Supplementaty Materials

Figure S1. Partial alignments of GGH (A) and EF1- α (B) sequences and primers used in qPCR reactions. GGH1, GGH2 and GGH3 transcripts sequences from the DM genotype were aligned in order to design primers specific of GGH1. EF1- α sequences from four potato genotypes were aligned to design primers within highly conserved regions.

А

Figure S2. Venn diagram showing numbers of differentially expressed genes that are common or exclusive in comparisons fol 1.6 versus fol 1.5 and fol 1.3 versus fol 1.5. [1]

Figure S3. Functional enrichment analysis in comparisons between fol 1.6 and fol 1.5, and fol 1.3 and fol 1.5. Analyses were done using g:GOSt in g:Profiler [2]. A g:SCS threshold of 0.05 was used. The top panel is a Manhattan plot of enriched terms in the comparison between fol 1.6 and fol 1.5. The middle panel is a Manhattan plot of enriched terms in the comparison between fol 1.3 and fol 1.5. The bottom table provides detailed information such as data source, id and name of the term with corresponding p-value. The light circles in Manhattan plots represent insignificant terms.

Figure S4. Phylogenetic tree of UDP-glucose glucosyltransferases from potato and Arabidopsis. Homologs of the At1g05560-encoded protein were searched in the potato genome by using tBLASTn search in Spud DB (<u>http://potato.plantbiology.msu.edu/</u>). The seven top matches were used for phylogenetic analysis in MEGA7.

The evolutionary history was inferred using the Neighbor-Joining method [3]. The optimal tree with the sum of branch length = 1.77531023 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [4]. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the p-distance method [5] and are in the units of the number of amino acid differences per site. The analysis involved 8 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 413 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [6].

Figure S5. Histogram of number of individuals within folate concentration brackets. A, BRR1 population; B, BRR3 population.

