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Abstract: Late leaf spot (LLS) is an important disease of peanut, causing global yield losses. Develop-
ing resistant varieties through breeding is crucial for yield stability, especially for smallholder farmers.
However, traditional phenotyping methods used for resistance selection are laborious and subjective.
Remote sensing offers an accurate, objective, and efficient alternative for phenotyping for resistance.
The objectives of this study were to compare between regression and classification for breeding,
and to identify the best models and indices to be used for selection. We evaluated 223 genotypes
in three environments: Serere in 2020, and Nakabango and Nyankpala in 2021. Phenotypic data
were collected using visual scores and two handheld sensors: a red–green–blue (RGB) camera and
GreenSeeker. RGB indices derived from the images, along with the normalized difference vegetation
index (NDVI), were used to model LLS resistance using statistical and machine learning methods.
Both regression and classification methods were also evaluated for selection. Random Forest (RF),
the artificial neural network (ANN), and k-nearest neighbors (KNNs) were the top-performing algo-
rithms for both regression and classification. The ANN (R2: 0.81, RMSE: 22%) was the best regression
algorithm, while the RF was the best classification algorithm for both binary (90%) and multiclass
(78% and 73% accuracy) classification. The classification accuracy of the models decreased with the
increase in classification classes. NDVI, crop senescence index (CSI), hue, and greenness index were
strongly associated with LLS and useful for selection. Our study demonstrates that the integration of
remote sensing and machine learning can enhance selection for LLS-resistant genotypes, aiding plant
breeders in managing large populations effectively.

Keywords: peanut breeding; late leaf spot; machine learning; remote sensing; genotype resistance
classification

1. Introduction

Peanut (Arachis hypogaea L.), also known as groundnut, is recognized as a major source
of vegetable oil, protein, and income, thereby improving food security and livelihoods [1]. It
is grown in over 100 countries, on over 32 million hectares worldwide, and has an average
annual production of 53.4 MT [2]. In Africa, over 18 million hectares is under peanut
production, and it has become an important source of income for the smallholder farmers
who are the most abundant on the continent [1,3]. Uganda and Ghana are among the most
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important producers in Eastern and Western Africa, respectively. In Uganda, peanut is
one of the most important legumes, only second to common bean (Phaseolus vulgaris L.),
while in Ghana, it is the most important grain legume in terms of area under cultivation,
production, and consumption [4]. The average productivity in both countries is lower
compared to that in most developed countries. For example, the average productivity
of peanut in the USA was 4550 Kg/ha in 2022, while that in Uganda and Ghana was
2014 Kg/ha [2]. The low productivity in these countries is attributed to low agricultural
inputs, eroded soils, abiotic stress, and the high pressure of biotic stress [5].

Late leaf spot [LLS; caused by Northopassalora personata (Berk. and Curt)] is one of
the most damaging foliar diseases of peanut in Uganda and Ghana alike. It can cause up to
50% yield losses when it occurs alone, 70% when it occurs together with early leaf spot [6],
and up to 100% yield losses when it occurs together with groundnut rosette disease (GRD).
The yield losses are dependent on the environmental conditions, cultivar, and disease
severity [7]. The regular application of fungicides is effective in controlling LLS [8,9], and it
is fairly economical on large farms [10]. However, fungicide use is not widely adopted by
smallholder farmers in Africa, because of its high cost. Furthermore, most farmers are not
aware of LLS symptoms such as the yellowing of leaves and defoliation and often mistake
it for a sign of maturity [11,12]. Therefore, the development of LLS-resistant cultivars is
viewed as the most cost-effective and environmentally friendly method of controlling LLS
and maintaining stable yields among smallholder farmers [10].

Selection for disease-resistant and high-yielding genotypes during breeding involves
the phenotyping of large populations across several breeding locations [13]. Phenotyping
and selection for resistance in many breeding programs are mainly based on destructive
sampling [14] and visual ratings using predefined scales, which are the traditional pheno-
typing methods. Examples of such scales include the 1–9 severity scale proposed by [15]
and the Florida 1–10 scale [16]. These visual ratings are easy to use and have successfully
been applied to release several varieties in the past. However, the traditional measure-
ments are subjective [17], labor-intensive, destructive, time-consuming, and, in the long
run, expensive for breeding [13] because breeding populations are large and evaluated in
several target locations.

