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Abstract: Abiotic stress can alter key physiological constituents and functions in green plants.
Improving the capacity to monitor this response in a non-destructive manner is of considerable
interest, as it would offer a direct means of initiating timely corrective action. Given the vital role
that plant pigments play in the photosynthetic process and general plant physiological condition,
their accurate estimation would provide a means to monitor plant health and indirectly determine
stress response. The aim of this work is to evaluate the response of leaf chlorophyll and carotenoid
(Ct) content in wheat (Triticum aestivum L.) to changes in varying application levels of soil salinity
and fertilizer applied over a complete growth cycle. The study also seeks to establish and analyze
relationships between measurements from a SPAD-502 instrument and the leaf pigments, as extracted
at the anthesis stage. A greenhouse pot experiment was conducted in triplicate by employing
distinct treatments of both soil salinity and fertilizer dose at three levels. Results showed that higher
doses of fertilizer increased the content of leaf pigments across all levels of soil salinity. Likewise,
increasing the level of soil salinity significantly increased the chlorophyll and Ct content per leaf area
at all levels of applied fertilizer. However, as an adaptation process and defense mechanism under
salinity stress, leaves were found to be thicker and narrower. Thus, on a per-plant basis, increasing
salinity significantly reduced the chlorophyll (Chlt) and Ct produced under each fertilizer treatment.
In addition, interaction effects of soil salinity and fertilizer application on the photosynthetic pigment
content were found to be significant, as the higher amounts of fertilizer augmented the detrimental
effects of salinity. A strong positive (R2 = 0.93) and statistically significant (p < 0.001) relationship
between SPAD-502 values and Chlt and between SPAD-502 values and Ct content (R2 = 0.85) was
determined based on a large (n = 277) dataset. We demonstrate that the SPAD-502 readings and
plant photosynthetic pigment content per-leaf area are profoundly affected by salinity and nutrient
stress, but that the general form of their relationship remains largely unaffected by the stress. As such,
a generalized regression model can be used for Chlt and Ct estimation, even across a range of salinity
and fertilizer gradients.

Keywords: wheat crop; SPAD measurement; chlorophyll; carotenoids; pigment; salinity stress;
nutrient stress; photosynthesis

1. Introduction

The accurate estimation of leaf photosynthetic pigments is an important element in monitoring
plant stress and fertilizer application and managing the overall vegetation health—particularly
in agricultural systems, where productivity levels are directly related to plant condition. Leaf

Agronomy 2017, 7, 61; doi:10.3390/agronomy7030061 www.mdpi.com/journal/agronomy

http://www.mdpi.com/journal/agronomy
http://www.mdpi.com
https://orcid.org/0000-0002-1279-5272
http://dx.doi.org/10.3390/agronomy7030061
http://www.mdpi.com/journal/agronomy


Agronomy 2017, 7, 61 2 of 21

photosynthetic pigments are key variables in characterizing photosynthetic response and gross
primary production in the biosphere [1–4], with the pigments playing a central role in light harvesting,
photosystem protection, and other growth functions [5–7]. Chlorophylls control the photosynthetic
potential of plants by capturing light energy from the sun [8], and represent one of the most important
photosynthetic pigments. The leaf chlorophyll content provides a key indicator of the photosynthetic
capacity [2,9], and in combination with measurements such as leaf area index has been found to be a
critical proxy for vegetation productivity [10] and prevailing stress in vegetation [11–13]. Carotenoids
(Ct) are composed of carotenes and xanthophylls, and represent another key photosynthetic pigment
group. Being essential structural components of the photosynthetic antenna, Ct participate in
harvesting light energy for photosynthesis [14,15]. In addition to the direct contribution in the
photosynthetic process, Ct are also involved in the defense mechanism against oxidative stress [16–18],
and play an essential role in the dissipation of excess light energy and provide protection to reaction
centers [19–21].

Abiotic stresses arising from drought, extreme temperatures, salinity, or nutrient deficiency adversely
affect the photosynthesis process in higher plants, as well as their growth and development [22–24],
and thus the overall productivity of an ecosystem [25]. Photosynthetic machinery consists of various
mechanisms, including gas exchange systems, photosynthetic pigments, photosystems, electron
transport systems, carbon reduction pathways, and enzyme systems [26]. Any impairment to one or
more of these processes would reduce the photosynthetic activity of the plants, their growth, and their
biomass production. However, the nature and impact of damage resulting from stresses has been
a matter of controversy among plant physiologists for many years, and the reported results vary
considerably according to the plant species, conditions, and experimental procedures used in the
studies [26].

Salinity stress may alter cellular and whole plant-level physiological and biochemical
processes [27–29]. The immediate and direct effect of salinity is the imbalance of osmotic potential in
the soil–plant system preventing water uptake by roots [30,31]. The nature of this effect is similar to
drought stress [32,33]. Ion homeostasis, repressed metabolism, membrane rupture, and energy expense
on defense mechanisms may also result from high levels of salinity [33,34]. The consequences of
salinity stress on photosynthesis are highly complex and are attributed directly to the stomatal closure
and mesophyll limitations for the diffusion of gases, which ultimately alters the net photosynthesis
process [23,35]. The severity and duration of the incessant stress has a profound effect on the content of
leaf photosynthetic pigments, and results in metabolic process impairment [36,37]. However, the effect
of salinity on photosynthetic pigments is highly plant-specific [26] and requires further exploration to
provide an improved understanding of variations resulting from salinity stress across species.

Nutrients supplied by fertilizers play a fundamental role in the structural and functional
components of photosynthetic machinery [38–40], and an optimal nutrient supply is considered
essential for the biosynthesis of plant photosynthetic pigments [41,42]. Any deficiencies will likely lead
to a reduced content of leaf pigments, retarded plant growth, and low net primary productivity [43].
The response of plant growth and production to various essential plant nutrients has been extensively
studied around the globe. Most of these studies were conducted to evaluate best nutrition management
practices under non-saline conditions. However, a high concentration of salts and nutrient imbalances
in the root-zone makes it difficult to examine the response of plant health to fertilizer under saline
conditions [44,45]. In such conditions, a mixed response of plant yield has been reported, with some
studies showing a positive response of fertilizer [46,47], while others have reported a negative [48–50]
or negligible response at high salinity levels [45]. In nutrient-deficient soils, fertilizers have been seen
to improve plant growth, regardless of salinity level [51].

