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Abstract: Mild organic substitution is advantageous for sustainable agricultural development. In or-
der to determine the proper fertilization strategy, it is essential to investigate the impact of substituting
chemical fertilizers with varying levels of organic manure on soil nutrients, microbial communities,
and crop productivity. Four treatments were implemented: no fertilizer, sole chemical fertilizer,
20% organic manure substitution, and 40% organic manure substitution. Bacterial and fungal commu-
nities were characterized through high-throughput sequencing of the 16S rRNA gene V3–V4 region
and the V4 region, respectively. The 20% and 40% organic manure substitutions increased soil organic
matter (SOM) content, total nitrogen (TN) content, and reduced soil pH compared to the control (CK).
The 20% organic manure substitution showed the most significant improvements in soil alkaline
phosphatase, urease, and invertase activities. Soil nutrient enhancement increased bacterial alpha
diversity, with a milder impact on fungal alpha diversity compared to bacteria. Different fertilization
treatments elevated the relative abundance of bacterial Bacteroidetes (8.11%, 21.25%, and 1.88%),
Actinomycetes (12.65%, 26.36%, and 15.33%), and fungal Ascomycota (16.19%, 10.44%, and 12.69%),
known for degrading recalcitrant organic matter. The sole chemical fertilizer treatment increased the
pathogenic Cheatotryiales. Shared species, primarily from bacterial Actinomycetes, Firmicutes, Pro-
teobacteria, and fungal Ascomycota phyla, were found at 20% and 40% organic manure substitution
levels. Specifically, the 20% organic manure substitution level promoted the relative abundance of
beneficial plant growth-promoting taxa, Oxalobacteraceae and Massilia, and suppressed pathogens,
with an increase in the relative abundance of the Purpureocillium genus and Mortierellomycota. These
findings suggest that a 20% OF substitution can maintain crop yield, enhance soil nutrients and
enzyme activities by fostering beneficial soil bacteria, inhibiting soil-borne pathogens, and refining
microbial community structure.

Keywords: organic manure; substitution; soil quality; bacteria and fungi; community structure

1. Introduction

The application of both mineral and organic fertilizers (OF) is a recognized strategy for
enhancing soil quality and crop yields. While mineral fertilization can marginally increase
soil organic carbon content and crop yields [1], over-reliance or sole use can disrupt matter
and energy cycling in the agroecosystem, reducing soil quality and degrading agricultural
product standards. A transition from chemical fertilizers to OF is emerging as a sustainable
agricultural practice. Multiple studies have demonstrated that combining organic and
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chemical fertilizers can improve soil fertility and structure by increasing soil organic
matter (SOM) and nutrient content, thereby ensuring agricultural sustainability and crop
yield [2–5]. For instance, Zhou et al. [4] found that blending organic and inorganic nitrogen
fertilizers in a 1:1 and 2:1 ratio notably increased vegetable yields and N uptake. A meta-
analysis by Xia et al. [5] indicated a 6.8% increase in crop productivity when substituting
chemical fertilizers with organic manure.

In agroecosystems, soil microorganisms, the most dynamic components, play piv-
otal roles in soil structure formation, organic matter decomposition, toxin elimination,
and the biogeochemical cycling of elements like carbon, nitrogen, phosphorus, and sul-
fur [6,7]. Agricultural interventions often compromise the diversity and abundance of
these microbial communities, which are essential for soil ecosystem health and sustain-
ability [8]. The addition of exogenous organic manure can affect microbial community
structure [9–11]. Chemical fertilizers alone induce soil acidification and reduce microbial
diversity [12,13]. In contrast, integrating OF at varying levels can modulate microbial
community structure and diversity differently, depending on specific organic-inorganic
combinations. Under the same chemical fertilizer application, Cui et al. [14] observed
that bacterial community diversity significantly increased with organic manure addition.
However, Sarathchandra et al. [15] found nitrogen and phosphorus fertilizers to be incon-
sequential for soil microbial attributes in rangelands. Cui et al. [16] found that prolonged
co-application of organic and OF limits on microbial nitrogen shifts microbial communities
from copiotrophic to oligotrophic dominance, thereby influencing organic carbon decom-
position. The addition of OF can influence microbial communities by shifting oligotrophic
microorganisms (which thrive in soils with pure mineral fertilizers or no fertilization)
towards microorganisms capable of decomposing complex organic compounds, as well
as changes in key species involved in nutrient cycling, thereby affecting soil fertility [17].
Therefore, it is necessary to further investigate the impact of appropriate organic-inorganic
fertilizer ratios on the beneficial development of microbial community structure and the
enhancement of soil quality.