AtGGH1	1	-MIDNNCMYKEELNRNSYSGLAKEASESUUAPSESGFDGSRSDVGSSDDDNM
A+GGH2	1	MWSYVWI, PLVAI, SIJEKDSI, IMAKAATII MASOTOFO
A+CCH2	1	
ALGGHS	1	
STGGHI	T	MGNYLLI FLLLVCGIITSOSOLFVSNOL LPPSCPAPDPTIN
StGGH2	1	
StGGH3	1	MSNYFLISFLTISLELVVTAIEPAELFVPAGCPLPDHNLN
		*
AtGGH1	53	YRPVIGILSHPGDGASGRLTNDTSSTYIAASYVKFAEAGGARVIPLIYNEPEE
AtGGH2	52	YRPVIGILSHPGDGASGRLSNATDASSIAASYVKLAESGGARVIPLIFNEPEE
AtGGH3	56	YKPVIGILTHPGEGRWDARLHSLKNYAYATNISYIAASYVKLAETGGARVIPLIYNEPEE
StGGH1	43	YRPIIGIVSHPGDGATGRLSNATNVSYIAASYVKFAEMAGARVIPLIYTEPPE
StGGH2	28	YRPVIGIVSHPGDGASGRLNNASDVSYIAASYVKFAEMAGARVIPIIYTEPPE
StGGH3	41	YRPVIGIISHPGHGDSGRINNSTGVSYIAASYVKLVESGGARVIPLIFDDSPO
AtGGH1	106	VLFQKLELVNGVIFTGGWAKKYDYFEIVKKIFTKALERNDAGEHFPVYGICLGFELMSII
AtGGH2	105	IL <mark>fQKL</mark> ELVNGVI L TGGWAKE <mark>GLYFEI</mark> VKKIFNKVLE <u>R</u> NDAGEHFP <mark>IY</mark> AICLGFELLTMI
AtGGH3	116	ILFQKLELVNGVIFTGGWAKTGLYYDVVEKIFNKVMEKNDAGEHFPVYAMCLGFEILSMI
StGGH1	96	VLNOKLNLVNGIIFTGGWAKDGLYFDVIKGIFOKVLEKNDAGEHFPLLAICLGVELLTMI
StGGH2	81	INNOKLNLVNG IFTGGWSKKGLYFEVVKGIFEKVLEKNDAGEHFPLMAICLGFELLTMI
StGGH3	94	INOKLNLVNGVI FREGWAKKENYFET KAIFBKVLEKNDAGEHFPLLAINHEFELLMMI
	• •	
		*
AtGGH1	166	ISONRDILERFDAEDNASSLOFVDNVNNDGTLFORFPPELLKKLSTDCLVMOKHKYGIHP
AtGGH2	165	ISONRDIFEKMDARNSASSLOFVENVNIOGTIFORFPPELLKKLETDCLVMONHRFGISP
AtGGH3	176	ISONRDILERENSVNYASSLOFEKNVNIEATVFORFPPELLKKLSADCLVMONHYFGISP
StGGH1	156	I IND NNT LEEFS AA SOA STAVO FVENVNT DGTVF GREPPVI. LKKMSTDCLVMONHHEGTS P
S+GGH2	1 4 1	I SKDNNTLEEFSASHOASTVOFVENLKEDGTVEGREPPVLLKKMSTHCLVMONHHEGTSP
S+CCH3	151	USKONNTI EKESUSNOA TKI HEVETVINTEDTVECEEDTI IKKI SKECI VI OSHKVGISD
Steens	134	VORDERE DV SROAT KUNE VET VETER FET EN KKUSKECT VIGSMAT GUDE
		* * **
AtGGH1	226	ANFOANPALSSFFEILTTCIDENSKTYVSTVKAKRYPITGFOWHPEKNAFEWGSSAIPHS
AtGGH2	225	OSFEGNIAL SNEFKIVTTCVDDNGKVYVSTVOSTKY PVTGFOWH PEKNAFEWGSSKI PHS
AtGGH3	236	DNFOGNPYLSSFFNIWTTSADKDSKTEVSTIBSKRYPYTAFOWHPEKNAFEWGSSFIPHS
S+CCH1	216	EDFOANKINTSSEFFWITTSSIDENNKVYVSTIOATBYDTAAFOWHDEKNAFFWGSSDIDHS
Stegni	201	
SLGGHZ	201	
StGGHS	214	DRFQANDDLSSFFIMLTTSTDFRNKVIVSTVRAMNIPHTADQWHPERSAFEWGBSATPHS
AtGGH1	286	EDATOVTOHAASYLVSEARKSLN-RPESOKVLSNLTYNYKPTYCGYAGRGYDEVYLETOP
A+CCH2	285	EDATOVTOHAANHIVSEARKSIN-PRESKKVISNITYNYKRTYCGYACIGYDEVYTETOO
ACCU2	205	
ALGGHS	290	
SLGGHI	270	
STGGHZ	201	EDATOVTOHVANIEVSEARKSSNNKPATSKVLDNLIINISPSTAGKVRGSEEVILETPR
StGGH3	274	EDAVQVTQLVANYFVSEARKSSN-KPEAQKVLDNLIYNYNPTYSGKTGKGYDEVYVFNSH
AtGGH1	345	RSRF
AtGGH2	344	RSLL
AtGGH3		
S+GCH1	335	SBSSSM
S+CC ² 2	321	
Steenz	333	
SLGGHJ	222	

Figure S6. Alignment of potato and Arabidopsis GGH proteins. Asterisks indicate conserved residues that are catalytically essential in human GGH or other conserved active site residues that may participate in substrate binding [7]. Alignment was done by CLUSTALW (<u>https://www.genome.jp/tools-bin/clustalw</u>). Shading was done by BOXSHADE (<u>https://embnet.vital-it.ch/software/BOX form.html</u>). AtGGH1, At1g78660; AtGGH2, At1g78680; AtGGH3, At1g78670; StGGH1, PGSC0003DMG400007066; StGGH2, PGSC0003DMG400021256; StGGH3, PGSC0003DMG400035974.

Table S1. Folate metabolism-related genes in *Arabidopsis,* tomato, and potato. Orthologs of Arabidopsis genes in tomato and potato were retrieved from EnsemblPlants.