While environmental stresses such as those described above typically reduce the chlorophyll
content [52–56], some studies have reported increased chlorophyll content with increasing salinity
stress in salt-tolerant plants [4,57–59]. Accordingly, higher chlorophyll accumulation is considered
to be a potential indicator of salinity tolerance [60,61]. Carotenoids also provide useful insights into
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the physiological state of plants under stress [62–65], and the response of Ct to stress is similar to the
chlorophyll content in many plants [21,66]. They are involved in the transcriptional modulation of
a large set of genes responsive to reactive oxygen species [67] and long-distance stress signaling in
photosynthetic plants [68]. As a photo-protection mechanism, Ct are retained during the process of
chlorophyll degeneration at leaf senescence [69,70]. In previous studies, the ratio of chlorophyll to Ct

has demonstrated some utility as an indicator of plant stress [71] and plant acclimation and adaptation
to environmental stresses [70].

Traditional methods of measuring photosynthetic pigments involve complex procedures
of solvent extraction followed by in vitro spectrophotometric determination, which make them
destructive, labor intensive, time-consuming, and expensive [72–74]. Likewise, laborious sampling and
analytical procedures generally make data collection over larger space and time domains impractical.
Alternatively, chlorophyll meters such as the SPAD-502 (Konica Minolta Corp., Solna, Sweden) offer a
modest, fast, and non-destructive approach to determine relative values of chlorophyll content, but the
meter needs to be calibrated for measurement in absolute units of chlorophyll content per unit leaf area.
The relationships between SPAD readings and extractable leaf pigments in various plant species have
been the focus of several studies [75–79]. Such studies indicate that the relationship is not universal
and varies with measurement procedure, sensor type, leaf direction and exposure, and plant species
(sometimes even within the same plant species) [80–84]. Importantly, the influence of interactions of
abiotic stresses such as salinity and nutrient limitations on the relationship has received little attention.

As such, the establishment of relationships between SPAD values and absolute leaf pigment
content under a controlled environment with varying levels of plant stress is an area of needed
investigation. To address this knowledge gap, this study attempts to: (1) investigate the influence of
both salinity and fertilizer, as well as their interaction, on photosynthetic pigments of wheat leaves at
the anthesis (i.e., flowering) stage; (2) determine the relationships between SPAD-502 readings and
the extractable chlorophyll (Chlt) and Ct under these varying conditions; and (3) evaluate the effect of
salinity and nutrient stress on the coefficients of the developed regression models.

2. Results

2.1. Impact of Salinity and Fertilizer Treatments on Pigment Content

The leaf pigment content as influenced by salinity and fertilizer application is presented in two
ways: (i) pigment content per unit leaf area (µg·cm−2), and (ii) the total content of pigments produced
per plant (mg·plant−1), as analyzed in the following two sub-sections.

2.1.1. Leaf Area-Based Pigment Content

In general, the colour of the leaves in the experimental units varied considerably from dark
green to pale brown at the time of measurement. Chlorophylls were the dominant pigment in the
wheat leaves and ranged from 1.5 to 66.4 µg·cm−2, with chlorophyll a (Chla) ranging from 0.6 to
44.3 and chlorophyll b (Chlb) from 0.4 to 22.3 µg·cm−2. The ratio of Chla to Chlb was generally
around 2 under the various combined salinity and fertilizer treatments. Ct content was in the range of
0.3 to 5.8 µg·cm−2. At double fertilizer dose, the lower the salinity levels, the smaller the leaf Chla;
i.e., at 7 dS·m−1 salinity, Chla was 24.8 ± 1.6 µg·cm−2, and at zero salinity level the content was
16.9 ± 1.1 µg·cm−2. Similarly, the higher total leaf chlorophyll contents (Chlt) were found in plants
receiving a double dose of fertilizer, again with the maximum value of 43.8 ± 3.4 µg·cm−2 observed
at the highest salinity levels. With a decrease in the salinity level, the Chlt decreased sharply to
23.8 ± 0.9 µg·cm−2. Although a decrease in salinity levels reduced the Chlt at lower doses of fertilizer,
the decrease was not as sharp as that of the double fertilizer dose.

Figure 1 presents the effect of both salinity and fertilizer on leaf pigments content per unit leaf
area. As can be seen, the results indicate a significant increase in the content of all pigments with
increasing salinity and fertilizer dose. However, the impact differs between the various pigments,
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and is dependent on the combination of salinity-nutrient levels. Fertilizer dose increased the pigment
content across all salinity levels, but the effect was most significant at mid-range salinity levels
(7.0 dS·m−1). A doubling of the fertilizer dose at this medium salinity level resulted in an increase of
over 200% in Chlt per leaf area, compared to the zero fertilizer treatment (Supplementary Table S1).
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Figure 1. Pigment contents in wheat leaf under various treatments employed in the experiment
expressed as µg·cm−2: (A) total chlorophyll and (B) total carotenoids content. Fertilizer treatments
are grouped along the x-axis, and different color bars represent treatment of salinity. ANOVA was
performed to test the effect of salinity and fertilizer treatments and their interaction. The post-hoc
analysis was performed using Tukey’s HSD test. Statistically significant differences are represented
by different letters above the bars. Different capital letters indicate significant differences among the
three fertilizer doses at a given salinity level (two-way ANOVA, Tukey’s test, p < 0.01). Different
lowercase letters indicate significant differences among salinity treatments in each fertilizer dose
(two-way ANOVA, Tukey’s test, p < 0.01). Means with same letters show non-significant difference at
p < 0.01. Values are means of ~30 observations with error bars as standard deviations of the mean.