The adoption of remote sensing technologies and high-throughput phenotyping (HTP)
platforms enables breeders to collect spectral data on plants in different growth stages [18]
and has the potential to overcome the shortfalls of traditional phenotyping and accelerate
genetic gain. HTP measurements are non-destructive, have repeatability, are fast over
large trials, and are less expensive in comparison with direct evaluations [19]. Plant
spectral properties are genotype-specific, dependent on the morphology and physiology
of the plant [20], and can thus be used to screen and select for traits of interest including
disease resistance and yield. These methods generate large multidimensional datasets that
linear models are limited in analyzing [21,22]. Instead, non-linear models and machine
learning (ML) may be better suited for data with complex characteristics of non-linearity
and outliers [23]. Several ML algorithms such as support vector machine (SVM; [24]),
Random Forest (RF; [25]), and artificial neural networks (ANNs; [26]) have the capacity
to adapt to complex data while constantly looping in search for the best parameters and
models [21]. Since biotic and abiotic stresses often express similar symptoms, i.e., leaf
wilting, defoliation, and senescence, optimization of the ML algorithms is critical for the
identification of specific symptoms associated with particular stresses [22]. Several studies
have compared various algorithms based on their accuracy to identify the best algorithm
for a problem [27]. The RF, SVM, ANN, and k-nearest neighbors (KNNs) seem to be
the most accurate algorithms in plant science thus far [28]. None of these algorithms
possess significant advantages over the other in terms of accuracy [27]; however, several
studies have suggested that SVM presents higher accuracy in classification problems.
Successful applications of HTP and ML methods in plant breeding for the prediction of
important agronomic traits including disease identification have been reported in several
crops including tomato (Solanum lycopersicum L.) [29], maize (Zea mays L.) [30], radish
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(Raphanus sativus L.) [31], and sugar beet (Beta vulgaris) [32]. In peanut breeding, HTP and
ML methods have been applied for agronomic traits such as plant height [33], leaf area [34],
and pod maturity [35], but these ML methods have barely been applied for selection for
LLS resistance.

Previous efforts have demonstrated that remote sensing techniques can be successfully
used for indirect selection for LLS resistance in Uganda [36] and Ghana [37]. RGB color
space indices and vegetation indices that are strongly associated with LLS severity were
identified and used in models to predict LLS severity. Although not always supported by
the results [27], the application of ML has the potential to improve the accuracy of LLS
severity prediction. Therefore, the objectives of this study were to (i) compare regression and
classification prediction for accuracy and usability in breeding programs, and (ii) identify the
best indices and models to be used by the breeding programs during LLS screening.

2. Materials and Methods
2.1. Genetic Material

A total of two hundred twenty-three (223) peanut genotypes derived from the African
core collection were used in this study. The African core collection comprises a total of
300 genotypes assembled from nine different countries from West, East, and South Africa
(Table 1). This population consists of different market types, i.e., Spanish (A. hypogaea sub.
vulgaris), Valencia (A. hypogaea sub. fastigiata), Virginia (A. hypogaea sub. hypogaea), and
the hybrid (combination between subspecies). The collection is believed to represent the
total diversity available within the nominating breeding programs on the African continent
and a detailed description of this population is found in [38,39]. Of the 223 lines, a total
of 97 were planted in only Uganda, 43 in only Ghana, and 98 in both countries. Genotype
selection was based on seed availability in these counties.

Table 1. Summary of the 223 genotypes of the African mini-core collection used in this study showing
the market types and the country of origin. The hybrid represents genotypes from crossing different
market types.

Market Types

Country of
Origin Hybrid Spanish Valencia Virginia Total

Ghana 3 16 2 15 36
Malawi 9 9 1 8 27

Mali 1 17 - 3 21
Mozambique - 13 1 4 18

Niger 9 24 1 - 34
Senegal 1 7 - 9 17

Togo 2 6 2 4 14
Uganda 3 15 4 20 42
Zambia 4 3 7 14

Total 32 110 11 70 223

2.2. Site Description

The genotypes were evaluated in Ghana and Uganda. In Ghana, the experiment was
set up at the Savanna Agricultural Research Institute research field located at Nyankpala
(09◦25′41′′ N, 00◦58′42′′ W) in the northern region of Ghana during the May–October
rainy season. In Uganda, two experiments were set up at Nakabango (0◦31′ N, 33◦12′ E)
in Jinja during the September–December rainy season, and on station at the National
Semi-Arid Resources Research Institute (NaSARRI; 1◦35′ N; 33◦35′ E) in Serere District
during the March–July rainy season. Generally, the rainfall patterns during the growing
seasons were similar across the three locations (Table 2). Moderate to high rainfall ranging
between 83 mm and 260 mm was received during the growing months. In Serere, the
highest precipitation was received in April (242 mm), 260 mm in August at Nyankpala, and
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186 mm in November at Nakabango. The average monthly relative humidity was equally
high across the three locations ranging between 67 and 83%. However, the average monthly
temperature in Nyankpala was higher than at Serere and Nakabango. Average monthly
temperatures at Nyankpala during the growing season ranged between 26 and 29 ◦C, while
the average temperatures at Serere and Nakabango ranged between 21 and 24 ◦C, 5 ◦C less.

