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Abstract: Wheat landraces are traditional varieties that have evolved over generations in response
to local environments and farming practices and therefore exhibit remarkable adaptability to chal-
lenging climatic conditions and low-input farming systems. While the suitability of Mediterranean
landraces to non-optimal climatic conditions during anthesis and grain ripening stage have been
previously assessed, the role of photosynthesis efficiency and stomatal control on this resilience
remains unexplored. This study aims to evaluate the relationship between grain yield and the post-
anthesis flag leaf gas exchanges of Sicilian wheat landraces under irrigated and rainfed conditions
and to compare these traits to modern durum (Triticum turgidum subsp. durum) and bread wheat
(T. aestivum) varieties. Results indicate that wheat landraces respond to water availability similarly to
modern varieties, reducing stomatal conductance by 26.8% and net photosynthesis by 18.1% under
rainfed conditions, resulting in 10.6% lower grain yield compared to irrigated conditions. However,
some landraces demonstrate comparable or even higher flag leaf net photosynthesis rates and lower
transpiration levels, leading to higher yields in both rainfed and irrigated conditions, confirming their
value as a source of gene pool for wheat breeding programs in drought-prone Mediterranean regions.

Keywords: grain yield; net assimilation rate; leaf transpiration; stomatal conductance; instant water
use efficiency; Mediterranean

1. Introduction

Wheat landraces are traditional varieties that have evolved over many generations
in response to the local environmental conditions and the selective pressure of the local
farming system, leading to a high genetic diversity and local adaptation, unlike modern
commercial varieties, which are bred for high uniformity and often consist of individual
pure lines with low genetic variability [1,2]. These landraces have been selected under
low-input farming systems, which has led to the conservation of traits that increase the
suitability to under-optimal environmental and climatic conditions [3,4]. Among these
traits are higher plant height, which increases the competitiveness against weeds [5,6], and
the low susceptibility to drought, especially in landraces selected in semi-arid areas, mainly
due to the deep root system [7-10] or reducing their cycle length to anthesis and therefore
performing the grain filling phase under more favorable conditions [4].

During the last century, wheat landrace adoption by farmers decreased in favor of
high-yielding commercial varieties, and therefore, the in situ and ex situ conservation of
their gene pool is entrusted to custodian farmers and gene banks, respectively [2,11].

The gene pool of landraces is useful for wheat breeding programs that aim to improve
the grain quality and resilience towards biotics (pathogens and pests) and abiotic stresses
of modern wheat varieties [4,12,13].
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Moreover there is a growing interest in these wheat landraces related to their appre-
ciable technological features and sensory and nutraceutical properties, such as high fiber
content, antioxidants, vitamins, and minerals [14,15].

Mediterranean wheat landraces could provide genetic traits to enhance grain yield
in an environment characterized by non-optimal climatic conditions during the grain
filling stage. Grain filling, and consequently grain yield, is sustained both by transient
photosynthesis after anthesis and by the translocation of stored reserves accumulated before
anthesis [16]. If the climatic condition during the grain filling phase is non-optimal, such as
in the Mediterranean climates, where hot and dry conditions prevail in late spring, grain
filling is mainly sustained by the translocation of stored reserves, since photosynthesis
declines due to stomatal response [9,16]. Modern varieties have been found to have a
higher photosynthesis rate than local landraces in favorable climatic conditions and high
nitrogen input [17] and their grain yield has been found to be positively correlated with
photosynthesis rate at different phenological stages [17-19].

Considering the broader spectra of climatic and agronomic conditions, modern va-
rieties have not shown a higher rate of photosynthesis per unit leaf area than the open-
pollinated populations or landraces from which they are derived [20]; in these cases, grain
yield increased mainly as a result of improved harvest index [20,21] or as a result of higher
total photosynthesis during the life of the plant due to the increase in leaf area, daily
duration of photosynthesis, or leaf area duration [20].

