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Abstract: Seasonal growth patterns of perennial plants are linked to patterns of acclimation and
de-acclimation to seasonal stresses. The timing of cold acclimation (development of freezing
resistance) and leaf growth cessation in autumn, and the timing of de-acclimation and leaf regrowth
in spring, is regulated by seasonal cues in the environment, mainly temperature and light factors.
Warming will lead to new combinations of these cues in autumn and spring. Extended thermal
growing seasons offer a possibility for obtaining increased yields of perennial grasses at high latitudes.
Increased productivity in the autumn may not be possible in all high latitude regions due to the
need for light during cold acclimation and the need for accumulating a carbohydrate storage prior
to winter. There is more potential for increased yields in spring due to the availability of light, but
higher probability of freezing events in earlier springs would necessitate a delay of de-acclimation,
or an ability to rapidly re-acclimate. In order to optimize the balance between productivity and
overwintering in the future, the regulation of growth and acclimation processes may have to be
modified. Here, the current knowledge on the coordinated regulation of growth and freezing
resistance in perennial grasses is reviewed.

Keywords: CBF; climate change; cold acclimation; de-acclimation; freezing; growth; light;
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1. Introduction

Changes in atmospheric CO2 concentration, temperature, and precipitation patterns are expected
to affect plant productivity in a complex manner due to a set of mechanisms and interactions at
different scales from leaf to agro-ecosystem [1]. In regions or periods where water availability is
sufficient, elevated atmospheric CO2 concentrations and higher temperatures can potentially increase
growth rates of many plant species, including C3 grasses and forage legumes, and thus increase
grassland productivity [2]. In addition to this direct effect of temperature and CO2 concentration,
cool regions with non-productive winters are likely to have longer thermal growing seasons (often
defined as the part of the year when the daily mean temperature exceeds 5 ◦C), with earlier springs
and later autumns. For example, in Finland, where the annual mean temperature has most likely
increased by at least 2 ◦C during the last 150 years [3], the thermal growing season was predicted to
become one to three months longer by the end of the century as compared to the period 1971–2000 [4].
Such extended growing seasons are expected to contribute to the increase in annual grassland yields in
temperate climates [5–9]. Although the prediction models used so far account for drought limitations
on growth, they do not account for possible effects of plant survival during seasonal stresses. However,
a recently developed model, which incorporates both the cold acclimation process in autumn and
winter survival, will improve predictions for high latitudes in this respect [10].
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Perennial grasses have the potential to utilize the light energy over a larger part of the year than
most annual crops, but should survive and produce biomass for several years. The annual recurrent
periods of winter stresses or summer droughts in some regions have led to the evolution of seasonal
acclimation and de-acclimation processes regulating the level of resistance to seasonal stresses [11–13].
These processes, which are largely regulated by temperature and photoperiod, correlate with changes
in growth, development, and dormancy status [13–15], and latitudinal clines in growth responses to
temperature and photoperiod have been described [16]. Acclimation and de-acclimation are associated
with cessation and resumption of leaf growth, respectively, suggesting a classical growth–stress
survival trade-off [17] in the adaptation to seasonal stresses [15]. It is important to note, though,
that cessation of leaf growth does not always mean cessation of biomass accumulation, but rather
a shift in allocation of photosynthates from leaf blades to newly formed tillers, roots, and storage
tissues [18]. Although some perennial grasses have been shown to possess summer endodormancy
of shoot meristems [12,14], the existence of winter endodormancy has not been demonstrated to
my knowledge, although perennial grasses are obviously ecodormant during cold winter periods.
Instead, the shoot meristems that are formed during the latter part of summer and/or during autumn
(variations between species) are more or less unresponsive to long day-induction of reproductive
development. They gradually become responsive during weeks of low temperature (vernalization),
a process which occurs faster in short than in long photoperiods [19].