Statistical analysis showed that the effect of fertilizer dose on Chlt was significant (p < 0.01) at all
salinity levels. On the other hand, the salinity levels showed a significant difference only at the double
dose of fertilizer. For the zero and full fertilizer dose, only the highest salinity level was significantly
different, with the zero and medium dose showing a non-significant difference. As noted earlier, plants
grown under the double fertilizer dose produced the highest Chla content per leaf area at medium
salinity levels, showing a 226% increase over plant leaves in the zero fertilizer treatment. The same
fertilizer dose resulted in a 145% increase at the zero salinity and 103% increase at the highest salinity
level of 14 dS·m−1. Chlb content per leaf area exhibited similar treatment responses. Relative to zero
fertilizer, a double dose of fertilizer caused a marked increase in Chlb at zero (123%), medium (137%),
and highest [37] levels of salinity. Correspondingly, the Chlt content per leaf area showed a 200%
increase at medium levels of salinity in response to the double dose relative to zero dose fertilizer
application. At zero and high salinity levels, the corresponding change in Chlt per leaf area was 138%
and 101%, respectively (Table S1).

For Ct content, the impact of fertilizer was particularly pronounced in the absence of salinity,
gradually declining with increases in salinity levels (Figure 1). For the 14 dS·m−1 salinity level,
there was a non-significant difference between zero and full fertilizer dose, while the double dose
showed a statistically significant difference. A double dose of fertilizer relative to zero fertilizer
increased the Ct content by 100% at zero salinity, 77% at 7 dS·m−1, and 53% at 14 dS·m−1 salinity.
In the case of Chlt, the highest increment due to fertilizer appeared at the 7 dS·m−1 salinity level.
These results suggest that a doubling of fertilizer dosage is beneficial in increasing the pigment content
at medium levels of salinity. However, further increases in salinity will diminish the beneficial effects
of an increasing fertilizer dose (Figure 1B).
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Plants grown under higher salinity treatments were characterized by considerably higher
photosynthetic pigment content per leaf area across all fertilizer doses (Figure 1). However, the rates of
increase in pigment content in response to increasing levels of salinity varied over the range of fertilizer
application. The highest boost in the pigment content relative to the zero salinity treatment was
observed at the 14 dS·m−1 salinity level for the zero fertilizer applications (Supplementary Table S1).
The resulting changes were 128%, 97%, 118%, and 88% for Chla, Chlb, Chlt, and Ct content, respectively.
On the other hand, the highest increase in pigment content induced by fertilizer dose was observed at
the medium (7 dS·m−1) salinity level. Interestingly, salinity-induced increases in pigment content were
enhanced in the case of zero fertilizer applications. This supports the finding that salinity and fertilizer
doses have an antagonistic effect on pigment content at high salinity levels in the growth media.

2.1.2. Whole Plant-Based Pigment Content

Any kind of biotic or abiotic stress is expected to challenge the overall health of vegetation. As has
been observed, salinity stress tends to induce higher photosynthetic pigment content when expressed
on a unit leaf area basis (Figure 1) for a specific fertilizer application. However, this tendency is
reversed when expressing the pigment content on a per-plant basis (Figure 2) at the same fertilizer
levels. While the effect of increasing fertilizer dose reflects the same increasing trend evident for the
pigment content per unit leaf area, increasing soil salinity induces a decrease in the total amounts of
leaf photosynthetic pigments. Increasing fertilizer dose significantly (p < 0.01) enhanced Chlt and Ct

under each salinity treatment. On the contrary, all levels of salinity treatments significantly reduced
the Chlt and Ct at full and double fertilizer dose.

Agronomy 2017, 7, 61  5 of 20 

 

Plants  grown  under  higher  salinity  treatments  were  characterized  by  considerably  higher 

photosynthetic pigment  content per  leaf  area  across  all  fertilizer doses  (Figure  1). However,  the 

rates of increase in pigment content in response to increasing levels of salinity varied over the range 

of  fertilizer  application.  The  highest  boost  in  the  pigment  content  relative  to  the  zero  salinity 

treatment  was  observed  at  the  14  dS∙m−1  salinity  level  for  the  zero  fertilizer  applications 

(Supplementary Table 1). The resulting changes were 128%, 97%, 118%, and 88% for Chla, Chlb, Chlt, 

and Ct content, respectively. On the other hand, the highest increase in pigment content induced by 

fertilizer dose was observed at the medium (7 dS∙m−1) salinity level. Interestingly, salinity‐induced 

increases in pigment content were enhanced in the case of zero fertilizer applications. This supports 

the finding that salinity and fertilizer doses have an antagonistic effect on pigment content at high 

salinity levels in the growth media. 

2.1.2. Whole Plant‐Based Pigment Content 

Any kind of biotic or abiotic stress is expected to challenge the overall health of vegetation. As 

has  been  observed,  salinity  stress  tends  to  induce  higher  photosynthetic  pigment  content when 

expressed  on  a  unit  leaf  area  basis  (Figure  1)  for  a  specific  fertilizer  application. However,  this 

tendency  is  reversed when expressing  the pigment content on a per‐plant basis  (Figure 2) at  the 

same fertilizer levels. While the effect of increasing fertilizer dose reflects the same increasing trend 

evident for the pigment content per unit leaf area, increasing soil salinity induces a decrease in the 

total  amounts  of  leaf  photosynthetic  pigments.  Increasing  fertilizer  dose  significantly  (p  <  0.01) 

enhanced Chlt and Ct under each salinity treatment. On the contrary, all levels of salinity treatments 

significantly reduced the Chlt and Ct at full and double fertilizer dose.  

 

Figure  2.  Actual  amount  of  leaf  pigments  produced  by  a  whole  wheat  plant  under  various 

treatments employed in the experiment expressed as mg∙Plant−1: (A) total chlorophyll and (B) total 

carotenoids  content.  Fertilizer  treatments  are  grouped  along  the  x‐axis  and  different  color  bars 

represent the salinity treatment. ANOVA was performed to test the effect of treatments of salinity 

and  fertilizer and  their  interaction. The post‐hoc analysis was performed using Tukey’s HSD  test. 