Table 2. Summary of the monthly weather data for Serere and Nakabango, in Uganda, and Nyankpala
in Ghana, Africa.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Weather Parameters Serere, 2020

Av. Temperature (◦C) 24.3 25.1 24.6 23.9 22.8 21.5 21 22.2 23.1 22.8 23.4 23.8
Relative humidity (%) 67.9 64.9 75.1 76.7 82.8 83.8 82.1 79.4 77.6 80.4 75.1 63.2

Wind speed (m/s) 1.9 2.1 1.5 1.5 1.3 1.6 1.6 1.2 1.3 1.2 1.8 2.1
Precipitation (mm) 63.3 73.8 189.8 242.6 195.1 142.4 152.9 116 342.8 189.8 94.9 31.6

Nakabango, 2021

Av. Temperature (◦C) 22.6 22.9 23.4 22 21.9 21.5 21.4 22.8 22.4 23.4 22.8 23.4
Relative humidity (%) 73.6 74 74.4 83.7 83 79.5 73.8 71.2 75.4 73.6 77.1 72.9

Wind speed (m/s) 1.5 1.6 1.7 1.5 1.4 2.0 2.4 1.7 1.5 1.4 1.4 1.5
Precipitation (mm) 163.5 42.2 100.2 227.1 98.8 23.5 12.4 25 96.5 119.3 186.9 100.2

Nyankapala, 2021

Av. Temperature (◦C) 27.6 29.3 30.6 31.3 29.8 28.4 26.8 26 26.4 27.3 27.8 26.1
Relative humidity (%) 35.7 29.4 52.6 55.9 67.6 71.7 78.8 83.4 82.7 80.1 68.9 49.3

Wind speed (m/s) 2.7 2.6 2.4 2.6 2.2 2.0 2.1 1.6 1.3 1.3 1.3 2.4
Precipitation (mm) 0 0 15.8 55.3 101 83.3 161.9 261 173.1 126.9 14.3 0.1

2.3. Experimental Set Up

The trials were set up in an alpha lattice design and replicated thrice in Ghana and
twice in Nakabango and Serere. In Uganda, each genotype was planted in 2 plots across
the two replications each measuring 1 m × 0.45 m, with a spacing of 0.45 m between rows
and 0.15 m within rows. The plots were separated by 0.90 m alleys and the replicates were
separated by a 1.5 m alley. In Ghana, the genotypes were planted in two-meter single rows
with 0.60 m between the rows.

2.4. Data Collection
2.4.1. Visual Ground Rating

LLS severity was visually scored using the 1–9 modified severity scale [15] (Subrahmanyam
et al., 1995) starting from 4 weeks after planting and every 4 weeks until harvest at 14 weeks
after planting. Remote sensing data were collected on the same days with visual ratings.

2.4.2. Normalized Difference Vegetation Index (NDVI)

A handheld spectroradiometer (GreenSeeker; Trimble Navigation, Sunnyvale, CA,
USA) was used to measure and record canopy normalized difference vegetation index
(NDVI) values. The GreenSeeker was held 0.60 m above the plant canopy and dragged
through the entire length of each row to obtain the average NDVI value for each plot. NDVI
was calculated from the equation.

NDVI = (NIR − R)/(NIR + R) (1)

where R is the reflectance in the red band (660 nm) and NIR is the reflectance in the
near-infrared band (780 nm).
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2.4.3. Red–Green–Blue (RGB) Imaging

A Sony α-6000 camera was used to take RGB images of the experimental plots. The
camera was set to Auto mode so that the lens adjusts to the best sharpness and brightness
based on the available light. The 58 mm camera lens was used and zero zoom was used
for acquiring all the images. The camera was held 0.90 m above the plant canopy and
images of the entire plot were taken. The RGB images were saved in JPEG format with
a resolution of 350 dpi. RGB color space indices were then extracted (Table 3) from the
images using the BreedPix 0.2 option of the CIMMYT maize scanner 1.6 plugin [open
software] (GitHub–george-haddad/CIMMYT: CIMMYT MaizeScanner); Copyright 2015
Shawn Carlisle Kefauver, University of Barcelona [40]; produced as part of Image J/Fiji
(http://fiji.sc/Fiji) (open source software (Fiji: ImageJ, with “Batteries Included”) [41,42]).