Winter survival of perennial grasses can be measured directly at the individual plant level,
but is frequently measured at sward level as the relative recovery in spring, a measure which also
encompasses rate of tiller survival, and earliness and rate of regrowth. Winter survival is an extremely
complex trait being the result of both an acclimation process and responses to numerous types
of stresses that plants encounter and must endure during winter and early spring [20]. The term
“cold acclimation” refers to the development of resistance to freezing stress. Temperature is a major
environmental factor controlling cold acclimation and cold de-acclimation in perennial grasses,
although light factors are also of importance. Low temperature induces not only freezing resistance,
but also resistance to other winter stresses, such as ice encasement/anoxia [21], and fungal pathogens
(snow molds) [22,23], which, depending on climatic conditions, may have a much stronger influence
on winter survival than freezing [20].

Temperatures are increasing in most regions of the world [24,25], but the annual variation in
photoperiod will remain the same. We will therefore have new seasonal combinations of temperature
and photoperiod in the future, particularly at high latitudes, where photoperiod changes dramatically
during the course of a year. This may lead to mismatches between annual cycles of growth,
development, and stress resistance. In order to utilize the new seasonal patterns to maximize the
production of biomass from perennial grasses, while maintaining sufficient survival through stressful
parts of the year, we need species and varieties with temperature and photoperiod responses conferring
an annual growth pattern that optimizes the balance between growth and survival. This review aims to
describe the physiological and genetic factors that determine the balance between the productivity and
overwintering of perennial grasses in the longer thermal growing seasons expected at high latitudes in
the future.

2. Can We Increase Autumn Productivity at High Latitudes?

Autumn-extended thermal growing seasons, combined with higher atmospheric CO2

concentrations, have the potential to increase the productivity of perennial grasses in the autumn [6–9].
However, since the annual variation in temperature lags behind the annual variation in photoperiod,
there is less light in autumn than at comparable temperatures in spring (Figure 1). Therefore, light
availability may limit the utilization of the extended growing season in autumn [26,27]. Insufficient
light not only limits growth rates, but can also prevent proper acclimation to several types of winter
stress [28–33]. Light factors during the cold acclimation period can affect the freezing tolerance
of herbaceous overwintering plants in several ways [34,35]. Firstly, a certain irradiance combined
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with low temperature increases photosystem II (PSII) excitation pressure, which is a signal leading
to the development of freezing resistance [36–40]. Secondly, short photoperiod and low red to far
red light (R:FR) ratio can interact with low temperature to stimulate the development of freezing
resistance [41–44]. Thirdly, irradiance is the energy source for the accumulation of carbohydrates
with a functional role in freezing resistance [40]. In addition, irradiance is the energy source for the
accumulation of carbohydrate reserves needed for maintenance and stress responses during winter,
as well as for early regrowth in spring.
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Figure 1. The thermal growing season and annual variation in photoperiod and temperature at
a northern latitude. With higher temperatures in the future (light grey area), the thermal growing
season will extend in both ends (outer green box) as compared to today (dark grey area and inner
green box). The annual changes in temperature (grey area) lags behind the annual changes in
photoperiod (black line). With higher temperatures in the future, but the same photoperiod variation
as today, we will have new combinations of temperature and photoperiod.

