
Agronomy 2012, 2, 187-198; doi:10.3390/agronomy2030187 

 

agronomy 
ISSN 2073-4395 

www.mdpi.com/journal/agronomy 

Article 

Soil Biochemical Changes Induced by Poultry Litter Application 
and Conservation Tillage under Cotton Production Systems 

Regine Mankolo 1,*, Chandra Reddy 2, Zachary Senwo 1, Ermson Nyakatawa 1  

and Seshadri Sajjala 1 

1 Department of Biological and Environmental Sciences, Alabama A&M University,  

P.O. Box 1208, Normal, AL 35762, USA; E-Mails: zachary.senwo@aamu.edu (Z.S.); 

ermson.nyakatawa@aamu.edu (E.N.); seshadri.sajjala@aamu.edu (S.S.) 
2 College of Agriculture, Human and Natural Sciences, Tennessee State University, Nashville,  

TN 37209, USA; E-Mail: creddy@tnstate.edu 

* Author to whom correspondence should be addressed; E-Mail: regine.mankolo@aamu.edu;  

Tel.: +1-256-372-4689; Fax: +1-256-372-5429.  

Received: 25 May 2012; in revised form: 8 June 2012 / Accepted: 5 July 2012 /  

Published: 25 July 2012  

 

Abstract: Problems arising from conventional tillage (CT) systems (such as soil erosion, 

decrease of organic matter, environmental damage etc.) have led many farmers to the 

adoption of no-till (NT) systems that are more effective in improving soil physical, 

chemical and microbial properties. Results from this study clearly indicated that NT, mulch 

tillage (MT), and winter rye cover cropping systems increased the activity of phosphatase, 

β-glucosidase and arylsulfatase at a 0–10 cm soil depth but decreased the activity of these 

enzymes at 10–20 cm. The increase in enzyme activity was a good indicator of intensive 

soil microbial activity in different soil management practices. Poultry litter (PL) 

application under NT, MT, and rye cropping system could be considered as effective 

management practices due to the improvement in carbon (C) content and the biochemical 

quality at the soil surface. The activities of the studied enzymes were highly correlated 

with soil total nitrogen (STN) soil organic carbon (SOC) at the 0–10 cm soil depth, except 

for acid phosphatase where no correlation was observed. This study revealed that 

agricultural practices such as tillage, PL, and cover crop cropping system have a noticeable 

positive effect on soil biochemical activities under cotton production.  
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1. Introduction 

Deterioration of soil quality in southeastern USA (the most productive area in agriculture) has been 

attributed to soil erosion associated with an increase of conventional monoculture practices. In 

Alabama, eroded soils under conventional cotton production average about 25 t ha−1 yr−1 [1]. 

Nevertheless, farmers continue to use intensive conventional tillage (CT) for continuous cotton 

production in these areas. Conventional tillage has the potential to cause loss of soil organic matter 

(SOM) and soil nutrients content leading to a decrease in biological activity. To sustain cotton 

production in the region, efforts have focused on using a conservative system such as no-till (NT). 

NT practices are known to have advantages over CT with respect to soil chemical, physical and 

biological properties mainly in the surface layer [2]. Soil microbes are sensitive to changes in soil from 

different management practices and can be used to predict the impact of management practices on soil 

quality. [3,4] stated that conventional agricultural practices inhibit the activity and function of soil 

microbes with insecticide or/and fungicide application. Thus, studies found that soil microbial 

populations and enzyme activities involved in carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) 

cycling were greater with NT [5,6]. Because NT systems affect nutrient mineralization and microbial 

biomass, this system provides a more favorable habitat for soil microorganisms [7]. To better 

understand C, N and other nutrient-cycling, it is important to gain understanding of microbial 

communities and related processes [8]. Results from previous studies have shown that enzyme 

activities are often used as indices of microbial activity that provide a useful tool to monitor the effects 

of soil management on long-term soil quality [9].  