Wheat grain yield is affected by limiting soil water availability. In this condition,
the photosynthesis rate is reduced by the plant response to lower stomatal conductance
with the aim of reducing water transpiration [19,22-26]. Sicilian wheat landraces have
demonstrated to be particularly adapted to non-optimal climatic conditions during anthesis
and grain ripening stage and low-input agronomical practices [27,28], while the role of
photosynthesis efficiency or stomatal conductance in achieving these results has yet to
be assessed.

The aim of the present work is to evaluate the relationship between grain yield and
the post-anthesis flag leaf gas exchanges of Sicilian wheat landraces under irrigated and
rainfed conditions and compare these traits to modern durum (Triticum turgidum subsp.
durum) and bread wheat (T. aestivum) varieties.

2. Materials and Methods
2.1. Field Trial

The field trial was carried out at the experimental farm of the University of Catania
(37°24' N, 15°03’ E.,, 10 m a.s.l.), in a representative area of Sicilian cereal farming, in a

typical Xerofluvent soil with a preponderantly clayey texture, whose characteristics are
listed in Table 1.

Table 1. Soil characteristics of the field site in the top layer (0-50 cm).

Soil Characteristics Unit Value Method

Sand % 49.3 Gattorta [29]

Loam Y% 224 Gattorta [29]

Clay Y% 28.3 Gattorta [29]

pH 8.6 In water solution

Total calcareous % 15.2 Gas-volumetric [30]
Organic matter % 14 Walkley and Black [30]
Total N %o 1 Kjeldahl [30]

P,0s availability ppm 5 Ferrari [30]

KO availability ppm 245 Dirks and Scheffer [30]
Bulk density gcem ™3 1.1

Field capacity at —0.03MPa % 27

Wilting point at —1.5 MPa % 11
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The experimental design was a split-plot design with three replicates. The irrigation
was the experimental factor assigned to the main plots and had two levels: rainfed and
100% of maximum crop evapotranspiration (ETm) restoration during the period from
the end of anthesis until the full seed ripening. The sub-plot factor was the genotype,
with seventeen categories: twelve Sicilian landraces of durum wheat (“Bidi”, “Castiglione
Glabro”, “Giustalisa”, “Margherito”, “Perciasacchi”, “Realforte”, “Ruscia”, “Russello”,
“Russello Ibleo”, “Timilia”, “Tripolino”, “Urria”), one landrace of bread wheat (“Maiorca”),
one old variety of durum wheat (“Senatore Cappelli”), two commercial varieties of durum
wheat (“Mongibello” and “Core”), and one commercial variety of soft wheat (“Bologna”).
The durum wheat landraces were selected to provide an extensive representation of the
genetic and morphological diversity among Sicilian durum wheat landraces [1,31]. Only
one bread wheat landrace has been selected for this study because of the low diffusion and
low productivity of bread wheat in the semi-arid Mediterranean regions [32]. Both durum
wheat modern commercial varieties are well-adapted to the local environmental conditions
and are proved to be high-yielding [33,34], while the bread wheat “Bologna” has been
selected as a widespread Italian variety, despite its low suitability for the local conditions.

The sub-plot size was 1.25 x 8 m?. Irrigation was provided by a sprinkler irrigation
system. Daily ETm was calculated according to:

ETm = ETO0 x Kc

where ETO is reference evapotranspiration (mm) and Kc is the crop coefficient for wheat
according to [35]. Irrigation started on 3 May 2020 the first year and on 2 May 2021 the
second year.

Sowing was carried out on 8 January 2020 during the first year and on 13 January 2021
during the second year with a target sowing density of 400 plants m 2.

The trial followed organic management. The fertilization was performed before
sowing and just before the stem elongation phase, applying in total 80 kg ha=! of N as
organic fertilizer in pellet form with 7% of N and 13% of P,Os. Harvesting was carried
out at physiological maturity (when the grain moisture content approaches 12%) on 6 July
2020 during the first year and on 2 July 2021 during the second year, collecting all the
aboveground biomass in the experimental plots using a self-propelled combine harvester.
The grain yield was calculated relating the grain dry weight to the unit area (Mg ha™1).