In extensive investigations of SOM, distinct bacterial and fungal communities have
been extensively studied, but most research has focused on nitrogen-centric OF substitu-
tions, neglecting the potential impacts of excessive phosphorus and potash on microbial
diversity. This oversight highlights the necessity for a more comprehensive approach.
Previous studies examining the effects of OF substitution on soil microorganisms have
employed varying substitution rates, often without considering crop yield implications [18].
For instance, yields significantly declined with over 50% OF substitution [19]. To prioritize
crop yield while addressing this gap, our study implemented four treatments: no fertilizer,
sole chemical fertilizer, 20% OF substitution, and 40% OF substitution. The main objectives
of this study were to assess whether substituting chemical fertilizers with organic fertilizers
could enhance soil quality while simultaneously sustaining yield. We hypothesized that
an appropriate proportion of organic fertilizer substitution can modulate the microbial
community structure towards beneficial microbial populations, thereby promoting the
enhancement of soil quality while stabilizing yield.

2. Materials and Methods
2.1. Field Experiment Conditions

The field study in Jiyang County, Shandong Province, China (36◦58′ N, 116◦59′ E)
commenced in 2016. A detailed study site map is provided in Supplementary Materials
(Figure S1). The study area features a continental monsoon climate, with mean air tempera-
ture, relative humidity, and annual precipitation at 12.8 ◦C, 65%, and 583.3 mm, respectively.
The soil is classified as a typical calcareous alluvial soil based on the World Reference Base
classification [20]. The soil, initially sampled, was calcareous and moist, with the following
basic characteristics: pH 8.7, 1:2.5 w/v ratio of soil: water, organic matter 14.2 g kg−1, total
nitrogen 1.2 g kg−1, Olsen phosphorus 8.8 mg kg−1, and available potassium 94.5 mg kg−1.
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2.2. Design of the Experiment

A crop rotation system of winter wheat (Triticum aestivum L.) and summer maize
(Zea mays L.) was observed in the field experiment since the experiment was established.
In each rotation year, wheat is sown in early October and harvested in early June of the
following year. The wheat cultivar ‘Luyuan 502’ was machine-sown with a row spacing
of 25 cm at a seeding rate of approximately 225 kg ha−1 in 2016–2021. The maize is
planted after the wheat harvest and harvested in early October. The summer maize cultivar
‘Denghai 618’ was planted with a density of 75,000 plants ha−1 in all maize cropping years.
The maize seeds were sown with a row spacing of 60 cm and a plant spacing of 22.2 cm.
Four treatments were applied to triplicate 40 m2 plots:

1. No N fertilizer (CK)
2. Chemical N fertilizer (MF)
3. 20% organic manure replacing chemical fertilizer (20% OF)
4. 40% organic manure replacing chemical fertilizer (40% OF)

In each wheat cropping season, all treatments except CK received total N, P2O5, and
K2O fertilizers at rates of 195 kg ha−1, 105 kg ha−1, and 75 kg ha−1, respectively. Urea,
superphosphate, and potassium sulfate were used as chemical N, P2O5, and K2O fertilizers
in the experiment. A commercial OF derived from cow dung, containing 55.9% SOM,
1.30% N, 1.55% P2O5, and 1.22% K2O, was applied in the experiment. The application
amount of OF used to substitute chemical fertilizer was calculated according to N. Chemical
phosphorus and potassium application rates were adjusted based on the content of OF.
In this study, 50% N fertilizer (including organic and chemical N), P fertilizer, and K
fertilizer were applied basally. And an additional 50% N was applied as urea at the
jointing stage of wheat. During each maize cropping season, each plot, excluding CK,
received equal amounts of urea (225 kg N ha−1), superphosphate (120 kg P2O5 ha−1), and
potassium sulfate (135 kg K2O ha−1). All phosphate and potassium fertilizers were applied
before the planting. Nitrogen fertilizer was evenly split between basal and top-dressing
applications. Details of fertilizer application rates are provided in Table 1. In this study,
both wheat and maize residues were returned to the field. The biomass data of wheat and
maize grains and residues for each season are presented in Tables S1 and S2, respectively.
Tables S3 and S4 provide the accumulations of N, P, and K in both the grain and straw of
wheat and maize, respectively.