Apart from microorganisms, plants secrete enzymes to catalyze the hydrolysis of phytate [10,11]. For 

example, cowpea density significantly increased both acid and alkaline phosphatase activity in cowpea 

rhizosphere, resulting in improvement of P nutrition, plant growth and yield [12]. Acid phosphatase 

secretion from plant roots has been reported to increase under P deficiency and differ within and between 

plant species [13]. Plant roots produce phosphatase in soils under P stress conditions to enhance the 

solubilization and remobilization of phosphate [13,14]. Glucosidase, arylsulfatase and phosphatase were 

found to be distinctly higher under the NT system [15], and were key enzymes involved in mineralization 

of organic C, P, and S in soil.  

Phosphatase has the potential to directly and indirectly influence phosphorus transformation by 

participating in chemical reaction and influencing microbial processes that drive P solubilization [16]. 

Phosphatase was shown to hydrolyze the carbon-phosphorus ester bond during the mineralization 

phase of soil organic phosphorus [17]. Some bacteria and fungi are able to enhance the availability of 

phosphorus to crops through biochemical mechanisms such as, solubilizing inorganic phosphorus by 

chelation or acidification, mineralizing organic phosphorus by producing extracellular phosphatases  

or phytases [18]. 
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Other enzymes, such as glycosidases play an important role in the degradation of carbohydrates and 

provide energy for microorganisms in soil. Among the glycosidases, β-glucosidase is the most 

abundant in soil. It catalyzes the hydrolysis of β-glucopyranoside, involved in hydrolysis of cellulose 

to glucose, the source of energy for organisms [19]. Arylsulfatase activity is used to investigate organic 

S mineralization and can be an indicator of the presence of fungi and bacteria in soil [20].  

Previous studies demonstrated that the activity of enzymes such as L-asparaginase, L-glutaminase, 

and urease were significantly greater under no-till systems than under conventional systems [21,22]. 

The amount of activity depends on many factors (soil management system, organic matter content, soil 

texture, soil nutrient composition). The transition from CT to NT system increases microbial and 

enzyme activities near the soil surface [23]. From the perspective of sustainable production, it is 

important to understand the dynamics of microorganisms in soil under different management systems. 

Relatively little is known of the impact of CT versus NT on soil microbial communities and soil 

enzyme activities under cotton production. Therefore, the aim of this study was to investigate the effect 

of different agricultural management practices [NT, mulch-till (MT), or CT] on soil biological activity 

in cotton fields under poultry litter (PL) and N fertilizer application. Three key enzymes were chosen 

to investigate in this study: phosphatases involved in P cycle, β-glucosidase in C cycle, and 

arylsulfatase in S cycle. 

2. Materials and Methods 

An experiment was carried out at the Alabama Agricultural Experiment Station, Belle Mina, AL, 

USA situated at 34°41’ N, 86°52’ W on crop rotations with tillage treatments including NT, MT and 

CT systems. All the treatments are listed in Table 1 [24,25].  

Table 1. List of treatments used in the cotton field, Belle Mina, AL, USA. 

No. Tillage system Cropping system N source N rate kg ha−1

1 (CTR) Conventional till Cotton-rye None 0 
2 (CTAN) Conventional till Cotton-fallow Ammonium nitrate 100 
3 (NTAN) No-till Cotton-fallow Ammonium nitrate 100 
4 (CTRAN) Conventional till Cotton-rye Ammonium nitrate 100 
5 (CTRP) Conventional till Cotton-rye Poultry litter  100 
6 (MTRAN) Mulch-till Cotton-rye Ammonium nitrate 100 
7 (MTRP) Mulch-till Cotton-rye Poultry litter 100 
8 (NTRAN) No-till Cotton-rye Ammonium nitrate 100 
9 (NTRP) No-till Cotton-rye Poultry litter 100 
10 (NT) No-till Cotton-fallow None 0 
11 (NTRPP) No-till Cotton-rye Poultry litter 200 
12 (BF) None Bare fallow None 0 

The soil is a Decatur silt loam (Clayey, kaolinitic thermic, Typic Paleudults) with a mean particle 

distribution of 15% sand, 58% silt, and 26% clay. The initial soil pH of 6.2 was measured in a 1:2 