Statistically significant differences are presented by different letters above the bars. Different capital 

letters indicate significant differences among the three fertilizer doses at a given salinity level (two‐

way ANOVA,  Tukey’s  test,  p  <  0.01). Different  lowercase  letters  indicate  significant  differences 

among salinity treatments in each fertilizer dose (two‐way ANOVA, Tukey’s test, p < 0.01). Means 

with  the  same  letters  show  non‐significant  difference  at  p  <  0.01.  Values  are  means  of  ~30 

observations with error bars as standard deviations of the mean. 

At  the zero  fertilizer dose,  the difference between medium and high salinity  treatments was 

non‐significant. For all of the evaluated pigments, the fertilizer effect was particularly pronounced 

at the highest salinity treatment (14 dS∙m−1), where the double dose fertilizer application increased 

Chla, Chlb, Chlt, and Ct contents by 354%, 342, 348%, and 214%, respectively (Table S1). Increasing 

salinity  levels  reduced  the pigment  content per plant across  the entire  range of applied  fertilizer 

Figure 2. Actual amount of leaf pigments produced by a whole wheat plant under various treatments
employed in the experiment expressed as mg·Plant−1: (A) total chlorophyll and (B) total carotenoids
content. Fertilizer treatments are grouped along the x-axis and different color bars represent the salinity
treatment. ANOVA was performed to test the effect of treatments of salinity and fertilizer and their
interaction. The post-hoc analysis was performed using Tukey’s HSD test. Statistically significant
differences are presented by different letters above the bars. Different capital letters indicate significant
differences among the three fertilizer doses at a given salinity level (two-way ANOVA, Tukey’s test,
p < 0.01). Different lowercase letters indicate significant differences among salinity treatments in
each fertilizer dose (two-way ANOVA, Tukey’s test, p < 0.01). Means with the same letters show
non-significant difference at p < 0.01. Values are means of ~30 observations with error bars as standard
deviations of the mean.

At the zero fertilizer dose, the difference between medium and high salinity treatments was
non-significant. For all of the evaluated pigments, the fertilizer effect was particularly pronounced at
the highest salinity treatment (14 dS·m−1), where the double dose fertilizer application increased Chla,
Chlb, Chlt, and Ct contents by 354%, 342, 348%, and 214%, respectively (Table S1). Increasing salinity
levels reduced the pigment content per plant across the entire range of applied fertilizer treatments.
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For example, at the full fertilizer dose, relative changes of −55% to −110% in pigment content per plant
occurred at the high relative to zero salinity treatment. These results reinforce the finding that higher
amounts of fertilizer increase the detrimental effects of salinity on the photosynthetic pigments.

To further characterize the impact of these treatments on plant response, we examined the
interrelationships between Chla, Chlb, Chlt, and Ct content across the different levels of salinity
treatments. Not surprisingly, Chla and Chlb were found to be closely associated with each other.
Previous studies have also reported a close correspondence across the photosynthetic pigments,
with Chla being 2 to 4 times higher than Chlb, depending on the plant species, growth stage,
and environmental conditions [85–87]. As shown in Figure 3A, the results from this study reflect a
strong and positive linear relationship between Chla and Chlb (R2 = 0.95 and RMSE = 2.71), although
a curvilinear tendency appears beyond a Chlb value of around 18 µg·cm−2. The ratio of Chla/Chlb
ranged from 0.73 to 2.98 µg·cm−2, with an average value of 2.47 ± 0.38 across the experiment. Although
there was a tendency of an increasing ratio of Chla/Chlb with increasing salinity level, the effect was
not statistically significant. The Ct content was closely related to Chlt. Figure 3B shows the relationship
between Chlt (i.e., Chla + Chlb) and Ct content as described by a second-order power curve and
using data obtained across all levels of salinity and fertilizer application. The curvilinear shape of
the fitting function indicates a decreasing sensitivity of Ct content to changes in Chlt with increasing
Chlt, before reaching an asymptotic level at Chlt ~50 µg·cm−2 (Figure 4A). Sims and Gamon [88]
reported a similar relationship between Chlt and Ct content across a wide range of plant species with
variable leaf structure, plant functional type, and phenological development stage. In terms of salinity
treatments, there is no clear trend in the impact of salinity gradients on the relationship between the
plant pigments, although measurements taken from leaves exposed to zero salinity are centered more
towards the lower extreme of the observed range (Figure 3B).
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Figure 3. Relationship of the photosynthetic pigments in wheat leaves grown across gradients of soil
salinity and fertilizer application: (A) linear relationship between chlorophyll “a” and chlorophyll “b”
contents (n = 277), and (B) relationship between total chlorophyll and carotenoids content (n = 277) at
various levels of salinity shown by different color markers. A second-order power curve best fitted to
the data. The relationship coefficients and goodness of fit parameters are given in the plot area.
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Figure 4. Relationships between SPAD-502 readings and the pigments at various levels of salinity
and fertilizer application: (A) SPAD-502 vs. total chlorophyll content, and (B) SPAD-502 vs. total
carotenoids content. Second-order polynomial curve was fitted to the data of total chlorophyll content,
whereas a linear curve was fitted to the carotenoids data (n = 277 in each case).