2.2. Measurements

Physiological measurements were carried out weekly from anthesis until full ripening,
reaching a total of 5 dates of measurement in 2020 and 4 in 2021 during an interval of
£2 h from midday, avoiding cloud conditions when the photosynthetic photon flux was
highly variable or below 1200 pmol m~2 s~1, on the flag leaf of two plants in each experi-
mental plot. The physiological measurements were performed using the LCi-SD Portable
Photosynthesis system (ADC BioScientific Ltd., Hoddesdon, UK), which measures net
photosynthesis rate (A, umol CO, m—2s71), transpiration rate (E, mmol H,O m~2s 1) and
stomatal conductance (gs, mol H,O m~2 s71) on the basis of CO, and H,O gas exchange.
Instantaneous water use efficiency (iWUE pumol CO, mol ! HyO) was calculated as the
ratio of net photosynthesis and transpiration. Meteorological data (maximum tempera-
ture, mean temperature, minimum temperature, precipitation, solar incident radiation,
maximum humidity, minimum humidity, mean wind speed) were measured hourly by a
weather station connected to a data logger (CR10, Campbell Scientific, Logan, UT, USA),
located 50 m from the experimental field.

2.3. Statistical Analysis

The data were subjected to an analysis of variance (four-way ANOVA) to assess the
effect of genotype, irrigation, days after sowing (DAS), and the interactions genotype x ir-
rigation, genotype x DAS, irrigation x DAS, and genotype X irrigation x DAS on net
photosynthesis rate, transpiration rate, stomatal conductance, and instantaneous water use
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efficiency. The effect of genotype, irrigation, and year and the interactions genotype x irri-
gation on grain yield were assessed through a three-way ANOVA.

The year of the trial was considered as a random factor in the four-way and three-
way ANOVA.

The Shapiro-Wilk test was used to test residuals for normality. The Bartlett test was
used to test homoscedasticity.

Fisher’s least square difference (LSD) procedure at a 95% confidence level was per-
formed to compare pairwise the genotype and the genotype X irrigation interaction means.
Correlation between variables was studied with the Pearson’s product-moment correlation
test. All analyses were performed using the R CRAN software version 4.4.0 [36].

3. Results
3.1. Meteorological Trend

Thermal trends, precipitation, and reference evapotranspiration were typical of the
semiarid Mediterranean environment during the duration of the experiment.

Mean air temperatures throughout growing seasons were slightly lower in 2020 than
2021; the monthly average daily mean temperature was 14.88 °C and 15.06 °C in 2020
and 2021, respectively, the monthly average daily minimum temperature was 9.28 °C and
9.48 °C in 2020 and 2021, respectively, lower than the long-term average of 10 °C, the
monthly average daily maximum temperature was 20.98 °C and 21.11 °C in 2020 and
2021, respectively, both higher than the long-term average of 20.5 °C, although reference
evapotranspiration was higher during the 2020 growing season (707.4 mm) than the 2021
growing season (660.1 mm), and both were higher than the long-term average (643.8 mm).
Precipitation was higher during the period starting from October 2019 to July 2020 (588 mm)
than the period starting from October 2020 to July 2021 (424 mm), while the long-term
average is 544.1 mm (Figure 1).
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Figure 1. Meteorological variables (Tmax = month average of daily maximum temperature,
Tavg = month average of daily mean temperature, Tmin = month average of daily minimum temper-
ature, ETO = month sum of daily reference evapotranspiration, Precipitation = monthly precipitation)
from October 2019 to July 2021 at the experimental site (Catania, 37°24’ N., 15°03' E., 10 m a.s.L.).
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3.2. Analysis of Variance