Table 3. Red–green–blue (RGB) color space indices derived from the RGB images using BreedPix and
indices derived from the combinations of various indices.

RGB Indices Basis of Derivation Reference

Hue Color description in form of angles [0–360◦ (0◦—red;
60◦—yellow; 120◦—green; 240◦—blue)] [43]

a* Green (−a*)–red (+a*) component in CIE-Lab color space [43]
b* Blue (−b*)–yellow (+b*) component in CIE-Lab color space [43]
u* Green (−u*)–red (+u*) component in CIE-Luv color space [43]
v* Blue (−v*)–yellow (+v*) component in CIE-Luv color space [43]

Green Area (GA) Percentage of Pixels from 60–120◦ of the hue angle [44]
Greener Area (GGA) Percentage of Pixels from 80–120◦ of the hue angle [44]

Crop Senescence Index (CSI) 100 × (GA − GGA)/GA [45]
Greenness index (GI) GA/GGA [46]

Greenness Product Index (GPI) GA × GGA [46]
Normalized Greenness Product Index (NGPI) (GA − GGA)/(GA + GGA) [46]

2.5. Data Analysis

In this study, both regression and classification models were evaluated to support selec-
tion for LLS resistance. The traditional statistical models—stepwise linear regression (SLR)
and partial least-squares regression (PLSR)—in addition to machine learning algorithms
—support vector machine (SVM), Random Forest (RF), k-nearest neighbor (KNN), and the
artificial neural network (ANN)—were used for regression modeling. All those models in
addition to Naïve Bayes (NB) and linear discriminant analysis (LDA) were also used for
the classification of LLS resistance. All these models were formulated in R version 4.3.1 [47]
with the caret package framework [48]. A brief explanation of all models is as follows.

SVM is a supervised ML algorithm that works by finding the hyperplane that best
separates the classes in the feature space. The hyperplane is chosen such that it maximizes
the space between the nearest data points of the different classes [24]. The RF is an ensemble
learning method that uses multiple decision trees during training and the output is a mode
of the classes (classification) or the mean prediction (regression) of the individual trees [25].
The KNN is a non-parametric supervised learning algorithm that is not necessarily trained
to produce a model. Instead, the unknown class is compared with the rest of the data
and assigned to the most common class. It assigns the labels based on majority votes
or averages of the “K” number of nearest neighbors. The performance depends on the
value of K (number of neighbors to consider). The smaller the K, the more sensitive the
model is to noise in the data; however, larger K values might cause the model to miss
the patterns in the data due to overfitting [49]. The ANN is a computational model that
consists of interconnected nodes called neurons arranged into different layers [26]. The
layers consist of the input layer, hidden layer, and output layer. Each neuron in the network
processes input data and passes it to the next layer. During the training process, the network
learns through a process called back propagation, adjusting the weights to minimize the
error between the predicted output and the actual output. The Naïve Bayes (BN) is a

http://fiji.sc/Fiji
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probabilistic algorithm that is based on the Bayes theorem and assumes that features
are conditionally independent given the class label [50]. The probability of each class is
calculated given the input variables and the class with the highest probability is chosen
as the prediction. Stepwise regression is a technique used for feature selection in logistic
regression models. It involves adding or removing predictors from the model based on
their statistical significance. The algorithm starts with no predictors and iteratively adds or
removes predictors based on significance or model fit. This aims to find the subset that best
describes the variation while minimizing overfitting. Linear discriminant analysis (LDA)
is a supervised classification technique used to find a linear combination of features that
best separates different classes in the data. LDA assumes that the features are normally
distributed and then calculates linear discriminants, which are axes that maximize the
separation between classes while minimizing the variation within each class. During
prediction, LDA assigns new data points to the class with the highest posterior probability
based on the linear discriminant functions [51].

For the regression models, the disease severity scores (1–9) were considered as contin-
uous variables while RGB color indices and NDVI were used as predictor variables. The
data were randomly split into training and testing datasets in a 70:30% ratio. The “train”
function of the caret package was used to train six different regression models: SLR, PLSR,
SVM, RF, KNN, and ANN. The linear kernel was used in the SVM and a cost value of 5
was applied to control for the overfitting of the model. For the RF, a total of 400 decision
trees were used in the ensemble and 5 variables were considered at each split. The ANN
comprised four layers: the input layer, two hidden layers, and the output layer. The hidden
layers consisted of eight neurons: five in the first hidden layer and three in the second. For
the KNN model, a ‘K’ value of 11 nearest neighbors was used.