2.2. Estimation of Leaf Photosynthetic Pigment Content from SPAD-502 Measurements

SPAD readings ranged from 2.1 to 62.5 (unitless), and the highest value was found in plants
grown under the double fertilizer dose in combination with the highest salinity level. Figure 4A
shows the relationship between measurements of SPAD-502 and Chlt, with values for all fertilizer
treatments plotted at the defined salinity applications. A second-order polynomial provided the best
approximation, yielding an overall R2 of 0.93 and RMSE of 4.3 µg·cm−2. The relationship between
leaf Ct content and SPAD readings was better described by a first-order linear equation, with an R2

of 0.85 and RMSE of 0.53 µg·cm−2 (Figure 4B). These regression models originate from a sufficiently
large SPAD-pigments data set (n = 277) that encompasses a broad range of leaf measurements taken
from plants grown under salinity levels from 0–14 dS·m−1 and from zero fertilizer to double the dose
of fertilizer recommended for wheat. As a result, derived expressions may be effectively used in a
variety of field situations to calculate leaf photosynthetic pigment content from SPAD-502 readings.
However, as the data come from different plants under different treatments (Figure 4), it is worthwhile
to further diagnose the underlying structure and variation of the data resulting from different salinity
treatment levels.

For this purpose, we examined whether the predictive power of salinity-specific regression models
differed significantly. Accordingly, test procedures were performed to (1) explore cluster analysis
to show how data pairs from different salinity treatments are grouped; (2) evaluate the statistical
difference between the Pearson correlations (R values) of SPAD-chlorophyll and SPAD-carotenoids
relationship obtained from the paired data at the three salinity levels; and (3) determine if the predictions
based on the salinity-specific models deviate significantly from the overall regression model.

2.2.1. Cluster Analysis between SPAD and Pigment Content Values

Cluster analysis groups similar data into clusters and allows the specification of inter-cluster
relationship to be determined. The SPAD readings and pigment data pairs for each measurement
point were plotted, and an ellipse of 2σ covariance was drawn around the mean point of each cluster.
The ellipse dimensions are generated by the eigenvalues of the covariance matrix, with the biggest
eigenvector alongside the main axis. Figure 5 displays the cluster analysis of the relationship between
SPAD-502 readings and Chlt and Ct content. As illustrated in Section 3.1, a higher salinity and fertilizer
dose increases the values of Chlt and Ct content, and the same tendency is reflected in the SPAD
readings. Therefore, data from the zero salinity treatment are clustered closest to the origin of the plot,
whereas data from medium and high salinity treatments are clustered at progressively higher limits of



Agronomy 2017, 7, 61 8 of 21

the axis. The response of the medium salinity treatment is almost entirely encompassed within the
response of the zero salinity treatment, while being significantly different from the response of the high
salinity treatment (Figure 5A). Although the means of the zero salinity and medium salinity treatments
are very close to each other, the ellipse of the zero salinity data is larger, due to a larger range in the
SPAD and pigment values under the zero salinity treatment. The largest clusters are generated for
the high salinity treatment, which is characterized by the highest SPAD and photosynthetic pigment
content values. However, the characteristics of individual clusters are not significantly different for
both Chlt and Ct content (Figure 5A,B).
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Whisker plots are superimposed on the data to illustrate the data spread (n = 277).

2.2.2. Multivariate Statistical Analysis between SPAD and Pigment Content Values

The effect of salinity on the prediction of Chlt content from the SPAD readings was also
investigated based on a multivariate statistical analysis. This was performed to determine if
salinity-specific regression models generated from the data at three different salinity levels were
significantly different. The resulting Pearson correlations were 0.95, 0.95, and 0.97 for zero
salinity, medium, and high salinity levels, respectively, indicating very strong and statistically
significant (p < 0.001) correlations. When the Chlt values estimated through salinity-specific SPAD-Chlt
regression models were plotted against those obtained from the overall regression model, they
produced nearly overlapping lines, except for a small overestimation at the highest salinity level
(Supplementary Figure S2A). This implies that the effect of fertilizer on the prediction of Chlt per
unit leaf area is the same at all levels of salinity stress, and that the more general regression model
can describe most of the variability produced by any of the salinity-specific models. Similarly, Ct

content estimated from an overall SPAD-Ct regression model reproduced the overlapping lines when
plotted against those estimated from salinity-specific regression models with an RMSE of 0.53 µg·cm−2.
However, at higher salinity levels, the overall SPAD-Ct model is seen to slightly overestimate values at
the lower range while slightly underestimating values at the higher range (Supplementary Figure S2B).

3. Discussion

Chlorophylls and carotenoids are key components of the photosynthetic machinery, and their
role in harvesting light energy, stabilization of membranes, and energy transduction has been studied
extensively [89–94]. SPAD measurements are widely used to assess the absolute chlorophyll content
per leaf area in research settings and agricultural systems. In both instances, the effects of various
abiotic factors on the estimation of these important plant traits require more detailed investigation.
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Importantly, the link between SPAD measurement and photosynthetic pigments other than chlorophyll
remains largely unexplored. In this work, we investigated the influence of salinity and nutrient stress
and their interaction on Chlt and Ct content on a per leaf and plant basis, combined with SPAD-502
readings of wheat at flowering stage, and determined the nature of SPAD–pigment relationships across
large gradients in salinity and fertilizer treatment.

3.1. Effect of Stress on Pigment Content Per Unit Leaf Area

We observed that plants under increasingly saline treatments exhibited more green leaves
compared to non-saline conditions. However, the overall size and volume of the green biomass
was lower for the saline treatments. To partly offset the effects of stress, salinity usually results in
thicker leaves with a higher number of cells per unit area, as well as decreased cell size in plant
leaves [95,96]. The increased pigment per leaf area has previously been attributed to decreasing leaf
growth in response to salinity stress [97]. Pandolfi et al. [98] suggested that stress may trigger a set
of physiological alterations enabling the plants to withstand severe salinity. As was observed in our
results, salinity stress tended to enhance the Chlt and Ct content per leaf area (Figure 1), although the
total pigment content per plant decreased as a result of smaller leaves. Previous studies have also
shown that salinity stress increases Chlt per leaf area in salt-tolerant plants [99], and an increase in Chlt
under salt stress could be used as a biochemical indicator of salt tolerance in plants [94,100]. Moderate
salinity stress enhances the biosynthesis of Chlt and Ct content in order to preserve proper functioning
of the photosynthesis system. In that regard, our results are in agreement with Jiang et al. [94], who
found that treatments with saline water significantly increased the leaf weight per area, along with
Chlt and Ct content, albeit for leaves of tomato plants. Similarly, Khatkar and Kuhad [101] correlated
observed increases in Chlt per leaf area to incremental increases in salinities (i.e., 5, 10, and 15 dS·m−1)
in their study on wheat cultivars at the flowering stage.