The main effects (genotype, irrigation, days after sowing) had a significant effect on
net photosynthesis rate, transpiration rate, stomatal conductance, and iWUE. The inter-
action genotype X irrigation had no significant effect on any variable. The interaction
genotype x DAS had a significant effect on net photosynthesis rate, transpiration rate,
stomatal conductance, and iWUE. The interactions irrigation x DAS and genotype X irri-
gation X DAS had a significant effect only on transpiration rate (Table 2). Grain yield was
significantly affected by genotype and irrigation. The year, considered as a random factor,
had a significant effect on net photosynthesis rate, transpiration rate, stomatal conductance,
iWUE, and grain yield. The residual distribution was non-significantly different from the
normal distribution for all the variables according to the Shapiro-Wilk test and the variance
of all the variables was significantly homogeneous according to the Bartlett test.

Table 2. Four-way ANOVA for main effects (Genotype, Irrigation, DAS = days after sowing, Year)
and interaction (Genotype x Irrigation, Genotype x DAS, Irrigation x DAS, Genotype X Irri-
gation x DAS) on net photosynthesis rate (A), transpiration rate (E), stomatal conductance (gs),
instantaneous water use efficiency (IWUE). Three-way ANOVA for main effects (Genotype, Irrigation,
Year) and interaction (Genotype X Irrigation) on grain yield. The p-value is reported. Irrigation and
genotypes are the between-factor effects.

Surce of Variation A E gs iWUE Grain Yield
Genotype 239 x 10713 3.77 x 1078 3.59 x 10712 1.53 x 107° 5.46x 10712
Irrigation <1071 3.68 x 10715 <1071 2.52 x 107° 3.13 x 107*

DAS <1015 <101 <1015 <1071 -
Year <1071 <1071 <1071 3.59 x 107° <1071
Genotype x Irrigation 0.29 0.48 0.13 0.52 0.99
Genotype x DAS 8.99 x 1012 4.83 x 1077 5.72 x 10712 7.45 x 107° -
Irrigation x DAS 0.62 1.27 x 107° 0.59 0.29 -
Genotype x Irrigation x DAS 0.67 0.01766 0.12 0.30 -

3.3. Grain Yield

Irrigation input led to an increase in grain yield in 2020 and a stronger increment in
2021. Among the ancient populations, Margherito reached the highest grain yield during
both years (3.1 Mg ha~! in rainfed conditions and 3.4 Mg ha~! in irrigated conditions), ex-
ceeding the productivity of the modern commercial varieties of durum wheat (Mongibello
and Core) (Figure 2). The soft wheat variety Bologna had the lowest yield both in 2020 and
2021 due to its low suitability to the semiarid Mediterranean environment, due to the long
growing season.

Grain yields were higher in 2020 than in 2021 (3.1 and 2.2 Mg ha~!, respectively) due
to the higher precipitation during the period of October-May, before the differentiation of
the irrigation factor. The difference in precipitation between the first and the second year
led to a higher effect of irrigation on grain yield during the second year; the mean increase
in grain yield due to irrigation was 5.06% in 2020 and 16.2% in 2021.

3.4. Leaf Gas Exchange

Irrigation caused an increase of 28.9% and 24.6% in stomatal conductance in 2020
and 2021, respectively (from 0.14 mol m~2 s™! to 0.19 mol m~2 s~! in 2020 and from
0.09 molm~2 57! to 0.12 mol m~2 s~ ! in 2021), which led to 17.4% and 18.8% increase
in net assimilation rates in 2020 and 2021, respectively (from 10.6 pmol m~2 s~! to
12.9 umol m—2 s~ ! in 2020 and from 8.4 umol m~2 s~! to 12.2 umol m~2 s~! in 2021).
Transpiration rate increased by 18.8% and 4.1% in 2020 and 2021 under irrigated condition
compared to rainfed condition (from 3.09 mmol m~2 s~! to 3.79 mmol m~2 s~! in 2020 and
from 2.29 mmol m 2 s~ ! to 2.40 mmol m~2 s~ ! in 2021).
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Figure 2. Grain yield (Mg ha~!) during 2020 and 2021 cropping seasons under two irrigation levels
(rainfed and irrigated) for twelve ancient Sicilian populations of durum wheat (“Bidi”, “Castiglione
Glabro”, “Giustalisa”, “Margherito”, “Perciasacchi”, “Realforte”, “Ruscia”, “Russello”, “Russello
Ibleo”, “Timilia”, “Tripolino”, “Urria”), one ancient Sicilian population of bread wheat (“Maiorca”),
one old variety of durum wheat (“Senatore Cappelli”), two modern commercial varieties of durum
wheat (“Mongibello” and “Core”), and one modern commercial variety of soft wheat (“Bologna”).
The red lines represent the average grain yield for each genotype. Grain yield LSD = 0.770 Mg ha~!.
Letters indicate significant differences between genotype means using Fisher’s LSD post hoc test.