In order to obtain high productivity over several years, a high rate of winter survival and vigorous
spring regrowth is necessary, and therefore increased autumn productivity through an extended
growing season can only be sustainably achieved if there is enough light during the delayed cold
acclimation period. The required levels of acclimation and of stored carbohydrate reserves depend
on the severity of the prevailing stresses and on the magnitude of the net photosynthetic deficit that
might accumulate during winter, both which can vary greatly from year to year, and which do not
necessarily diminish with climate change [20]. There are, in theory, two contrasting options for genetic
adaptation to autumn-extended thermal growing seasons at high latitudes: either utilize the extended
growing period and cold acclimate later in the autumn, but at the same temperature as today, or
cease leaf growth and cold acclimate at the same photoperiod as today, but at higher temperatures
(Figure 2). Which option is the best one with regard to optimization of long-term yield would depend
on the amount of light needed for sufficient cold acclimation and for sufficient accumulation of
carbohydrates. The relative importance of temperature and light factors in cold acclimation and
cessation of leaf growth in perennial grasses is not very well characterized, neither are the interactions
between temperature and light. It has been suggested that plants adapted to the extreme north rely
more on photoperiod than temperature for timing of cold acclimation and cessation of leaf growth
than other plants, and that such photoperiodic control will be of increasing importance in southern
Scandinavia in the future [32]. The genetic association between cold acclimation and cessation of leaf
growth is also not well characterized. The negative correlation between accumulation of carbohydrate
reserves and production of harvestable biomass (i.e., assimilate partitioning) is difficult to get around.
The association between leaf growth and cold acclimation may have a regulatory cause (discussed
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below) rather than a physiological cause, and thus it may be possible to break this association through
breeding, as has been suggested for alfalfa (Medicago sativa L.) [45–47].

When considering the possibilities for adaptation to autumn-extended thermal growing seasons,
it would be relevant to know: (1) to what extent do perennial grasses depend on PSII excitation
pressure for induction of cold acclimation and how much light is required for this? (2) how much
carbohydrate reserves are needed, and how much light is required after cessation of leaf growth, if any,
to build this storage? and (3) how are the different aspects of growth, allocation of photosynthates,
and cold acclimation regulated by environmental and genetic factors?
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Figure 2. What is the optimal timing of cold acclimation and cessation of leaf growth in autumn?
The grey arrows indicate the change in photoperiod and temperature during current (dark grey) and
future (light grey) autumns. The timing of cold acclimation and cessation of leaf growth (blue dot) in the
future climate could occur (1) at the same temperature as today, but shorter photoperiods (horizontal
black arrow), or (2) at the same photoperiod as today, but warmer temperatures (vertical black arrow).
Option (1) would allow higher biomass production, but cold acclimation and accumulation of sufficient
carbohydrate reserves might be compromised by limited light energy.

2.1. The Role of Light in Signalling Mechanisms Inducing Cold Acclimation

Low temperature limits the rates of enzymatic reactions of photosynthesis more than the rates of
electron transfer reactions in the light harvesting systems. As a result, low temperature in light creates
an energy imbalance in the photosystems, leading to a change in the redox state of photosynthetic
electron-transport components and a high excitation pressure of PSII [36–38]. The altered photosystem
redox state functions as an irradiance-dependent cold sensor. As a result of the PSII over-excitation,
reactive oxygen species (ROS) are generated, and these may act in signaling pathways leading to
the expression of genes involved in freezing resistance [48,49] as well as a compact growth habit in
overwintering herbaceous plants [36,37,50–53]. This mechanism of sensing cold might become less
efficient if the cold acclimation period is shifted to a later time in autumn in the future, particularly
at high latitudes, were irradiance levels are rapidly declining during that time of year. There are,
however, also other mechanisms by which plants may sense low temperature and initiate development
of freezing resistance, such as changes in membrane rigidity, temperature-dependent histone-DNA
interactions, and conformational changes of RNA and protein structure [48,54]. These mechanisms
may increase in importance if the cold acclimation period is postponed to a later time of year in
the future.

