indicating that the integrated yield prediction model has good performance
in predicting yield.

(4) One-year greenhouse data was input to conduct parameter optimization for the integrated
model. The model output can well track the actual yield for the next four years, compared to TOMGRO
and Vanthoor, which proved once again that the model had high accuracy in predicting the yield, and
indicated that once the greenhouse parameter optimization was carried out, the model can accurately
predict the yield in the greenhouse for a long period of time.
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Appendix A

Table A1. Data collection table.

Access Symbol Physical Meaning Unit Remarks

Sensor PAR Indoor photosynthetically active
radiation

µmol/m2/s -

CO2 Indoor CO2 concentration ppm -
T Indoor temperature ◦C -

variables FPN Fruit initiated per new node - -
K Light extinction coefficient - The values of the parameters

are related to geography and
greenhouse structure

m Leaf light transmission coefficient -
ε Leaf quantum efficiency mol{CO2}/

mol{photons}
τ Carbon dioxide use efficiency µ{photons}/m2/s/

10−6 ppm{CO2}
Empirical
formula

FN(T) Temperature inhibition function - (0.20776 + 0.02043 ∗ T24) /
(0.20776 + 28 ∗ 0.02043)

POL(i) Potential growth rate of leaves g{DM}/lea f /d 0.0458aLe−bL(SLD−cL)−e−bL(SLD−cL)

POF(i) Potential growth rate of fruit g{DM}/ f ruit/d 1.248aFe−bF(SFD−cF)−e−bF(SFD−cF)

rL Leaves development rate 1/d arL + brLTd
rF Fruit development rate 1/d arF + brFTd
GENRATMaximum rate of node initiation node/plant/d ag + bg NStem
PL Leaves mortality lea f /m2/d LAI ≥ XLAIM

i·k : NL(i) ·(
1− XLAIM

LAI·i·k

)
; LAI < XLAIM

i·k :
0

PF Fruit mortality f ruit/m2/d apF − bpF · Rc
Fixed D Conversion efficiency g{CH2O}/

umol{CO2}/3600
2.593

E Unit conversion factor g{DM}/g{CH2O} 0.75
Q10 Sensitivity to temperature - 1.4
Smax Maximum SLA m2{lea f }/g{DM} 0.024
Smin Minimum SLA m2{lea f }/g{DM} 0.075
Bc Impact factor of CO2 concentration

on SLW
g{DM}/m2{lea f }/
10−6 ppm{CO2}

0.00085

BT Impact factor of temperature on SLW g{DM}/m2{lea f }/
◦C

0.085

FTRSN Number of stem segments when the
first truss is formed

node 12

FRLG The number of new stem segments
during the new first truss to the new
first flower

node 6

TPL Ratio of new trusses to new leaves truss/lea f 0.33
FRPET Ratio of petiole weight to blade

weight
- 0.49

FRSTM Ratio of stem segment to leaf growth
rates

- 0.33

RESPL Relative respiration requirement for
leaf

g{CH2O}/g{DM}/
d

0.015

RESPF Relative respiration requirement for
fruit

g{CH2O}/g{DM}/
d

0.01

Artificial
nPlants

Planting density plant/m2
According to the actual
situation of the greenhouseLAI0 Initial leaf area index m2/m2

XLAIM Maximum leaf area index m2/m2
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Table A2. Symbols/acronyms table.

Symbols/Acronyms Meaning Units

NS number of stems no./m2

NL number of leaves no./m2

NF number of fruits no./m2

GENRS appearance rate of new stems no./plant/d
GENRL appearance rate of new leaves no./plant/d
GENRF appearance rate of new fruit no./plant/d

nF number of organ age classes -
Rc ratio of supply and demand -
A photosynthesis rate µmol/m2/s

Rm respiration rate µmol/m2/s
Pmax maximum photosynthesis rate µmol/m2/s
LAI leaf area index m2/m2

WS dry matter of stems g/m2

WL dry matter of leaves g/m2

WF dry matter of fruit g/m2

Sdem dry matter demand of stems g/m2/d
Ldem dry matter demand of leaves g/m2/d
Fdem dry matter demand of fruit g/m2/d
ALP leaf area change rate m2/m2

gF actual dry matter growth rate of fruit g/m2/d
gS actual dry matter growth rate of stems g/m2/d
gL actual dry matter growth rate of leaves g/m2/d

EFAST extended Fourier amplitude sensitivity test -
PSO Particle Swarm Optimization -
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