Among ancient landraces, “Realforte”, “Margherito”, and “Bidi” had higher than
average stomatal conductance in 2020 both under rainfed and irrigated conditions (Figure 3).
During 2021, the aforementioned landraces had stomatal conductance values close to
average or slightly above (Figure 3). “Russello” showed higher than average stomatal
conductance under irrigated condition during 2020 and 2021, but the values were lower or
close to average under rainfed condition.

High stomatal conductance led to higher than average transpiration and net assimi-
lation rates; “Realforte”, “Bidi”, and “Margherito” had the highest net assimilation and
transpiration rates in 2020 under rainfed and irrigated conditions (Figures 4 and 5).

The modern commercial bread wheat variety “Bologna” showed the highest net
photosynthesis rate under irrigated condition considering the two-year average, while
under rainfed condition, it showed a net photosynthesis rate higher than the average of the
genotypes (Figure 4). Among the modern durum wheat varieties, “Core” showed higher
than average net assimilation and transpiration rate in 2020 under irrigated and rainfed
conditions, while the values were close to average in 2021.

The ancient landraces “Realforte”, “Margherito”, “Bidi”, and “Russello Ibleo” had the
highest iWUE values under irrigated conditions in both years. “Russello Ibleo” reached 4.1
and 3.9 pmol CO, mol~! HyO during the 2021 growing season under irrigated and rainfed
condition, respectively, despite having a net photosyentesis rate just above average, due to
the low transpiration rate.

The average iWUE among ancient landraces was higher than the average among
modern varieties under rainfed conditions and lower than the average among modern
varieties under irrigated conditions.
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Figure 3. Stomatal conductance (gs, mol m~2 s~1) during 2020 and 2021 cropping seasons under
two irrigation levels (rainfed and irrigated) for twelve ancient Sicilian populations of durum wheat
(“Bidi”, “Castiglione Glabro”, “Giustalisa”, “Margherito”, “Perciasacchi”, “Realforte”, “Ruscia”,
“Russello”, “Russello Ibleo”, “Timilia”, “Tripolino”, “Urria”), one ancient Sicilian population of bread
wheat (“Maiorca”), one old variety of durum wheat (“Senatore Cappelli”), two modern commercial
varieties of durum wheat (“Mongibello” and “Core”), and one modern commercial variety of soft
wheat (“Bologna”). The red lines represent the average value for each genotype. Letters indicate
significant differences between genotype means using Fisher’s LSD post hoc test.
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Figure 4. Net assimilation rate (A, umol m~2 s~1) during 2020 and 2021 cropping seasons under
two irrigation levels (rainfed and irrigated) for twelve ancient Sicilian populations of durum wheat
(“Bidi”, “Castiglione Glabro”, “Giustalisa”, “Margherito”, “Perciasacchi”, “Realforte”, “Ruscia”,
“Russello”, “Russello Ibleo”, “Timilia”, “Tripolino”, “Urria”), one ancient Sicilian population of bread
wheat (“Maiorca”), one old variety of durum wheat (“Senatore Cappelli”), two modern commercial
varieties of durum wheat (“Mongibello” and “Core”), and one modern commercial variety of soft
wheat (“Bologna”). The red lines represent the average value for each genotype. Letters indicate
significant differences between genotype means using Fisher’s LSD post hoc test.
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Figure 5. Transpiration rate (E, mmol m~2 s~!) during 2020 and 2021 cropping seasons under two
irrigation levels (rainfed and irrigated) for twelve ancient Sicilian populations of durum wheat (“Bidi”,
“Castiglione Glabro”, “Giustalisa”, “Margherito”, “Perciasacchi”, “Realforte”, “Ruscia”, “Russello”,
“Russello Ibleo”, “Timilia”, “Tripolino”, “Urria”), one ancient Sicilian population of bread wheat
(“Maiorca”), one old variety of durum wheat (“Senatore Cappelli”), two modern commercial varieties
of durum wheat (“Mongibello” and “Core”), and one modern commercial variety of soft wheat
(“Bologna”). The red lines represent the average value for each genotype. Letters indicate significant
differences between genotype means using Fisher’s LSD post hoc test. The effect of irrigation on
iWUE was not statistically significant (Table 1); nevertheless, the highest iWUE values were achieved
under irrigated conditions (Figure 6). IWUE values were higher in 2021 than in 2020 due to the lower
transpiration rates.