Overwintering plant species have different strategies to handle the potentially damaging excess
energy associated with elevated PSII excitation pressure [37–39]. In winter wheat and winter rye
the photosynthetic capacity is upregulated during cold acclimation (photochemical quenching, qp),
ensuring utilization of the energy available from the light harvesting complexes. Compared to
winter cereals, spring cereals exhibit less photosynthetic acclimation, rely more on dissipation of
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excess energy by release of heat (non-photochemical quenching, NPQ) and less on qp, and are more
sensitive to both photoinhibition and freezing [55–57]. In the perennial grasses meadow fescue
(Schedonorus pratensis Huds., syn. Festuca pratensis Huds.), perennial ryegrass (Lolium perenne L.), and
timothy (Phleum pratense L.), NPQ appears to be a more important mechanism of photosynthetic
acclimation to cold than qp [58–60]. In the less freezing resistant Italian ryegrass (L. multiflorum L.), qp

increased after cold acclimation and NPQ decreased, while a part of meadow fescue chromosome 4
introgressed into Italian ryegrass was associated with higher cold-induced NPQ and freezing
resistance [59]. However, it appears that both NPQ and qp take place and that the relative importance of
these two mechanisms vary among genotypes. For example, Kosmala et al. [61] found higher amounts
of some proteins involved in photosynthetic carbon metabolism in a freezing resistant genotype
of meadow fescue than a less tolerant genotype, suggesting a role of qp. Moreover, the relative
magnitudes of NPQ and qp may be related to the carbohydrate status of the plant, with higher
qp in plants with less stored carbohydrates. Selection of photochemical quenching rather than
non-photochemical quenching as a mode of photoacclimation to cold appears to be favorable as
some of the accumulating photosynthates could either support survival during a long winter or be
converted into forage production the following spring.

2.2. The Role of Photosynthates in Winter Survival

In temperate perennial grasses, simple carbohydrates accumulate during cold acclimation
and most of these are converted into fructans, which accumulate mainly in the basal part of the
shoot [18,62,63]. In regions with a long winter, a storage of organic reserves, particularly carbohydrates,
are necessary for maintenance respiration, stress responses, and early spring regrowth. In addition,
carbohydrates have specific roles as osmolytes and protectants of cellular components [13,40], and
winter survival ability is often associated with a higher concentration of both simple sugars and
fructans in the basal parts of the shoot attained during cold acclimation [64–67]. As described above,
winter cereals maintain CO2-fixation rates at low temperatures due to photosynthetic acclimation,
a mechanism, which combined with restrictions on leaf growth, ensures that a storage of carbohydrates
is accumulating. Elevated atmospheric CO2 concentrations may affect cold acclimation and winter
survival in several ways. For example, higher CO2 concentrations could inhibit the generation of
a PSII excitation pressure signal or enhance the accumulation of carbohydrate reserves. The few
studies of perennial grasses have contrasting results regarding the impact of elevated CO2 on freezing
resistance [30,68,69].

The amount of carbohydrate reserves that have to be stored in order to ensure winter survival
depends on several factors. A general assessment is that a larger carbohydrate storage will be required
in areas were photosynthesis is limited for a long period due to low irradiance, thick snow cover,
freezing temperatures, or dying leaf blade tissues, meaning that the plants must draw on stored
reserves. Obtaining as high annual yields as possible while maintaining tiller survival is a fine-tuned
balance between the allocation of autumn photosynthates into leaf growth versus storage. The potential
for utilizing light energy in longer growing seasons (beyond the autumn equinox) for increased autumn
yield, rather than for storage, may therefore be highest at lower latitudes and diminish as we move
towards higher latitudes with darker autumns and longer winters. Interestingly, during a relatively
mild winter without snow cover (approximate average temperature 2 ◦C) at 61◦ latitude in western
Norway, timothy and perennial ryegrass both accumulated carbohydrates in the shoot base during
winter, and more so in the most winter hardy species/cultivars [62,70]. Although this could be due to
reallocation within the plant, it is known that photosynthesis can operate at very low temperatures
around or even below 0 ◦C [71,72]. This result indicates that at this latitude, there may be possibilities
for maintaining or even accumulating a carbohydrate storage during such mild winters. It is, however,
a prerequisite that the leaf tissue survives, and it is likely that there will be strong effects of the timing
of the last defoliation, as the amount of new leaf area developed prior to the cessation of leaf growth is
critical. Predictions of ideotypes for different regions in a future climate [73] could aid breeding efforts
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to achieve the optimum balance between allocation of photosynthates to leaf growth versus storage.
The severity of winter conditions vary greatly from year to year, and plants need to be designed to
be able to survive winters that are harsher than the average winter. In any case, when it comes to
photosynthates, these are possibly better invested in rapid regrowth in spring, when light conditions
are very good, than in autumn growth.