Limited nutrient supply resulted in decreased pigment content per unit area, as well as in the total
amount produced per plant. The response to salinity stress was somewhat different, with increased
salinity tending to increase pigment content. A variable response of chlorophyll content to salt stress
has been reported for a range of species, depending on their level of salt tolerance [56,100,102,103].
As a defense mechanism in response to salinity stress, leaf thickness and mass per unit area increase,
and thus specific leaf area (SLA) can decrease. Visual observations of the plants during the experiment
showed a pattern of deeper green color combined with thicker and narrower leaves. However,
the total leaf mass and pigment amount produced per plant decreased with increasing salinity stress.
Stress has varying effects on SLA. In typical cases [81,100,103], SLA has shown decreased values
under drought/salinity stress as an adaptation to the prevailing stress. A logical explanation is that
the lower surface area per leaf mass would result in less transpiration and conservation of water.
Marron et al. [104] reported that a low SLA enhances the conservation of acquired resources, due to
their higher dry matter content, thicker cell walls, and elevated concentration of secondary metabolites
for prolonged survival of leaves.

3.2. Total Amount of Pigments Produced Per Plant

The interaction effect of salinity and fertilizer on the pigment content per leaf area was found to be
significant, with a dependence of the salinity effect on the level of fertilizer application (Figures 1 and 2).
Compared to the control (i.e., non-saline conditions with no fertilizer applied), the largest increase
in Chlt per leaf area was reported in leaves exposed to the highest salinity stress in combination
with a double dose of fertilizer. This suggests that fertilizer can be utilized more effectively at higher
levels of salinity. High concentrations of salts in the root zone cause imbalances in nutrient supply
to the plant [97,105,106] by competitive interaction of the salts with nutrient ions or by membrane
selectivity for the ions [51]. Moreover, plants under salinity stress produce more stress proteins,
prolines, and compatible osmolytes [107–109]. Thus, being an integral component of the structures
and functions, an optimum supply of essential plant nutrients is required for biochemical reactions
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and synthesis of the biomolecules in stressful environments. These factors may provide an explanation
for the observed response of pigment content to fertilizer at higher salinity levels.

3.3. Effect of Stress on SPAD–Pigment Relationships

To date, relatively few studies have assessed the effect of abiotic stress factors on SPAD–pigment
relationships. A strong and highly significant correlation was established between SPAD-502 readings
and Chlt (R2 = 0.93) by fitting a second-order polynomial to the data (Figure 4A). Previous studies
have shown that the relationship is plant-specific to some extent [80,110–112], and depending on the
data, a variety of fitting models have been used to describe the relationship. Campbell et al. [113]
found that linear models of SPAD–chlorophyll relationships differed between experiments and
environmental conditions. Houborg et al. [114] fit an exponential model to the relationship between
SPAD readings and dimethylsulfoxide (DMSO) extractable Chlt per leaf area. Our study found
a linear relationship between SPAD-502 and Ct content per leaf area when data was pooled from
various treatments (Figure 4B). Similar relationships have been demonstrated with variable strengths
of the coefficients [63,64,115]. It is clear from Figure 4B that indirect quantification of the Ct content
is possible from SPAD-502 readings over the whole range of measurement. This finding differs
somewhat from results reported in Netto et al. [77] in their study on coffee plants, which found
a weak polynomial relationship below SPAD readings of 25. To better understand the utility of a
generalized relationship, we further investigated the impact of salinity stress on the nature of the fitted
models (Supplementary Figure S1). High Pearson correlations indicated strong and statistically
significant (p < 0.001) correlations at all levels of salinity. The correlation coefficients were not
significantly different under various levels of salinity, and the overall regression model only slightly
overestimated Chlt at the highest salinity compared to the salinity-specific regression models. Likewise,
Ct content estimated from the overall regression model only differed slightly from those estimated
from salinity-specific regression models, with the largest deviations occurring during the high salinity
treatment. As a result, for the particular wheat variety examined here, distinctive models developed at
specific plant stress levels are not required to optimize predictability across different levels of salinity.

While the salinity-induced variations in the prediction models were found to be statistically
non-significant, the small differences that were observed may be attributed to alterations in the internal
structure of the leaf caused by saline conditions in the root zone. For instance, at a certain value of Chlt,
the corresponding SPAD value may differ due to internal leaf structural changes caused by salinity.
SPAD-502 recordings are based on measurements of leaf transmittance at 650 nm and 940 nm [80].
Leaf spectral properties are governed by two distinct features of plant leaves. One is the biochemical
composition of the leaf tissues, which include the plant photosynthetic pigments, biomolecules, and
osmolytes. The other is the morphology and internal architecture of the leaf. The spectral response
in the near-infrared region is affected by internal leaf structure [116]. Thus, even if the pigment
content remains unchanged, alteration in micromorphology due to salinity stress may translate into
variation in the spectral properties. Therefore, it is possible to have the same extractable chlorophyll
content for two leaves showing quite different SPAD measurement values under changing and stressed
environmental conditions. Studies have shown that due to high salt concentrations in the root zone,
plant leaf micro-morphological and ultra-structural features are strongly altered in both halophytes and
glycophytes [117,118]. A variable instrumental response to chlorophyll content has also been reported
by Kalaji et al. [119] under nutrient-deficient conditions. The ultra-structural alterations may be caused
by specific ion toxicity and osmotic imbalance [120]. The swelling of thylakoids in chloroplast may
be induced by an osmotic imbalance between stroma and cytoplasm [117,121], which can result in
photochemical oxidation. Vacuolation is another adaptive response to accumulate excess Na [122].
These leaf anatomical modifications may alter the spectral response and SPAD readings accordingly.
However, in this specific study, the changes found in the regression coefficients of the fitted models
did not vary significantly.
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4. Materials and Methods