Table 1. Description of fertilizer treatments in this study.

Cropping Season and Treatments Fertilizer Source

N Rate
P2O5 Rate K2O Rate

Basal N Topdressing N

(kg ha−1)

Wheat cropping season
CK CF 0 0 105 75
MF CF 97.5 97.5 105 75

20% OF
CF 58.5 97.5 58.5 38.4
OF 39 0 46.5 36.6

40% OF
CF 19.5 97.5 12 1.8
OF 78 0 93 73.2

Maize cropping season
CK CF 0 0 120 135
MF CF 112.5 112.5 120 135

20% OF CF 112.5 112.5 120 135
40% OF CF 112.5 112.5 120 135

Note: CF—chemical fertilizer; OF—organic fertilizer; CK—no N fertilization control; MF—chemical fertil-
izer treatment; 20% OF—OF substitution for 20% of chemical fertilizer; 40% OF—OF substitution for 40% of
chemical fertilizer.
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2.3. Sampling and Analysis
2.3.1. Sample Collection

The soil samples were collected during the wheat crop harvesting stage in June
2021 using a five-point sampling method, each plot yielding 500 g of soil at a depth of
0–20 cm. Within each plot (40 m2), soils at depths of 0–20 cm were collected at five sampling
points, designated as X type, employing a sterile blade. These samples were combined to
create a composite sample. Subsequently, visible plant roots and organic residues were
meticulously removed. The samples were then divided into two parts. One subsample was
placed in plastic containers and transported to the laboratory in an ice box. These plastic
containers were subsequently stored at −80 ◦C to facilitate microbial community analysis.
The second subsample was stored at 4 ◦C for the analysis of soil enzyme activities and soil
chemical properties.

2.3.2. Soil Chemical Property

The pH, Olsen-P, and available K were determined by air-drying and sieving soil
samples through an 8-mesh sieve. Total N and SOM concentrations were measured by
grinding the soil samples and passing them through a 100-mesh sieve. Soil pH was
measured using a pH meter (SevenExcellence, Mettler-Toledo, Shanghai, China) with a
1:2.5 soil-to-water ratio. Olsen-P and available K were determined following the Murphy
and Riley [21] and Walker and Barber [22] methods, respectively. Total soil N and SOM were
analyzed via wet oxidation using a Vario Max CN instrument (VarioMax CN; Elementar,
Langenselbold, Germany).

2.3.3. Soil Enzyme

Urease activity was assessed by incubating samples for 2 h at 37 ◦C with a 10% urea
solution. Next, the culture solution was shaken thoroughly for a few seconds, and am-
monium in the soil suspension was quantified using a colorimetric method [23]. Alkaline
phosphatase activity was determined by measuring p-nitrophenol (pNP) released from
1 g of fresh soil incubated with 0.2 mL of toluene, 4 mL of buffer solution (pH 11.0), and
1 mL of p-nitrophenyl phosphate at 37 ◦C for 1 h [24]. Invertase activity was determined
by measuring glucose using the 3,5-dinitrosalicylic acid method with a saccharose solution
as the substrate [25]. Catalase activity was measured by back titration of residual H2O2
with 0.1 M KMnO4 added to the soil [26].