The trained models were validated on the testing dataset (30%) using R2 and the
root-mean-squared error (RMSE) between actual LLS and estimated LLS ratings.

RF, SVM, KNN, ANN, NB, and LDA were also evaluated for classifying genotype se-
lection based on LLS ratings. These models were evaluated for three different classification
modes: (1) two-class or binary classification where LLS scores of 1–6 were designated as
acceptable and LLS scores of 7–9 as unacceptable; (2) three-class classification where LLS
scores of 1–3 were designated as resistant, 4–6 as moderately resistant/tolerant, and 7–9
as susceptible; and (3) four-class classification where LLS scores of 1–2 were designated
as highly resistant, 3–4 as resistant, 5–6 as moderately resistant/tolerant, and 7–9 as sus-
ceptible. The “train” function of the caret package [48] was used to train the classification
models using 70% of the data using the same inputs as in regression models, i.e., RGB
color indices and NDVI as predictors while resistance classes as observations. A fivefold
cross-validation with three repeats was used for training the selected algorithms and their
performance was evaluated using accuracy, specificity, sensitivity, Recall, and F1-score from
confusion matrices.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (2)

Sensitivity (Recall) = TP/(TP + FN) (3)

Specificity = TN/(TN + FP) (4)

Precision = TP/(TP + FP) (5)

F1 = 2 × (Precision × Recall)/(Precision + Recall) (6)

where TP is true positives, TN is true negatives, FP is false positives, and FN is false
negatives [52].

3. Results
3.1. Disease Distribution across the Three Locations

The LLS severity scores showed high disease pressure in all test locations (Figure 1).
The medians in Figure 1 indicate that the disease was higher in Serere compared to Naka-
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bango and Nyankpala. In addition, the Virginia market types generally had the lowest
severity and disease spread across all locations. Within Nyankpala, the Valencia market
types showed the lowest LLS severity, while in Nakabango, the hybrid type experienced the
highest LLS severity compared to the Spanish, Valencia, and Virginia types which showed
similar severities. In Nyankpala and Serere, the hybrid and Spanish types appeared to have
been affected more by LLS compared to subspecies Virginia and Spanish.

Figure 1. Distribution of LLS severity scores at three experimental sites for the different peanut
market types (Spanish, Valencia, Virginia, and Hybrid) used in this study. The locations used were
Serere and Nakabango in Uganda and Nyankpala in Ghana.

3.2. Late Leaf Spot Estimation Using Machine Learning

Overall, ML models performed better than the traditional statistical models (Figure 2).
The ANN was the best-performing model (R2: 0.81, RMSE: ~22%), followed by RF (R2: 0.75,
RMSE: ~25%) and KNN (R2: 0.73, RMSE: ~26%). Traditional statistical models PLSR and
SLR had lower accuracies (R2: 0.56, RMSE: ~33%) compared to the ML models, except SVM
which was the least performing (R2: 0.52, RMSE: ~35%). The RF model identified NDVI,
hue, CSI, b*, and v* as the most important predictor variables while GGA, NDGI, and GI
were identified as the least important.
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Figure 2. Associations between the actual and predicted LLS scores of the test dataset using six models
derived from the testing dataset. The models were trained on 70% of the data and tested on 30% of the
testing data. ANN—artificial neural network; KNN—K-nearest neighbors; PLSR—partial least-squares
regression; RF—Random Forest; SLR—stepwise logistic regression; SVM—support vector machine.

3.3. LLS Severity Classification Using Machine Learning
3.3.1. Binary Classification Models

The RF was the best performer with an accuracy of 90%, followed by KNN with 89.5%
accuracy, and ANN with 88.8% accuracy (Table 4). NB and LDA had lower classification
accuracies of 83% and 85.9%, respectively. Traditional classification models, PLSC and SLC,
had classification accuracies of 85.9% and 87.6%, respectively. Nonetheless, all the models
were able to effectively differentiate between the acceptable and non-acceptable classes of
LLS resistance. The RF model also had the highest Kappa of 66%, followed by ANN with
64% and KNN with 63.7%, while PLSC and LDA had the highest sensitivities of 96% and
94.6% and the lowest specificities of 41% and 47%, respectively. The ANN and RF had the
highest specificities of 74% and 70.5%, respectively.