4.1. Greenhouse Pot Experiment

A greenhouse-based pot experiment was undertaken within an automated day–night
temperature-controlled environment. For accuracy, a two-fold environmental monitoring system was
installed that comprised of: (1) a data-logger connected with a Vaisala HMP155 for measuring ambient
air temperature and relative humidity within the greenhouse; and (2) five Thermachron iButtons
placed in close proximity to the growing plants, also to monitor temperature and relative humidity.
Throughout the experiments, the temperature in the greenhouses was set to 25 ◦C during the day and
20 ◦C at night. The growing medium was a mixture of mineral soil collected from a nearby field and
commercial organic soil. The field soil is classified as a calcareous alluvium Aridisol (Typic Haplargid),
which is a coarse-loamy textured, thermic, and nutrient-deficient soil [123]. The field-collected soil was
air-dried, ground, and passed through a 2-mm sieve. The mineral soil was amended with a commercial
organic soil-mix with a ratio of 70:30 (v/v) and placed into 2.5 L plastic pots, ensuring a bulk density
of 1.2 g·cm−3 (typical of a plow layer in a cultivated field). The total amount of soil in each pot was
measured on a dry weight basis, hence the water content of the soil needed to be known. To do this,
the gravimetric water content (θd) of both the mineral soil and organic soil-mix was determined prior
to mixing in order to establish the amount of soil required to fill the pots:

θd =
Wwet − Wdry

Wdry
(1)

where Wwet is weight of wet soil and Wdry is weight of oven-dry soil. The water holding capacity
(WHC) of the soil was determined by the amount of water retained by the saturated soil after free
drainage for two days according to:

WHC (%) =
weight of drained soil − weight of air dried soil

weight of air dried soil
× 100 (2)

Plants were grown at a WHC of nearly 70% during the experimental period through a regulated
irrigation in which water lost from a pot via evapotranspiration was replenished with fresh non-saline
irrigation water. The water lost was measured as the difference between weights of each pot between
two irrigation time intervals.

Spring wheat (Triticum aestivum L., Australian Grain Technologies MACE variety) was used as
the primary plant material during the experiment. Four seeds were sown in each pot. On the tenth
day after sowing, over 90% germination was observed. The pots were then thinned to two uniformly
germinated plants per pot for the remainder of the experiment.

4.1.1. Plant Treatments

A total of nine treatments, each with three replicates (27 experimental units), were employed
in the experiment using a randomized complete block design. Blocks were assigned with different
soil salinity treatments, and the fertilizer treatments were randomized within each block of salinity.
Non-saline irrigation water was applied once a week during the early growth stages and then
twice weekly after booting stage, as water loss was greater during this stage of vegetation growth.
The soil was salinized by saturating selected pots with specified salinities of irrigation water
(S1 = 0.3, S2 = 7.0, and S3 = 14 dS·m−1). The electrical conductivity (EC) levels of the applied water
were selected according to observed plant responses to salinity during a preliminary experiment.
During that experiment, salinity levels were chosen according to salinity tolerances of wheat as
reported by FAO irrigation water quality criteria [124]. The salinity levels were obtained by mixing tap
water (desalinated seawater) with fresh sea water (EC = 59.8 dS·m−1) under continuous stirring and
monitoring of the EC during mixing.
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In additional to salinity treatment, three levels of fertilizer (F1, F2, F3) were employed during
the experiment to represent zero, full, and double dose of that recommended for wheat (Figure 6).
Slow-release granular fertilizer (commercially available MIKAFOZ®, Agriculture Machinery &
Materials Co. Ltd., Jeddah, Saudi Arabia) blended with micronutrients (18-18-5 + TE; i.e., 18% nitrogen,
18% phosphorous, 5% potassium, and trace elements) was applied at 3 cm depth in each pot.
The amount of fertilizer required for each pot was calculated based on the soil surface area of the pot.
Given the radius (r) of the pot (7.3 cm), surface area (A) was measured as A = πr2. The full dose of
fertilizer was considered as 120 kg·N·ha−1 recommended for wheat crop.
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Figure 6. Experimental setup showing the arrangement of the applied treatments as well as the sensors
used for environmental monitoring. Each numbered circle represents a pot containing two plants.
Salinity and fertilizer treatments were applied in a randomized complete block design with three
replications. Blocks (colored rows) were assigned a fixed salinity, while fertilizer treatments in three
replications were randomized within each row. Green circles represent buffer pots containing plants
without treatment encircling the treatment pots. Blue circles are pots with no fertilizer, yellow circles
are pots receiving full fertilizer dose and red circles show double the recommended fertilizer dose.

Measurements and sample collection for determination of Chla, Chlb [57], Chlt, and Ct content
were undertaken within 2 days at the anthesis stage. This period is known as the lag phase, during
which cellular division is rapid and endosperm cells and amyloplasts are formed, and is considered
very sensitive to environmental stresses [125].

4.1.2. SPAD Measurements

The SPAD-502 meter is used extensively in research and agricultural settings as a rapid,
inexpensive, and non-destructive method for the assessment of leaf chlorophyll content. The SPAD-502
meter consists of two light-emitting diodes (LEDs) and a silicon photodiode receptor. It measures
leaf transmittance in the red region (650 nm) and infrared region (940 nm) of the electromagnetic
spectrum. A relative SPAD-502 meter value (ranging from 0–99) is derived from the transmittance
values, which is proportional to the chlorophyll content in the sample [75,80].

From each plant, 10 leaves of varying age and color were selected for measurements made under
diffuse lighting [84]. Every leaf measurement was an average of 10–15 SPAD-502 readings.