2.3.4. DNA Extraction and High-Throughput Sequencing Analysis

Soil DNA extraction was performed from 0.5 g of freeze-dried soil using the E.Z.N.A.
Soil DNA Kit (Omega Bio-tek, Norcross, GA, USA) following the manufacturer’s protocol.
The DNA concentration and purity were assessed using a 1% agarose gel and a NanoDrop
2000 UV-vis spectrophotometer (Thermo Scientific, Wilmington, NC, USA). The V3–V4
region of the 16S rRNA gene was amplified with primer pairs 338F and 806R, while the V4
region of the 18S rRNA gene was amplified using primer pairs SSU0817F and 1196R. PCR
was conducted in triplicate with an ABI GeneAmp 9700 PCR thermocycler (ABI, Vernon,
CA, USA) under the following conditions: initial denaturation at 95 ◦C for 3 min, followed
by 27 cycles (95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 30 s), followed by a single extension at
72 ◦C for 10 min, and finally ending at 4 ◦C. After amplification, 3 µL of the PCR product
underwent 2.0% agarose gel electrophoresis and subsequent purification using the AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA). The PCR product’s
quantity was determined using a Quantus Fluorometer (Promega, Madison, WI, USA) [27].

Purified amplicons were sequenced on an Illumina MiSeq platform (Illumina, San
Diego, CA, USA) at Majorbio Bio-Pharm Technology Co., Ltd., Shanghai, China. QIIME
(ver. 1.17) was used for demultiplexing, quality filtering, and processing the raw FASTQ
files. Sequences with 97% similarity were assigned to the same operational taxonomic units
(OTUs) with UPARSE software (ver. 7.1; http://drive5.com/uparse/; accessed on 5 August
2021). The Ribosomal Database Project (RDP) classifier was used against the Silva [28]

http://drive5.com/uparse/
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16S rRNA database for bacteria and the 18S rRNA database for fungi [29]. On average,
each sample yielded 47,912 quality 16S sequences and 65,951 quality 18S sequences, with
bacterial and fungal average bp read lengths of 418 and 243, respectively.

2.3.5. Data and Statistical Analyses

Bacterial alpha diversity, encompassing Chao1 richness, Shannon diversity, and
Peilou’s evenness indices, along with PCoA based on the Bray–Curtis distance and RDA,
was conducted using the “vegan” package in R version 4.0.5. Indicator species analysis for
different treatments was carried out using the “indicspecies” package in R version 4.0.5. A
bipartite network was constructed and visualized using the “edgeR” and “igraph” packages
in R version 4.0.5. The significant differences in bacterial and fungal taxa among the fertil-
ization treatments were identified with linear discriminant analysis of effect size (LEfSe)
analysis [30]. A one-way analysis of variance (ANOVA) for each trait was performed, fitting
the linear mixed model with fixed effects tested for treatment and replication in JMP®Pro
version 16 (SAS, Cary, NC, USA). The Tukey HSD test was applied in comparisons with
each other after ANOVA. Pearson’s two-tailed correlation test was executed using SPSS
software version 25.0.

3. Results
3.1. Crop Yield

The grain yields of wheat and maize over the recent five years (2016–2021) are pre-
sented in Figure 1. Crops treated with no N fertilizer exhibited the lowest average yields
over all five years. Compared with CK, the MF 20% and 40% treatments significantly
increased crop yields of wheat by 131.25%, 125%, and 128.13%, and maize by 50.28%,
49.58%, and 50%, respectively.
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Figure 1. Effect of OF substitution on the average grain yield of wheat (A) and maize (B) during the
growing seasons. Values are means of triplicate samples and are not significantly different at p < 0.05
when followed by the same lowercase letters. The error bars represent standard deviations.

3.2. Soil Chemical Properties

The soil TN and SOM contents in the CK treatment were consistently lower than
in the other treatments (Table 2). Compared to CK, soil TN and SOM content signifi-
cantly increased in the 20% and 40% OF substitution treatments by 23.53% and 29.41% for
TN and 18.18% for SOM in both treatments, respectively (p < 0.05). The content of AK
and AP showed no significant differences under different treatments. Soil pH decreased
significantly by 0.1 units in all fertilization treatments compared to CK (p < 0.05).
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Table 2. Chemical properties of soil under different organic substitution ratios.