2.3. Regulation of Leaf Growth versus Cold Acclimation

In herbaceous overwintering plants, leaf growth inhibition in response to low temperature is not
simply a result of lower metabolic rates, but an actively regulated process, which is coordinated with
changes in carbon metabolism [74]. Concomitantly with the development of freezing resistance at
low temperatures, winter rye, winter wheat, Arabidopsis thaliana, and Brassica napus develop a dwarf
phenotype with shorter, thicker leaves that have a distinct anatomy and high concentrations of
proteins and carbohydrates [75]. In addition, these species upregulate their photosynthetic capacity
to compensate for the slower rates of enzymatic reactions at low temperature, and accumulate
carbohydrates in storage organs. Unlike winter cereals, spring cereals do not develop a dwarf
phenotype during cold acclimation, do not upregulate the photosynthetic capacity to the same level,
and are not able to attain the same level of freezing resistance [57,75].

In experiments with several perennial forage grasses exposed to different photoperiods,
but the same total amount of photosynthetic active radiation (PAR), it was shown that long
photoperiods stimulate increased specific leaf area (SLA, leaf area per unit of leaf dry weight)
and increased dry matter production, and conversely, that short photoperiods result in lower SLA
and productivity [76–78]. Short photoperiod also stimulates tiller formation in perennial forage
grasses [79,80], a process which likely improves the potential for spring productivity. Interestingly,
at short photoperiods, low irradiance levels, and relatively high autumn temperatures (12 ◦C),
a stimulation of leaf elongation was observed in perennial ryegrass and timothy [33], indicating
that when the temperature is not low enough, the shade avoidance syndrome [81] can override the
photoperiod response of leaf elongation. This could possibly become a problem during mild, rainy
autumns at high latitudes in the future.

C-REPEAT BINDING FACTORs (CBFs) appear to be central in the coordinated regulation of leaf
growth and freezing tolerance in response to low temperature [34,74] (Figure 3). CBF transcription
factors upregulate whole sets of genes encoding proteins with direct functions in freezing resistance [82].
Temperate grasses have a large number of CBF genes, which are differentially expressed in
response to various environmental signals [82–88]. Exactly which of the CBF genes has the largest
influence on freezing resistance appears to vary between species, genetic background, and/or
environment [89–92]. One of the three CBFs in A. thaliana is upregulated by PSII excitation pressure,
redox state of the plastoquinon pool, and ROS signaling [49]. However, barley mutants with
an impaired chloroplast development had normal cold-induced expression of at least some CBFs,
indicating that their expression does not depend solely on a signal generated in the chloroplasts [93].
Indeed, Marozsán-Tóth et al. [85] showed that some CBFs in barley were regulated through Ca2+

signaling. Short photoperiods and low R:FR ratios can interact with temperature to induce freezing
resistance in A. thaliana, and this effect is mediated by the circadian clock through its control of
CBF expression [42,43]. In wheat and barley, low R:FR ratios upregulate expression of CBF14 as
well as freezing resistance [44], and in meadow fescue CBF6 expression is affected by interactions
between temperature, light quality, and irradiance [94]. In A. thaliana, CBFs can down-regulate leaf
growth by down-regulating the content of gibberellic acid (GA), thereby allowing the accumulation of
DELLA proteins which inhibits growth, and in addition increases freezing resistance by a reduction of
ROS [95,96]. CBFs can also enhance photosynthetic capacity in B. napus [56,97,98], and may therefore
play a role in photosynthetic quenching and maintenance of biomass accumulation at low temperatures.
All this points to the CBF family of transcription factors as integrators of many different adaptive
responses to autumn conditions leading to winter survival.
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Figure 3. Putative model showing the central role of CBF transcription factors in coordinating freezing
resistance and leaf growth in response to temperature and light. Cold induces expression of CBFs,
which are important in the development of freezing resistance through the induction of the CBF regulon
of cold-induced genes (here collectively indicated with COR), and also play a role in down-regulation
leaf growth via gibberellic acid (GA). Short days (SD), irradiance, and low red to far red light-ratio
(R:FR), can take part in the induction of CBFs. Prolonged cold leads to a gradual increase in VRN1
transcripts. VRN1 can down-regulate CBFs and freezing resistance, particularly in long days (LD).
In temperate grasses there are around 20 CBF genes which are likely to have partly differentiated roles.