(weight/volume) soil/water mixture using a combination electrode. The experimental design was a 

randomized complete block with an incomplete factorial treatment arrangement. The treatments 

included three tillage systems (NT, MT and CT), two cropping systems [cotton-without rye (cotton-fallow), 
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and cotton with rye (cotton-rye)], and two sources of nitrogen [ammonium nitrate (NH4NO3) and PL] 

in four replications. Plots were 8 m wide and 9 m long, which resulted in 8 rows of cotton spaced 1 m 

apart. The total amounts PL and NH4NO3 were broadcasted by hand one day before planting and 

incorporated to a depth of 5 cm at the rate of 100 for NH4NO3 and 100 or 200 kg N ha−1 for PL. The 

ammonium nitrate application rate (100 kg N ha−1) was applied based on the Alabama A&M 

University Extension Service recommendation for cotton production in the region [26]. Poultry litter 

rates were applied based on changes in N release associated with the high concentration of N in PL. 

The 200 kg N ha−1 PL treatment was only applied to NT plots. Nevertheless, only the 100 kg N ha−1 

PL treatment was used in this study. Triple superphosphate and muriate of potash were both applied at 

rate of 67 kg ha−1 on all plots including PL plots to nullify the effects of P and K from PL. Glyphosate 

was used for weed control in NT and MT systems. The typical conservational tillage systems used in the 

region included moldboard, chisel, and disk plowing were used in the study. The working depth for 

moldboard and chisel plowings was about 15 cm, while the depth of the disk plow was 10–15 cm before 

cotton seeding. Tillage operations occurred two times a year, moldboard plowing in fall after crop 

harvest, and disking and leveling with a field cultivator in spring before summer crop planting. Mulch till 

included only chisel plowing to partially incorporate crop residues into soil before planting. Smooth seed 

beds were prepared in both CT and MT plots using a rotary field cultivator. Under no-till plots, soil was 

disturbed only to the extent of opening furrows for seeding purpose. Poultry litter and NH4NO3 were 

incorporated into soil in conventional and mulch tillage plots, and left unincorporated in no-tillage plots.  

2.1. Soil Sampling and Enzyme Analyses 

Soil samples for this study were randomly collected from each plot at two different depths (0–10 cm 

and 10–20 cm), 4 weeks after cotton was harvested, and a day after the first rainfall following the cold 

and dry January and February months. Sterile polypropylene bags were filled with field-moist soil 

samples, and stored at 4 °C for analysis. Cumulative rainfall from January to April 2006 was only  

6 mm. The top 10 cm and 20 cm soil temperatures were consistently 17 °C and 14 °C, respectively 

(Belle Mina Research Station Survey, 2006). The activities of phosphomonoesterase (acid and alkaline 

phosphatases) and phosphodiesterase were assayed using air-dried soil as previously described by [27]. 

Phosphomonoesterase activity was assayed by incubating 1 g of air-dried soil sample at 37 °C for  

60 min, with 0.2 mL of toluene and 4 mL of modified universal buffer (MUB) buffer at pH 6.5 for acid 

and pH 11.0 for alkaline phosphatases. The reaction was terminated by adding 1 mL of 0.5 M CaCl2 

and 4 mL of 0.5 M NaOH to prevent dispersion of humic substances. The assay of phosphodiesterase 

activity used a method similar to that of phosphomonoesterase with the only difference being 4 mL of 

THAM [Tris (hydroxymethyl) aminomethane] buffer at pH 8. This reaction was terminated by adding 

1 mL of 0.5 M CaCl2 and 4 mL of THAM-NaOH to prevent dispersion of humic substances. The 

mixture was centrifuged at 15,000g for 10 min, and the product of the reaction p-nitrophenol 

phosphate (PNP) with phosphomonoesterase and bis-p-nitrophenyl phosphate (bis-PNP) with 

phosphodiesterase were measured at 410 nm using a spectrophotometer. The arysulfatase and  

β-glucosidase activities were measured the same way as phosphomonoesterase activity, buffered 

respectively at (pH 5.8) with potassium p-nitrophenyl sulfate, and buffered at (pH 6.0) with  
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p-nitrophenyl glycoside solution [28]. Controls were performed for all enzymes assayed by adding 

substrate immediately after the addition of CaCl2 and NaOH incubation prior to analysis.  