Treatment pH Organic Matter
(%)

Total N
(g kg−1)

Available K
(mg kg−1)

Available P
(mg kg−1)

CK 9.0 ± 0.18 a 1.7 ± 0.38 b 1.1 ± 0.08 b 199 ± 13.11 a 17.9 ± 2.73 a
MF 8.9 ± 0.18 b 2.0 ± 0.44 ab 1.2 ± 0.21 ab 200.3 ± 16.52 a 18.9 ± 6.11 a

20% OF 8.8 ± 0.15 b 2.1 ± 0.27 a 1.3 ± 0.11 a 202.0 ± 8.21 a 20.9 ± 4.23 a
40% OF 8.9 ± 0.13 b 2.2 ± 0.14 a 1.3 ± 0.12 a 201.7 ± 12.42 a 19.5 ± 5.41 a

Note: Data are shown as mean ± standard deviation (n = 3). Values followed by different lowercase letters
indicated a significant difference among treatments (p < 0.05).

3.3. Soil Enzyme Activity

The impact of chemical fertilizers and different organic manure substitution ratios on
soil microbial function and activity was assessed by measuring the activities of four soil
extracellular enzymes: urease, alkaline phosphatase, invertase, and catalase (Figure 2).
Alkaline phosphatase activity was significantly higher than CK under all fertilization treat-
ments, with increases of 17.24%, 21.31%, and 17.95%, respectively (p < 0.05). The 20% OF
substitution treatment significantly increased activities for urease, alkaline phosphatase,
and invertase, with significant increases of 22.57%, 27.08%, and 22.78%, respectively, com-
pared to CK (p < 0.05). Catalase activity did not significantly differ across treatments
compared to CK.
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Figure 2. Soil enzyme activities under different organic substitution ratios. The same lowercase
letters are not significantly different at p < 0.05. The error bars represent standard deviations.

3.4. Soil Bacterial and Fungal Community Structure and Diversity

Bacterial diversity increased significantly by 3.68%, 4.50%, and 4.07%, respectively
(p < 0.05). Significant increases in bacterial richness were observed under the treatment
of 40% OF substitution (9.84%) compared to CK (Figure 3). The treatment with 40% OF
substitution exhibited the highest bacterial richness (679.23), while the 20% OF substitu-
tion treatment showed the highest diversity (5.0) and evenness (0.64). Fungal richness,
diversity, and evenness were consistently lower than those of bacteria. Chemical fertilizer
treatment and 20% OF substitution treatment led to significant increases in fungal rich-
ness (15.72% and 14.24%, respectively) compared to CK. No significant differences were
observed in fungal diversity or evenness among the different fertilization treatments.
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The Principal Coordinates Analysis (PCoA) accounted for 49.0% of bacterial commu-
nity variation (Figure 4A) and 42.3% of fungal community variation (Figure 4C). CK’s
bacterial community was distinctly separated from the bacterial and fungal communities
under various fertilization treatments. In redundancy analysis (RDA), environmental fac-
tors explained 67.19% of bacterial community variation and 25.5% of fungal community
variation. RDA results revealed that pH was negatively correlated with TN and SOM.
Furthermore, pH, TN, and SOM primarily drove bacterial community variations between
CK and different fertilization treatments (Figure 4B), while SOM and TN were key factors
for fungal community variations (Figure 4D).
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At the phylum level, significant variations in the relative abundance of dominant
bacterial and fungal species were noted under different fertilization treatments. The domi-
nant bacterial phyla, Actinobacteriota, Acidobacteriota, Proteobacteria, and Chloroflexi,
exhibited relative abundances ranging between 21.77–27.51%, 18.16–21.43%, 10.55–11.47%,
and 16.71–26.90%, respectively (Figure 5A). Under the 20% OF substitution treatment,
Actinobacteriota and Proteobacteria showed the highest relative abundances, increasing
by 21.0% and 15.25%, respectively, compared to CK, while Acidobacteriota decreased
by 37.04% compared to CK. Ascomycota and Mortierellomycota were the dominant
fungal phyla across all samples (Figure 5B), with relative abundances ranging between
70.73–82.18% and 8.33–12.55%, respectively. Compared to CK, Ascomycota’s relative abun-
dance increased by 13.42%, 10.26%, and 11.25% under the sole chemical fertilizer, 20% OF
substitution, and 40% OF substitution treatments, respectively.
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3.5. Soil Bacterial Bipartite Networks