The relationship between net assimilation rate and grain yield has been studied for
16 genotypes (Figure 7), with the exclusion of “Bologna”, whose grain yield values were
outside the interquartile range. Net assimilation rate and grain yield results were signif-
icantly correlated (p-value = 3.20 x 10~?) with a Pearson’s product-moment correlation
coefficient of 0.659 (Figure 8).

A strong positive correlation has also been observed between grain yield and tran-
spiration rate and between grain yield and stomatal conductance. Among gas exchange
variables, net assimilation rate, transpiration rate, and stomatal conductance were pairwise
correlated, while instant water use efficiency was not significantly correlated with net pho-
tosynthesis rate and stomatal conductance and was negatively correlated with transpiration
rate (Figure 8).

Stomatal conductance decreased during the period from anthesis until full ripening
under both rainfed and irrigated conditions due to leaf senescence (Figures 9 and 10).
The decrease in stomatal conductance was faster in rainfed condition where soil mois-
ture was depleted. Late ripening varieties (“Bidi”, “Bologna”, “Margherito”, “Timilia”,
“Urria”) maintained a higher stomatal conductance during the late ripening stage under
irrigated conditions.

The trend in stomatal conductance also affected the net assimilation rate trend, which
showed a sharp decrease approaching the full ripening stage (Figures 11 and 12). In
irrigated condition, net assimilation rate stayed high until full ripening stage in late ripening
varieties (“Bidi”, “Bologna”, “Margherito”, “Timilia”, “Urria”).
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Figure 6. Instantaneous water use efficiency (itmol CO, mmol~! H,0) during 2020 and 2021 cropping
seasons under two irrigation levels (rainfed and irrigated) for twelve ancient Sicilian populations of
durum wheat (“Bidi”, “Castiglione Glabro”, “Giustalisa”, “Margherito”, “Perciasacchi”, “Realforte”,
“Ruscia”, “Russello”, “Russello Ibleo”, “Timilia”, “Tripolino”, “Urria”), one ancient Sicilian popula-
tion of bread wheat (“Maiorca”), one old variety of durum wheat (“Senatore Cappelli”), two modern
commercial varieties of durum wheat (“Mongibello” and “Core”), and one modern commercial
variety of soft wheat (“Bologna”). The continuous black lines represent the mean iWUE values for
2020 and 2021.

A similar trend was observed for the transpiration rate (Figures 13 and 14), which
decreased during the period from anthesis until full ripening due to the decreasing stomatal
conductance in response to leaf senescence and soil moisture depletion in rainfed condition.
The decrease in transpiration rate during late ripening was lower compared to the decrease
in stomatal conductance due to the rising vapor pressure deficit, which has a positive effect
on leaf transpiration.