Table 4. Performance of binary classification models in predicting late leaf spot (LLS) resistance of
peanut genotypes.

Metric (%) ANN KNN LDA PLSC NB RF SLC SVM

Accuracy 88.85 89.59 85.90 85.99 83.41 90.05 87.65 86.73
Kappa 64.09 63.75 47.06 44.37 50.57 66.25 56.75 52.56

Sensitivity 92.2 94.92 94.69 96.16 86.44 94.46 93.90 93.90
Precision 94.01 92.51 88.77 87.82 92.73 93.41 91.22 90.23

Recall 92.2 94.92 94.69 96.16 86.44 94.46 93.90 93.90
F1 93.1 93.70 91.63 91.80 89.47 93.93 92.54 92.03

Specificity 74.00 66.00 47.00 41.00 70.00 71.00 60.00 55.00

ANN—artificial neural network; KNN—K-nearest neighbors; LDA—linear discriminant analysis; NB—Naïve
Bayes; PLSC—partial least-squares classification; RF—Random Forest; SLC—stepwise logistic classification;
SVM—support vector machine.

3.3.2. Multiclass Resistance Classification

The multiclass resistance classification using ML models apparently performed better
than the traditional statistical models but worse compared to the binary classification (Table 5,
Figures 3 and 4). Moreover, classification accuracies were higher for the three-class resistance
classification compared to the four-class resistance classification (Table 5, Figures 3 and 4).
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The RF model was the best-performing model with 78% accuracy and a Kappa score of
65 for the 3-class classification, with 73% accuracy and a Kappa score of 64 for the 4-class
classification. The KNN and ANN were the second- and third-best performing models for
both the 3- and 4-class multiclassification, while NB and SVM were the least-performing
models with accuracies of 63% and 68%, respectively, for the 3-class classification, and 58%
and 67%, respectively, for the 4-class classification. Traditional statistical classification models,
SLC and PLSC, had accuracies of 73% and 69%, respectively, for the 3-class classification, and
70% and 65%, respectively, for the 4-class classification. These statistical models performed
better than both NB and SVM models for the 4-class classification.

Table 5. Performance of multiclass algorithms in categorizing genotypes into respective predefined
late leaf spot (LLS) resistance classes.

3 Classes 4 Classes

Model Accuracy Kappa Accuracy Kappa

ANN 76.10 62.22 74.45 65.89
KNN 77.42 64.25 73.36 64.19
LDA 72.07 55.25 67.10 55.56
NB 62.86 42.21 57.51 43.01

PLSC 68.66 49.57 65.90 54.04
RF 77.60 64.75 72.81 63.51

SLC 72.72 56.85 69.86 59.54
SVM 68.20 49.43 63.04 50.27

ANN—artificial neural network; KNN—K-nearest neighbors; LDA—linear discriminant analysis; NB—Naïve
Bayes; PLSC—partial least-squares classification; RF—Random Forest; SLC—stepwise logistic classification;
SVM—support vector machine.
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Figure 3. Confusion matrices of predicted and actual LLS categories of (A) binary classification,
(B) 3-class multiclassification, and (C) 4-class multiclassification. The confusion matrices show the
correctly classified and misclassified plots by the different methods. Each number and color placed
in each box represents the number of plots classified by the different methods, and the diagonals
in B and C represent classes correctly classified by the models. ANN—artificial neural network;
KNN—K-nearest neighbors; LDA—linear discriminant analysis; NB—Naïve Bayes; PLSC—partial
least-squares classification; RF—Random Forest; SLC—stepwise logistic classification; SVM—support
vector machine.
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Figure 4. Comparison of the accuracy of the different classification models. (a) binary classifica-
tion, (b) 3-class multiclassification, and (c) 4-class multiclassification using the different algorithms.
ANN—artificial neural network; KNN—K-nearest neighbors; LDA—linear discriminant analysis;
NB—Naïve Bayes; PLSC—partial least-squares classification; RF—Random Forest; SLC—stepwise
logistic classification; SVM—support vector machine.

4. Discussion

Late leaf spot (LLS) is an important fungal disease that is favored by high rela-
tive humidity and moderate temperature [53,54]. This was evident from the results:
LLS severities were highest in Serere followed by Nakabango and Nyankpala. All these
locations experienced high relative humidity and moderate temperatures that could have
led to high disease pressure with severity medians of 5 and maximum values up to 9
(Figure 1). Butler (1990) indicated earlier that temperatures between 18 ◦C and 27 ◦C fa-
vored the early development of LLS lesions. Earlier studies have also identified Nakabango
and Serere as LLS hotspots in Uganda [1].