The bipartite network showed shared bacterial indicator OTUs between chemical
fertilizer, 20% OF substitution, and 40% OF substitution treatments, mostly from the
Proteobacteria phylum (Figure 6A). This partially explains the differences in bacterial com-
munity structures between CK and fertilized treatments. More shared bacterial indicator
OTUs between 20% and 40% OF substitution treatments belonged to Actinobacteriota,
Proteobacteriota, and Firmicutes phyla. Correlation analysis (Figure 6B) revealed positive
correlations between Actinobacteriota, Proteobacteriota, Firmicutes, and soil TN while
negatively correlating with pH.

The bipartite network showed significant fungal indicator OTU overlap among chem-
ical fertilizer, 20% OF substitution, and 40% OF substitution treatments, mainly from
the Ascomycota phylum (Figure 7A). Correlation analysis indicated positive correlations
between Ascomycota and Basidiomycota phyla indicator OTUs with AP, SOM, and TN,
respectively (Figure 7B). However, relative abundance differences among treatments were
not significant.

3.6. LEfSe

Using the linear discriminant analysis (LDA) effect size method, differentiation of
bacterial and fungal taxa was achieved across the treatments: no fertilization, chemical
fertilizer application, 20% OF substitution, and 40% OF substitution (Figure 8A). Within the
four treatments at various taxonomic levels, six bacterial biomarkers with an LDA effect
size > 3 were identified. Chemical fertilizer treatment exhibited distinctive taxa, including
the Polyangia class, Blrii41 family, and no-rank genus. Under the 20% OF substitution
treatment, Actinobacteriota phylum, Oxalobacteraceae family, and Massilia genus were
predominant biomarkers.
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Figure 8. A linear discriminant analysis (LDA) score computed for the significantly different abundant
taxa of bacteria (A) and fungi (B).

Nine fungal taxa with an LDA effect size > 3 were identified to differentiate among
the no fertilization, chemical fertilizer application, 20% OF substitution, and 40% OF substi-
tution treatments (Figure 8B). Chemical fertilizer treatment featured the Chaetothyriales
order as the most abundant and distinctive taxon. In the 20% OF substitution treatment,
the Glomerellaceae family, along with the genera Apodus, Colletotrichum, and Purpureocil-
lium, were the most abundant. The 40% OF substitution treatment displayed the highest
abundance of the Rozellomycotina_cls_Incertae_sedis class and the GS11 order.
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4. Discussion
4.1. Crop Yield and Soil Chemical Properties

Organic fertilizer substitution for chemical fertilizer has demonstrated synergistic
benefits in terms of crop yields, sustainability, and soil fertility [31,32]. However, due to
the slow release of nutrients and inefficiency of organic fertilizers, high ratios of organic
to chemical fertilizer substitution can often lead to a reduction in crop yield [33]. This
study found no significant yield difference between sole chemical and organic fertilizer
application treatments, indicating that up to a 40% substitution with organic fertilizer can
sustain high crop yields. This can be attributed to the pH regulation of the soil [34] and
the improved nutrient efficiency of organic manure. When comparing soil fertility under
20% and 40% organic manure substitution treatments with unfertilized soil, our findings
demonstrate that both treatments significantly increased SOM and TN contents, as shown
in Table 2. It is noteworthy that a higher proportion of organic manure substitution does
not necessarily lead to improved fertilizer efficacy. Remarkably, the 20% OF substitution
exhibited a pronounced increase in soil fertility, emerging as the optimal level for enhancing
crop nutrient assimilation and yield optimization. OF undergoes microbial decomposition,
transforming into humus, which can react with sodium carbonate to form sodium hu-
mate. Consequently, organic manure substitution helps mitigate soil alkalinity, as outlined
in Table 2.