2.2. Statistical Analyses 

Analysis of variance, contrast comparisons and mean separation was conducted using the GLM 

procedure of the statistical analysis software, SAS [29], to assess the effects of tillage, cropping 

systems, and N sources as related to soil depth. Because treatments were laid out in an incomplete 

factorial arrangement, selected treatments were used for this study. The following treatment CTAN, 

NTAN, CTRAN, and NTRAN (Table 1) were used to determine the effect of tillage, cropping system, 

and tillage × cropping system interaction on selected enzyme activities. Similarly, CTRAN, CTRP, 

MTRAN, MTRP, NTRAN, and NTRP treatments were used to evaluate the effect of N sources and 

tillage × N source interaction. Least significant difference analysis (LSD) was preformed to permit 

means separation.  

3. Results  

3.1. Soil Enzyme Activities 

Acid phosphatase and phospodiesterase activities were significantly (p < 0.05) affected by the 

tillage systems and soil sampling depths at 10–20 cm and 0–10 cm respectively (Table 2).  

Under the different tillage systems, acid phosphatase activity was almost three times higher than 

alkaline phosphatase activity, and 10 times higher than phospodiesterase phosphatase (Figure 1).  

Figure 1. Effect of tillage systems on phosphatase, β-glucosidase, and arylsufatase at two 

different soil depths. Different letters indicate significant differences between tillage for 

each enzyme activities.  
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Table 2. Effect of tillage, cropping system, and N sources on selected enzyme activities at 

0–20 cm soil depth. 

Depth 

Acid 
phoshatase 

Alkaline 
phosphatase

Phospho-diesterase Glucosidase Arylsulfatase

1 2 1 2 1 2 1 2 1 2 

P value 
Tillage and N source on (Treatment 4, 5, 6, 7, 8, and 9 ‡) 

Tillage (T) 
N Sources (N) 

T × N 

ns *** ns ns * ns ns ns ns ns 
ns ns ** ns ns ns *** ns ** ns 
ns ** * ns ns ns *** * ns ns 

Tillage and cropping systems on (Treatment (2, 3, 4, and 8) 
Tillage (T) 

Cropping (C) 
T × C 

ns *** ns ns * ns ns ns ns ns 
ns ns ns ns * ns *** * *** * 
ns ns ns ns ** * *** ns * * 

Depth: 1 = 0–10 cm; 2 = 10–20 cm; ‡ See Table 1 for treatments description; * Significant at P ≤ 0.05;  

** Significant at P ≤ 0.01; *** Significant at P ≤ 0.001.  

As a result, the activity of phospodiesterase appears as the least important phosphatase within the 

phosphatase activity pools in soils. Statistical differences in tillage were observed with glucosidase 

activities at 0–10 cm soil depth and arylsulfatase activities at 10–20 cm depth.  

3.2. Effect of Rye Cover Crops on Soil Enzyme Activities 

Figure 2 showed the enzyme activities under two cropping systems (rye and no rye). At the 0–10 cm 

soil depth, the activity of the acid phosphatase was 344.47 and 301.84 mg PNP kg−1 soil h−1, the alkaline 

phosphatase was 99.0 and 97.20 mg PNP kg−1 soil h−1 under rye and no rye application systems 

respectively, while that of the phosphodiesterase was 42.0 and 27.96 mg bis-PNP kg−1 soil h−1 under rye 

and no rye application. There were no significant differences between cover crop rye and no rye 

treatments for phosphomonoesterase activity at 0–10 cm and no cover crop difference for any enzyme 

activity at 10–20 cm. The cover crop (rye) application showed higher β-glucosidase activity at 0–10 cm 

soil depth than with the no-rye application at the same depth when comparing cropping system. This 

suggests that rye application increases the activity of β-glucosidase, probably due to the effect of cover 

crop residues left in the upper plow layer of soil. In addition, arylsulfatase activity and phosphodiestrase 

was significantly affected by cover crop (rye) although no difference was observed with depth.  