Gene name	Arabidopsis	Tomato	Potato	Chr. ¹	Start Pos. ²	End Pos.
GTP cyclohydrolase I (GCHI)	At3g07270	Solyc06g083230	PGSC0003DMG400020105	6	58,218,330	58,221,998
Dihydroneopterin (DHN) triphosphate diphosphatase	At1g68760	Solyc03g043855.1	PGSC0003DMG400030259	3	6,301,879	6,303,243
Dihydroneopterin aldolase (DHNA)	At3g11750 At5g62980 At3g21730	Solyc10g079830.2	PGSC0003DMG400029847	10	58,006,909	58,009,753
Aminodeoxychorismate synthase (ADCS)	At2g28880	Solyc04g049360.3	PGSC0003DMG400009777	4	32,090,468	32,092,714
Aminodeoxychorismate lyase (ADCL)	At5g57850	Solyc11g071280.1.1	PGSC0003DMG400018587	11	42,627,656	42,632,239
6-Hydroxymethyldihydropterin pyrophosphokinase (HMDHP- PPK) / dihydropteroate synthase (DHPS)	At4g30000 (mito.) At1g69190 (cyto., only in Arabidopsis)	Solyc05g012090.3	PGSC0003DMG400028362	5	692,312	694,941
Dihydrofolate synthase (DHFS)	At5g41480	Solyc06g051900.3	PGSC0003DMG400002352	6	38,180,979	38,187,447
Dihydrofolate reductase	At2g16370	Solyc01g109830.3	PGSC0003DMG400000736	1	86,138,599	86,145,134
(DHFR)	At4g34570 At2g21550					
Folylpolyglutamate synthase	At5g05980 (FPGS1)	Solyc05G052920.3	PGSC0003DMG400027193	5	48,208,214	48,215,644
(FPGS)	At3g10160 (FPGS2)	Solyc04G016550.3				
	At3g55630 (FPGS3)					
UDP-glucose– <i>p</i> -aminobenzoate glucosyltransferase ³	At1g05560	Solyc12g098590.1.1	PGSC0003DMG400004573 PGSC0003DMG400004574	12 12	59,388,655 59,391,505	59,391,021 59,393,303
γ-Glutamyl hydrolase (GGH)	At1g78660 (GGH1)	Solyc07g062270.3	PGSC0003DMG400007066	7	52,454,391	52,459,018
	At1g78680 (GGH2)	Solyc07g062280.3	PGSC0003DMG400021256	10	2,480,397	2,487,536
	At1g78670 (GGH3)	Solyc07g062280.3	PGSC0003DMG400035974	7	52,459,355	52,462,734
5-Formyltetrahydrofolate cvcloligase (5-FCL)	At5g13050	Solyc03g113590.3	PGSC0003DMG400024570	3	53,569,914	53,573,217

 $\frac{\text{cycloligase (5-FCL)}}{^{1} \text{ Chromosome number in potato; }^{2} \text{ Start and end position in the reference potato genome; }^{3} \text{ UDP-glucose-}p\text{-aminobenzoate glucosyltransferase belongs to a large gene family. Therefore, the closest orthologs to the characterized Arabidopsis gene (At1g05560) shown to be involved in$ *p* $-aminobenzoate glucosylation [8] were identified in potato by BLAST and phylogenetic analyses (Figure S3).}$

References

- 1. Oliveros, J.C. An interactive tool for comparing lists with venn diagrams. <u>http://bioinfogp.cnb.csic.es/tools/venny/index.html</u> 2007.
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. G:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). *Nucleic Acids Res.* 2019, 47, W191-W198.
- 3. Saitou, N.; Nei, M. The neighbor-joining method a new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.* **1987**, *4*, 406-425.
- 4. Felsenstein, J. Confidence-limits on phylogenies an approach using the bootstrap. *Evolution* **1985**, *39*, 783-791.
- 5. Nei, M.; Kumar, S. *Molecular evolution and phylogenetics*. Oxford University Press: New York, 2000.
- 6. Kumar, S.; Stecher, G.; Tamura, K. Mega7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* **2016**, *33*, 1870-1874.
- 7. Orsomando, G.; de la Garza, R.D.; Green, B.J.; Peng, M.; Rea, P.A.; Ryan, T.J.; Gregory, J.F., 3rd; Hanson, A.D. Plant gamma-glutamyl hydrolases and folate polyglutamates: Characterization, compartmentation, and co-occurrence in vacuoles. *J. Biol. Chem.* **2005**, *280*, 28877-28884.
- Eudes, A.; Bozzo, G.G.; Waller, J.C.; Naponelli, V.; Lim, E.K.; Bowles, D.J.; Gregory, J.F., 3rd; Hanson, A.D. Metabolism of the folate precursor p-aminobenzoate in plants: Glucose ester formation and vacuolar storage. *J. Biol. Chem.* 2008, 283, 15451-15459.