4.2. Soil Enzyme Activity

Soil enzymes, including urease and alkaline phosphatase, play pivotal roles in soil
carbon (C), nitrogen (N), and phosphorus (P) cycling. They are positively correlated with or-
ganic matter content and intricately involved in SOM tr ansformation [9,35–37]. Compared
to the control, 20% OF substitution elevates C and N levels, boosting microbial metabolic
activity and providing organic matter as a substrate for soil enzymes [38]. Consequently,
urease, alkaline phosphatase, and invertase activities significantly increase [39]. However,
using over 40% OF substitution may reduce available N, curtailing soil enzyme substrate
use efficiency [16].

4.3. Soil Bacterial and Fungal Community Diversity and Structure

Soil microbial communities serve as reliable indicators of shifts in soil quality [40,41].
A richer microbial diversity within soil is widely believed to correlate with a more resilient
ecosystem [42]. The introduction of chemical fertilizers and organic manure provides the
energy and substrates needed to bolster microbial activity. These interventions profoundly
stimulate soil prokaryote proliferation [1] and enhance the abundance, diversity, and
evenness of bacterial communities (Figure 3). This observation aligns with the findings
presented by Cui et al. [14]. However, when comparing the effects of substituting chemical
fertilizers with organic ones (at levels < 40%), the impact on fungal communities appears
less pronounced than on bacterial communities (Figure 3). This underscores the fact that
bacteria are more sensitive to environmental fluctuations than fungi.

4.4. Soil Bacterial and Fungal Community Structure

In contrast to the CK, both chemical fertilizers and organic manure significantly affect
soil microbial community structures (Figure 4A,C). Changes in bacterial community com-
position are closely associated with soil pH, SOM, and TN (Figure 4B), while shifts in fungal
communities are primarily linked to soil SOM and TN (Figure 4D). It is well-documented
that soil bacterial community composition exhibits a stronger correlation with soil pH
compared to fungal communities [43–46]. Conversely, soil nutrients emerge as the primary
determinants shaping fungal communities [47,48]. The application of chemical fertilizers
and OF substitution releases nutrients, notably organic matter and effective phosphorus,
diminishing the diversity of oligotrophic bacterial groups like Acidobacteriota (within
the Acidobacteria phylum). Simultaneously, there is an enhancement in the diversity of
eutrophic groups from the Actinobacteria and Ascomycetes phyla, which are proficient
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at catalyzing the decomposition of complex macromolecules, including organic matter
(Figure 5) [49,50]. This finding is consistent with observations by Guo et al. [51]. In the con-
text of organic manure substitution, both the 20% and 40% levels promote bacterial OTUs
of Actinobactreiota, Proteobacteriota, and Firmicutes. Notably, Actinomycetes have the
capacity to suppress soil pathogens [52]. Furthermore, the synergistic interaction between
Proteobacteriota and Firmicutes facilitates the formation of multiphase biofilms in the
rhizosphere, subsequently activating plant disease resistance mechanisms [53]. Therefore,
in comparison to the sole use of chemical fertilizer, the 20% and 40% organic manure
substitutions potentially enhance the enrichment of beneficial bacteria, thereby inhibiting
soil pathogens and promoting a more balanced microbial community structure.

Compared to the CK, an increase in the relative abundances of the Polyangia phylum
and the Haliangium family was observed in LDA when chemical fertilizer was applied.
Haliangium, recognized as a biocontrol bacterium, produces haliangicin, inhibiting the
growth of a broad spectrum of fungi and protecting plants from soil pathogens. However,
it is important to note that their relative abundance tends to decrease as the cropping
year progresses [54].

Conversely, in treatments with a 20% organic manure substitution in addition to
chemical fertilizer, there was a significant proliferation of the Actinobateriota phylum,
Oxalobacteraceae family, and Massilia genus. Many species within the Oxalobacteraceae
family have been identified as effective agents for promoting plant growth and enhancing
nitrogen uptake [52]. Additionally, Massilia, predominantly found in rhizosphere soil,
possesses the capacity for phosphorus solubilization [55,56].