3.3. Effect of Poultry Litter and NH4NO3 Application on Soil Enzyme Activities 

No significant treatment differences were found under PL application, however, all the enzyme 

activities increased in organically fertilized plots at 0–10 cm soil sampling depth (Figure 3) The 

application of PL may have improved organic matter status in soils, which in turn enhanced the 

enzyme activities [30].  
  



Agronomy 2012, 2 193 

 

 

Figure 2. Effect of cover crop (rye) on selected enzyme activities at two soil sampling 

depths. The bars with different letters within enzyme activity are significantly different  

(P < 0.05). 

0

100

200

300

400

Rye
No-Rye

   
A

ci
d

  p
ho

sp
ha

ta
se

   
 

A
lk

al
in

e
ph

os
ph

at
as

e 
   

P
ho

sp
ho

-
di

es
te

ra
se

b-
gl

uc
os

id
as

e 
  

A
ry

ls
uf

at
as

e 
 

m
g 

p-
ni

tr
op

he
no

l  
kg

-1
 s

oi
l h

-1

 

   
    a

    

    
    a 

  
    
     a

  
     a

10-20 cm0-10 cm

  

    a

  
    a

 
    a

    a

          a

     
     b

 

    

     a    
     
     a

      

     
     

b

    a

           a

    

    a

     

    
    
      a

   
A

ci
d

  p
ho

sp
ha

ta
se

  A
lk

al
in

e
  p

ho
sp

ha
ta

se

   
P

ho
sp

ho
-

   
di

es
te

ra
se

b-
gl

uc
os

id
as

e

A
ry

ls
uf

at
as

e

    
     a

   
    
     a

 

 b

 

Figure 3. Effect of poultry litter and ammonium nitrate on average values of selected 

enzyme activities at two soil sampling depths. The bars with different letters within 

enzyme activity are significantly different (P < 0.05). 
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3.4. Correlation between Soil Enzyme Activities and Organic Carbon, and Total Nitrogen 

All enzymatic activities were highly correlated with soil organic C or soil organic N, except for acid 

phophatase where no correlation was observed. Alkaline and phosphodiesterase phosphatases,  

β-glucosidase, and arylsulfatase activities (Table 3) significantly correlated with soil organic C  

(r = 0.58***, 0.50***, 0.58***, and 0.66*** respectively) and soil total N (r = 0.47**, 0.46**, 0.39**, 

and 0.48** respectively). Other authors have reported similar results with soil organic C [23] and soil 

total N [31]. However, acid phosphatase was only correlated to N at 10–20 cm depth. 

Table 3. Correlation coefficients between enzyme activities and selected soil properties. 

 Acid 

Phosphatase 

Alkaline 

Phosphatase 

Phospho-

Diesterase 
Arylsulfatase Organic C Total N 

Depth 1 2 1 2 1 2 1 2 1 2 1 2 

β-glucosidase 0.30 * 0.10 0.55 *** 0.30 * 0.46 ** 0.04 0.75 *** −0.003 0.58 *** 0.16 0.39 ** 0.15 

Acid 

Phosphatase 
  −0.009 −0.04 0.06 0.01 0.21 −0.25 0.19 0.17 0.10 0.30 *

Alkaline 

Phosphatase 
    0.59 *** 0.08 0.68 *** 0.06 0.58 *** 0.23 0.47 ** 0.16 

Phospho-

Diesterase 
      0.62 *** 0.21 0.50 *** 0.36 ** 0.46 ** 0.03 

Arylsulfatase         0.66 *** 0.23 0.48 *** 0.26 

Depth: 1 = 0–10 cm; 2 = 10–20 cm; * Significant at P ≤ 0.05; ** Significant at P ≤ 0.01; *** Significant at P ≤ 0.001. 

The GLM test showed that tillage and tillage × cropping significantly increased β-glucosidase 

activities at the 0–10 cm depth, which also occurred when tillage and N source were combined. 