Currently, the selection for LLS-resistant genotypes is dependent on the visual rating
of the disease severity on a scale of 1–9 or 1–10 [15]. These ratings are based on the presence
of lesions on the leaves and leaf defoliation. A scale of 1–9 is the most used in the peanut
breeding programs in Uganda and Ghana and is categorized into resistant (1–3), tolerant to
moderately resistant (4–6), and susceptible (7–9), and several varieties have been selected
and released using this criterion, for example, Serenut 5R [55] and Naronut 1R [56] in
Uganda, and the Babile series [57] in Ethiopia. Selection for the most resistant (1–3) lines is
the most ideal situation; however, because selection for several other traits is important
for production, i.e., yield, maturity, resistance to other diseases, etc., they play important
roles in variety release decisions. To accommodate other traits, lines with high (1–3) and
medium (4–6) LLS resistance are commonly retained for advancement and potential release
by breeders. In addition, the use of a visual rating is subjective to human error and depends
on the individual’s expertise and ability to visually discern LLS from other lesions on
the leaves, the time of rating, and the peanut market type, among a few. It is relatively
easy to identify the most resistant (1) and the most susceptible (9) genotypes for LLS, but
differentiating middle scores such as between 3 and 4 and between 6 and 7 can be difficult
and can have consequences for the selection process.

For the LLS severity estimation, the ANN model depicted the highest performance
(R2: 0.81, RMSE: ~22%), indicating that the predicted values were in high agreement
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with the actual observed values (Figure 2). This is the advantage of the ANN, combining
multiple layers of neurons, in learning complex data patterns from multidimensional data
including remote sensing and making accurate predictions [58,59]. ANNs have been widely
applied in various plant breeding programs including for yield modeling and prediction in
soybean [60], and root regeneration [61] and drought tolerance screening [62] in wheat. The
ANN has been applied for the identification and prediction of several crop diseases such as
late blight (Phytophthora infestans) in tomato with a prediction accuracy of 66% [63], Botrytis
cinerea of eggplant (Solanum melongena L.) with a prediction accuracy of 70% [64], and
seedling diseases of orchids (Phalaenopsis spp.) with a prediction accuracy of 89.6% [65].

The classification of LLS severity into two classes (acceptable and non-acceptable)
exhibited robust discriminatory performance (83 to 90%) for all models (Table 4). However,
high discriminatory accuracy does not necessarily translate into high selection accuracy.
The number of genotypes selected using this criterion is large, often between 760 and 850
(Figure 3A), and yet the breeding target is to reduce large populations to a small, manage-
able number [66]. Increasing the number of classification classes to three (resistant, tolerant,
and susceptible) reduced the classification accuracy of the models (63 to 78%) but increased
the precision of selection. This reduction in accuracy is due to the increased complexity
of the model due to increased possibilities and decision boundaries, and the similarity of
features between the classes leading to increased misclassifications [67]. Increasing to four
classes (highly resistant, resistant, tolerant, and susceptible) further reduced classification
accuracies (58 to 74%) but also improved the potential applicability of this classification
model in a breeding program. This is because four classes allowed the reduction in selected
genotypes to manageable numbers. RF, for example, predicted 184 cases of highly resistant
genotypes in agreement with the visual rating when four classes were used versus 371 cases
when the three-class classification was applied (Figure 3). In summary, the classification
accuracy of the models decreased with an increase in the classification classes (Figure 4),
but the practicality for peanut breeding seems to have increased with the increase in the
number of classes.

For resistance classification, RF was consistently the best classifier for the binary,
3-class, and 4-class condition (Tables 4 and 5). RF follows an efficient training phase and
therefore obtains a high generalization accuracy. This is because RF trains multiple decision
trees using multiple random subsamples of the original dataset where the generalization
error reduces as more trees are added, thereby also reducing the model overfitting [25]. This
supported accurate identification of the true positives and true negatives and minimized the
possibility of identifying false positives and false negatives (Figure 3). This is particularly
important in breeding where false positives and false negatives can impede genetic gain [68].
RF has been successfully applied in studies of various diseases and crops such as the
identification of Alternaria diseases of rape oil seed [69] with a discrimination accuracy
of 82.6%, the identification of several tomato diseases with a classification accuracy of
95.2% [70], and the differentiation between wheat rust (Puccinia recondita f. sp. tritici) and
rye rust (Puccinia recondita f. sp. recondita) with classification accuracies of 96.6% and 91.7%
when using spectral wavelengths and vegetation indices, respectively [71]. Although, in
this work, all models had a misclassification of several classes, there was a relatively clear
distinction of the genotypes into the respective resistance classes (Figure 3), which is the
most important purpose of the models.