4.2. Photosynthetic Pigments Determination

Leaf chlorophyll and Ct contents were determined by spectrophotometric analysis of chemically
extracted pigments. For this purpose, a total of 270 samples [87] were collected immediately after
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the SPAD-502 measurements across the prescribed gradients of soil salinity and fertilizer treatment.
For each of these samples, three leaf discs with a diameter of 7 mm (area = 0.38 cm2) were collected
in a micro-centrifuge Eppendorf tube, and immediately wrapped in aluminum foil and stored in ice.
The samples were transported within 30 min of collection to the laboratory and stored at −80 ◦C until
final analysis could be undertaken using the methods of Arnon [126] and Wellburn [115]. Briefly,
the samples were ground in liquid nitrogen using the SPEX Sample PrepTM CryoStation (2600)
and Geno/Grinder. The ground samples were extracted in 80% ethanol at room temperature after
centrifugation. Pigment absorption was measured spectrophotometrically at 663, 645, and 470 nm using
an Infinite M1000 PRO plate reader, and translated into pigment contents using the following equations:

Chlt
(
µg·cm−2

)
= [(20.2 × A645) + (8.02 × A663)] × mL of Acetone80%/Leaf Area

(
cm2

)
(3)

Chla
(
µg·cm−2

)
= [(12.7 × A663)− (2.6 × A645)] × mL of Acetone80%/Leaf Area

(
cm2

)
(4)

Chlb
(
µg·cm−2

)
= [(22.9 × A645)− (4.68 × A663)] × mL of Acetone80%/Leaf Area

(
cm2

)
(5)

Ct

(
µg·cm−2

)
= [(1000 × A470)− (1.9 × Chla)− (63.14 × Chlb)] /214 (6)

where A is absorbance at the subscript wavelength. The total pigment content produced per plant,
Pp (mg·plant−1), was calculated from the pigment content per leaf area (PL) and the total leaf area
per plant (Ap) as:

PP = PL × AP (7)

A subset of leaf samples was collected from each salinity treatment for the measurement of leaf
area using a portable leaf area meter (LI-3000C, Li-COR Inc., Lincoln, NE, USA) and a connected
conveyer belt (LI-3050C, LI-COR Inc.). The leaf material for each treatment was dried in an oven for
2 days at 60 ◦C and weighed in order to calculate the specific leaf area for each salinity treatment.
The Ap for all individual plants was then calculated by multiplying the specific leaf area with the total
dry leaf weight of the plant [127].

4.3. Statistical Analyses

Analyses of variance (ANOVA) of the means of the different treatments were performed in
MATLAB (MathWorks, Natick, MA, USA) using two-way ANOVA analysis (ANOVA2). Tukey’s
honestly significance difference (HSD) test [128] was implemented using R-code to determine if the
means were significantly different from each other:

HSD =
M1 − M2√
MSw

(
1
n

) (8)

where M1 and M2 denote the means of the two treatments being compared, MSw is the mean square
within the treatments (residual mean square), and n is number of observations in the treatment.

For any particular salinity level (denoted in Figures 1 and 2 by one of three colors), a different
capitalized letter across the varying fertilizer doses (i.e., zero, full, and double) indicates a statistically
significant difference. Differing lowercase letters placed on the three color bars within any fertilizer
dosage indicates a significant difference between the particular salinity treatments. For cases having the
same letters on individual bars, either across dosages or salinity levels, the differences are statistically
non-significant. For example, in Figure 1A, we see that the red bars each have a different capital letter,
indicating that the results across fertilizer doses is statistically significant at that particular salinity
level (14 dS·m−1). On the other hand, in Figure 1B at 14 dS·m−1, there is a non-significant difference
between zero and full fertilizer dose, but the double dose does show a statistically significant difference.
Similarly, in Figure 1A, different lowercase letters placed on the three color bars within the double



Agronomy 2017, 7, 61 14 of 21

fertilizer dose indicate significant differences among the salinity treatments in that group. However,
for the zero and full fertilizer dose, only the red bar (14 dS·m−1) salinity level is significantly different.
Further, the mutual differences of blue and green bars are non-significant for these particular cases.

Regression analysis was performed using SPSS Version 10.0 [129]. After fitting suitable regression
models to the pigment data, RMSE (root mean square error) was calculated as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(Yi − Ŷi)
2 (9)

where N denotes the number of observations, Yi is the measured value, and Ŷi is the estimated value
of the dependent variable. Cluster analyses on the scatter plots were performed to further characterize
the variability of the derived relationships. This statistical technique is commonly used in data mining
and exploratory analysis to group data based on similarities called clusters, helping to describe the
relationship of the clusters to each other and to the independent variable. In this technique, data pairs
of independent and dependent variables for each point of measurement are plotted. For each cluster
of data, an ellipse of 2σ covariance is described around the mean point of the cluster. The dimensions
of the ellipse are the eigenvalues of the covariance matrix that is revolved in a way to ensure that the
main axis lies alongside the largest eigenvector.

5. Conclusions

Wheat plants under salinity stress showed a significant increase in the chlorophyll and Ct

content per leaf area, whereas salinity stress significantly reduced leaf dry matter and total content
of the produced pigments when accounting for pragmatic changes in leaf area. Although fertilizer
applications enhanced the photosynthetic pigment content per leaf area, their interaction with salinity
stress was found to be significant and varied with the level of salinity present in the root zone. Unlike
the pigment content per unit area, the total amount of pigment content per plant was significantly
reduced by the imposed salinity stress. In terms of monitoring the Chlt and Ct content of the plant in
a passive and non-destructive manner, a strong positive and statistically significant correlation was
found with SPAD-502 readings, based on a large experimental data set. The analyses indicated that
the strength of the correlations remained largely unaffected by salinity stress and that the relatively
small variations in model coefficients were the result of biochemical and structural alterations in
leaves modified by the salinity stress. The results confirm that SPAD-based retrieval of photosynthetic
pigments can be undertaken with some degree of confidence without considering specific conditions
induced by prevailing stress in wheat plants.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4395/7/3/61/s1.
Figure S1. Relationship between SPAD and chlorophyll content at various salinity levels. Figure S2. Difference
between overall and salinity specific prediction models. Table S1. Variation in pigment content (%) under various
treatment combinations.
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