4. Discussion and Conclusions 

The results from this study show low phosphatase activities in both soil depths as compared to those 

reported by [26] in an Australian forest. The build-up of organic matter content under NT practices, 

not only improve soil structure and water retention but also serves as a source for plant nutrients and 

substrate for soil microbes. [1, 22] reported that phosphatase activities were more than twice as high in 

the surface layer in the NT practice than in the CT practice. Phosphatases are adaptive enzymes and 

the intensity of secretion by microorganisms or plant roots depend on their need for phosphates [32]. 

The lower phosphatase activities in NH4NO3 than PL were likely due to high P availability from high 

rate of PL application. The application of PL based on N concentration may have increased soil to the 

point that it reduced the activity of microorganisms responsible for phosphatase production.  

In previous studies greater activity of phosphomonoesterases was observed in acidic soil rich in  

fungi [33,34]. In contrast, phosphodiesterase activity was greater in neutral soils with enzymes 

synthesis mainly by bacteria or actinomycetes [35]. In this study initial soil pH of 6.2 may have 

negatively affected the activity of phosphomonoesterase. The higher acid and phosphodiesterase 

phosphatases in mulch treated plots compared to NT and CT could be the result of a flush of organic 

residue on the soil surface. Incorporation of crop residues into soil enhances enzyme production [36]. 

This indicates that phosphatase could be used as a good health predictor in CT and NT plots. In our 
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study, alkaline phosphatase was positively correlated to SOC and N at 0–10 cm soil depth. It is 

believed that alkaline phosphatase is important for determining the relative activity of microbial 

population in soils.  

β-Glucosidase enzymes are widely distributed in nature, and are known to play an important role in 

the C cycle [37]. The highest enzyme activities were found in mulch plots, followed by NT and CT 

plots. This finding indicates a strong dependence of β-glucosidase on SOC. The organic residues from 

rye and mulch were an adequate substrate for stimulating microbial activity and β-glucosidase 

liberation. The combination of PL and rye residues may have promoted β-glucosidase activity [38].  

β-glucosidase enzyme is known to catalyze the hydrolysis of cellulose, an important energy source for 

soil microorganisms. The activity of the β-glucosidase was closely associated with SOC (0.80,  

P ≤ 0.05) (Table 2). This correlation was due to the involvement of β-glucosidase in the C cycle 

related to soil organic matter recycling.  

Arylsulfatases and alkaline phosphatase mostly originate from microbes such as bacteria and fungi 

that hydrolyze sulfate ester in soil [23]. Arylsulfatase catalyzes the hydrolysis of organic sulfate, and 

the differences observed when comparing cropping systems (rye and no-rye) are due to the changing 

form of S contained in the decomposed surface residue on the NT systems. The activity of 

arylsulfatase increases with N fertilization and is used as an indicator of microbial activities. Higher 

amounts of arysulfatases were observed under PL application and decreased with depth (Figure 3). No 

major differences in arylsulfatase were observed among tillage systems or N sources. The lack of 

significant difference between tillage systems suggested that tillage operations probably had little 

influence on microbial activities at 0–10 cm depth. The significant correlation of the arylsulfatase 

activity with SOC at 0–10 cm depth reflected the connection between enzyme substrates and the 

carbon molecules [27]. These results were in agreement with those obtained by [39], where C and N 

mineralization was an indicator of biologically-active organic matter. The relationship with SOC 

suggested that C addition through rye residue stimulated microbial activity, and could thereby enhance 

the overall assimilation of C by microorganisms [16]. Organic matter plays an important role in 

maintaining soil enzymes in active forms. Soil organic amendments could enhance soil enzyme 

activities by increasing soil organic matter and therefore, the microbial biomass [40]. 

The enzymes’ activities were inter-correlated with r value up to 0.75 and highly correlated with 

SOC and total N. This indicates that enzyme activities responded positively to the soil management. 

On soil surfaces, reported SOC trends are generally in the order NT > MT > CT (see USDA practice 

standard 329 for NT; practice Standard 345 for Mulch-till). This implies higher carbon sequestration 

rates for NT compared to MT, and also for MT as compared to CT. Therefore, factors such as enzyme 

activities can be used as indicators of short-term biochemical change, since they integrate information 

on microbial status in soil. Because these activities were sensitive to tillage practices and cropping 

systems they can be used to delineate management activities under cotton production. 
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