3. Can We Increase Spring Productivity at High Latitudes?

Unlike the situation in autumn, it is not light availability, but temperature, which is currently
limiting biomass production in spring at high latitudes (Figure 1). Thus, there is a potential to utilize
an earlier thermal growing season in the future. However, with the growing season starting earlier
in the year, and possibly before the spring equinox, the day-night temperature amplitude and the
probability of night frost or longer freezing periods increases. For example, the probability of spring
frost damage was predicted to increase in the western part of the Nordic area in 2040–2065 as compared
to 1960–1990 [5].

In general, exposure to higher temperatures in spring results in stimulation of growth and at
the same time, loss of freezing resistance (de-acclimation) [20]. There are several reports describing
de-acclimation and re-acclimation responses in perennial grass species [99–105], and some of them also
report a negative association between freezing resistance and leaf growth during the de-acclimation
period. In cereals, it has been shown that both freezing resistance and expression of cold-induced
genes are down-regulated in shoot base tissue when the vernalization requirement is saturated, but
before any development of the apex is visible in the microscope [106–108]. There is an interaction
between vernalization and photoperiod on de-acclimation. In cultivars with a long day requirement
for flowering, the negative effect of vernalization on freezing resistance is stronger when plants are
vernalized under long days than under short days, whereas vernalization- and photoperiod-insensitive
cultivars are not able to develop much freezing resistance at all [109–112]. Also, plants vernalized and
de-acclimated under long days are often found to be less able to re-acclimate [113,114]. Vernalization
not only enhances de-acclimation, as well as competency to flower in response to long photoperiod in
a large number of perennial grass species [19], but also increases the rate of leaf expansion, specific leaf
area, and photosynthetic rate of perennial ryegrass leaves developed after transfer to 15 ◦C, particularly
under long photoperiods [115].

In order to utilize more of the spring light for increased productivity, it would be necessary to grow
plants that are capable of maintaining freezing tolerance during early spring growth, and/or able to
rapidly re-acclimate upon demand. In this context, it would be desirable to have a better understanding
of (1) how do temperature, vernalization, and photoperiod together control leaf growth and freezing
resistance in spring? and (2) which mechanisms govern rapid re-acclimation after de-acclimation, and
to which extent do these function in growing plants?
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3.1. Regulation of Leaf Growth versus Freezing Resistance in Spring