In soils treated with both chemical and organic fertilizers, a significant increase in the
relative abundance of Ascomycota was observed. Ascomycota is the most widespread
phylum among eukaryotes, playing a crucial role in decomposing organic substrates,
including leaf litter, wood, and manure [57]. Notably, most fungal communities shared
between soils treated with chemical fertilizers and those with organic manure substitutions
were found to belong to Ascomycota, which was consistent with prior studies [51,55].
However, it is worth noting that a higher relative abundance of Ascomycota does not
necessarily indicate improved soil health. On a positive note, in soils with a 20% organic
manure substitution, there was a significant rise in the abundance of Mortierellomycota.
Mortierellomycota are recognized as phosphate-solubilizing fungi, and an increase in their
relative abundance may serve as an indicator of enhanced soil health [58].

From the LDA, an increase in the relative abundance of Cheatothyriales was ob-
served due to the application of chemical fertilizers. Some fungi within Cheatothyriales
are known pathogens that adhere to leaf and stem surfaces, obtaining nutrients from
sugary exudates. Long-term mineral fertilizer application without an additional carbon
source has been shown to alter fungal communities [59] and weaken the plant-microbial
network [60]. Higher network connectivity and key microbial taxa abundance may be
associated with increased soil suppressiveness [61], potentially increasing the relative
abundance of certain plant pathogenic genera [62,63]. Application of OF can enhance
microbe-eukaryote connections more than chemical fertilizers [64] and produce potential
biocontrol agents [65]. OF can serve as an alternative carbon source for antagonists [66,67].
Notably, a 20% OF substitution increased the abundance of Purpureocillium, which inhibits
various plant pathogens and viruses [68], as well as the relative abundance of Colltotrichum
in the Glomerellaceae family, often associated with crop residue decay in the soil. Al-
though some fungi within this genus are plant pathogens [69], their relative abundance
remains very low (all < 0.1%). The antagonistic activity against plant pathogens depends
on specific ecological conditions and may not occur simultaneously but rather be observed
over time through frequent sampling [70]. In the 40% OF substitution treatment, the most
abundant class was Rozellomycotina_cls_Incertae_sedis. Studies have indicated a positive
correlation between Rozellomycotina_cls_Incertae_sedis and soil nitrate and ammonium
content [71]. Differential fungal species analysis under 20% and 40% OF substitution levels
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also suggests that the impact of OF on fungal communities is less pronounced compared to
bacterial communities [72,73].

5. Conclusions

In this study, the impact of varying organic-to-inorganic fertilizer ratios on essential
microbial functions and structural characteristics of calcareous alluvial soil was compared.
Up to a 40% substitution with organic fertilizer can sustain high crop yields. While some
research suggests that OF application can enhance soil structure, higher proportions may
not always yield better results. Notably, at the 20% OF ratio, the chemical properties of the
soil, soil enzyme activity, and microbial community structure were significantly improved
when compared to a 40% OF ratio. Different levels of OF substitution significantly increased
the α-diversity of soil bacterial communities. Compared to the exclusive application of
chemical fertilizers, both the 20% and 40% OF substitution levels enriched the beneficial
soil microbes, inhibited soil-borne pathogens, and rebalanced the microbial community
structure, thereby fostering plant growth and development. Future studies could explore
the suitability of different organic-to-inorganic fertilizer ratios across different soil types.
Additionally, assessing the environmental impact and economic feasibility of implementing
such fertilizer ratios on a larger scale could provide valuable insights for sustainable
agricultural practices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy14050888/s1. Table S1: Effect of organic fertilizer
substitution on grain biomass, straw biomass, and harvest indexes of wheat from 2017 to 2021. Values
are means of triplicate samples and are not significantly different at p < 0.05 when followed by the
same lowercase letters. Table S2: Effect of organic fertilizer substitution on grain biomass, straw
biomass, and harvest indexes of maize from 2017 to 2020. Values are means of triplicate samples
and are not significantly different at p < 0.05 when followed by the same lowercase letters. Table S3:
Effect of organic fertilizer substitution on the N, P, and K accumulation of wheat from 2017 to 2021.
Values are means of triplicate samples and are not significantly different at p < 0.05 when followed
by the same lowercase letters. Table S4: Effect of organic fertilizer substitution on the N, P, and
K accumulation of maize from 2017 to 2020. Values are means of triplicate samples and are not
significantly different at p < 0.05 when followed by the same lowercase letters. Figure S1: Map of the
study site.
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