The SVM, which is one of the most used algorithms in plant science, was also used in
this study. However, its accuracy was low compared to the other ML algorithms applied
in this study and those reported in previous studies. This could be due to the fact that
the data classes were imbalanced, and there were close margins between the classification
classes, all leading to overfitting of the model [24].

Accurate selection is important for genetic gain [19] and making wrong selections
such as classifying a susceptible genotype as a resistant genotype can be detrimental to
the breeding goals. Visualization of model performance using a confusion matrix helps
show the number of correct and incorrect classifications made by the model as well as
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the misclassification of various classes (Figure 3). This enables the calculation of other
performance metrics such as sensitivity, precision, recall, and specificity which correct for
false positives and negatives [72].

The indices identified by RF to be highly important included NDVI, CSI, hue, GI, b*,
and v*, which have also been identified as critical in earlier studies for LLS detection [36,73].
LLS severity is associated with leaf defoliation, which reduces the leaf area index of the
canopy and the NDVI as well [74]. The CSI, GI, b*, and v* which represent the senescent
fraction of the canopy are related to the senescence and canopy yellowing associated with
LLS severity [7]. The increase in phenotyping accuracy of LLS severity in breeding is key for
genetic gain improvement [75]. The use of remote sensing HTP methods has the potential
to remove the bias and subjectivity associated with traditional phenotyping and reduce the
time spent on data collection. These methods are repeatable [76], for which the selection
response for the trait of interest can be improved over traditional methods [18].

Although initial investments in remote sensing sensors are high, the cost of pheno-
typing is eventually reduced in the long run [19], thereby reducing the cost of developing
new varieties. The tools used in this study were handheld and have demonstrated a high
repeatability of measurements [36,76,77]. However, they do not allow the throughput re-
quired in breeding. Therefore, the adoption of unmanned aerial vehicles for data collection
is being proposed to increase the amount and throughput of data collected and reduce the
cost per data point collected [78]. It is also important to note that the performance of ML
models tends to be crop- and environment-dependent and therefore often obtain inconsis-
tent and non-generalizable results [79]. This could be eliminated by several approaches,
primarily by either gathering data from multiple agroclimatic conditions (crop, varieties,
weather, and soil, among others) and later testing ensemble models, i.e., stacking multiple
ML algorithms together as one [31,80–82]. A recent study by [81] utilized an ensemble of
RF, KNN, and SVR models to predict alfalfa yield that yielded a much better accuracy than
individual models.

5. Conclusions

Late leaf spot is an important constraint to peanut production worldwide. The accurate
phenotyping of the disease is important for selection for resistance in breeding. The
adoption of remote sensing methods together with machine learning is considered an
alternative to make selection for LLS resistance faster and accurate. The objectives of this
study were to compare between regression and classification for breeding, and to identify
the best models and indices to be used for selection. The results of our study indicate
that the ANN, RF, and KNN are the best performing algorithms for both regression and
classification methods. The classification accuracy of all algorithms decreased with the
increase in the classification classes. Of the three different modes of classification tested,
the four-class classification was the most practical for selection although the classification
accuracies were lower compared to the other two modes. NDVI, and RGB indices CSI, hue,
GI, b*, and v*, were identified as the most important indices for selection for LLS resistance.
Our study demonstrated the efficacy of machine learning methods for the selection for LLS
resistance in peanut breeding. While our results demonstrate promising outcomes for the
utilization of machine learning for selection, there were some limitations in this study. The
data acquisition was limited to handheld sensors which generated a small set of data and
yet the machine learning models needed a large amount of data for efficient training of the
models. Another limitation faced was the quality of the visual scores. Since the data were
collected from different countries, it was challenging to control the influence of human error
and ascertain the consistence of the data collected. This could have affected the accuracy of
the models developed. Therefore, for future work, there is a need to develop standardized
data collection protocols and incorporate unmanned aerial vehicles (UAVs) equipped with
multiple sensors for the fast and objective collection of large amounts of spectral data for
model training. There is also a need to include weather parameters such as temperature
and relative humidity in the models, and explore more robust analytical methodologies
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such as deep learning to enhance classification accuracy and selection for LLS resistance in
peanut breeding.
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