VRN1, an inducer of the transition to generative development in cereals and other temperate
grass species, is gradually up-regulated during vernalization [116,117]. Several studies indicate that
there is a negative association between expression level of VRN1 and the expression of cold-induced
genes and freezing resistance. Using near-isogenic lines of wheat and barley, and a T. monococcum
deletion mutant, it was shown that, under 16 h photoperiod, the VRN1 locus controls expression of
VRN1, COR14B, and other cold induced-genes [106–108,112,118]. High expression levels of VRN1
were associated with the down-regulation of cold-induced genes and freezing resistance. From these
studies, however, it is not entirely clear whether it is VRN1 itself, or very closely linked genes, that is
responsible. However, using a transgenic approach combined with chromatin immunoprecipitation
sequencing and RNA sequencing, Deng et al. [119] showed that in barley grown at 16 h photoperiod,
VRN1 binds to the promoter of several CBF genes. After short-term cold exposure, when the expression
level of VRN1 is still very low, Oliver et al. [120] found similar kinetics in the initial transcription of
VRN1 and COR14B upon cold exposure (24 h) in barley. Under short photoperiods, high COR14B
expression or positive correlation between expression of VRN1 and COR14B remained after long-term
cold treatment in T. monococcum [112], barley [121], and meadow fescue [105]. COR14B is induced by
CBFs, and barley VRN1 also has a putative CBF binding site in its promoter [122]. Oliver et al. [107]
therefore suggested that VRN1 and COR14B may be regulated by similar mechanisms in early cold
acclimation, possibly through the action of CBF transcription factors. Several studies show that CBF6
and COR14B are down-regulated in cereals and meadow fescue by prolonged cold, but only under
long photoperiods [105]. Taken together, these results suggest that VRN1 and the CBF regulon are
co-regulated during cold acclimation of temperate grasses and as long as photoperiods are short,
but that VRN1 down-regulates CBFs when photoperiods become long (Figure 3). This is a possible
explanation for the interaction between vernalization and photoperiod during de-acclimation in
temperate grasses. Also, given that CBFs can inhibit leaf growth via GA and DELLA proteins [34],
the regulatory effect of VRN1 on CBF expression may explain the effects of vernalization on leaf
growth and photosynthetic activity observed by Stapleton and Jones [115], and also its interaction
with photoperiod.

3.2. Is Re-Acclimation in Spring Different from Cold Acclimation in Autumn?

Under controlled conditions, the re-acclimation of temperate grasses differs somewhat from the
initial cold acclimation. For example, carbohydrates did not accumulate to the same extent during
re-acclimation as during initial cold acclimation in winter wheat [114], and several cold induced genes
upregulated by cold acclimation in meadow fescue were not upregulated during re-acclimation [105].
The mechanisms behind these differences are not known, but are likely to be related to a coordinated
regulation of growth and freezing tolerance as described in Section 2.3. In the field, re-acclimation may
also be inhibited if plants are exhausted from carbohydrate reserves or devoid of functional leaf area.
Re-acclimation at a time when spring growth has been initiated may be provided by other mechanisms
than those employed during initial cold acclimation in the autumn. For example, while expression of
COR14B could explain some of the variation in freezing resistance in de-acclimated meadow fescue,
CR7 was, unlike COR14B, significantly upregulated by re-acclimation and could explain some of the
variation in freezing resistance after re-acclimation [105].

4. Conclusions

The expected prolonged growing season in future autumns can probably be utilized for higher
autumn productivity in some areas, but in areas were photosynthesis is prohibited during long winters,
such as at high latitudes, areas with a deep long-lasting snow cover, or with severe stresses killing leaf
blades, this may not be possible due to the need for storage carbohydrates. There is a larger potential
for utilizing the earlier springs to increase productivity in such areas, but it will be necessary with
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varieties that maintain some level of freezing resistance and re-acclimation ability also during early
spring regrowth.

The many CBF genes in perennial grasses, which are differentially regulated and probably have
different functions, could possibly be utilized in developing varieties that combine some autumn
productivity with cold acclimation. Similarly, a possibility of at least partly breaking the association
between growth, de-acclimation, and loss of re-acclimation ability in spring may lay in playing with
alleles of the various CBF genes and their differential functions. The interaction between temperature
and light factors, particularly photoperiod, on CBF regulation is critical in this respect. An improved
understanding of the specific functions of the various CBF genes—how they are regulated and which
parts of the CBF regulon they control, as well as an overview of allelic variation—could aid in the
development of perennial grass varieties with an optimal balance between growth and perennial
persistence under future climates.

Conflicts of Interest: The author declares no conflict of interest.
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