The IWUE trend was mainly affected by phenological stage and poorly affected by
the irrigation factor (Figures 15 and 16). The lowest values of iWUE were reached at full
ripening stage.
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Figure 7. Variation of grain yield (Mg ha~1) in relation to the net assimilation rate (A, umol m~2 s~1)
during 2020 and 2021 cropping seasons under two irrigation levels (rainfed and irrigated) for twelve
ancient Sicilian populations of durum wheat (“Bidi”, “Castiglione Glabro”, “Giustalisa”, “Margher-

FN

ito”, “Perciasacchi”, “Realforte”, “Ruscia”, “Russello”, “Russello Ibleo”, “Timilia”, “Tripolino”,
“Urria”), one ancient Sicilian population of bread wheat (“Maiorca”), one old variety of durum wheat
(“Senatore Cappelli”), and two modern commercial varieties of durum wheat (“Mongibello” and
“Core”). The dashed red line represents the linear regression. The continuous black lines represent
the mean values for grain yield and net assimilation rate.
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Figure 8. Pearson correlation matrix of the measured variables (grain yield, A = net assimilation rate,
IWUE = instant water use efficiency, gs = stomatal conductance, E = transpiration rate).
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Figure 12. Net assimilation rate (umol m~2 s~1) during 2021 cropping seasons under two irrigation
levels (rainfed and irrigated) for 17 wheat genotypes.
Bidi Bologna Castiglione G. Core Giustalisa Maiorca
8 8 8 8 8 8
Tweo ‘Twe TwG TWG Tmﬁ
o DN\@ 5 o A § 5
E4 - ——y E4 E473 E4|0— =
k] T k] ] 5 ) ]
N\ E RN
?
0 0 0 0 0 -
T = =2 8 5 T - 2 g 5 T - 2 g 3 3 = @ 8 5 3 - 2 8 B 3 - 2 &8 5
=3 =3 (= (= =4 =3 = =3 =3 =1 = = =3 = = = = = = = = (= = o = (= (= o (= =1
2 2 8 8 3 2 2 2 ® 3 2 2 8 8§ 3 2 2 2 8 3 2 8 8 8 3 2 2 2 8 3
£ £ £ £ £ £ £ £ £ £ £ £ £ E £ £ £ £ £ £ £ £ £ £
Margherito Mongibello Perciasacchi Realforte Ruscia Russello
8 8 8 8 8 8
T 6 57 8 7 6 5 6 T 6 57 6
2] 2] 1) 2 12 2]
o ¥ ¥ 5 = o ¥
c4 c4 £4 g4 g4 Q g4 T
E D’E\\(ﬁ\u £ '8 3 £ - £ - N L
E: \ E. E. J g AL E:
0 0 0 : 0 0 0 :
I = 2 8 5 g - 2 8 5 T - 2 8 S T = 2 8 5 I = 2 & & I = 2 & s
2 2 8 8 2 2 2 2 ® 2 2 2 2 ® 2 2 2 2 2 2 2 8 8 8 2 2 2 2 8 2
£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £
Russello Ibleo Sen. Cappelli Timilia Tripolino Urria
8 8 8 8 8
5 6 5 8 5 6 5 6 5 6
2] 2] 1) " 12
o q ¥ o B o
g4 46— g4 / E4 E4 N
] 5 2 s 9 5 5
E> E> o E2 - €2 €2 B
£ £ £ £ e E \O
0 0 0 0 0
I - 2 8§ 5 T - 2 8 5 I = 2 8 5 I - 2 8 5 I = 2 & &
j=3 j=3 o o =} j=3 j=} j=3 j=3 3 j=} j=} j=3 [~} 3 j=] j=] j=} j=} 2 j=] o j=] j=} 2
2 2 8 8 3 2 2 2 B 2 2 2 2 ® 2 2 2 2 2 2 2 8 8 8 3
£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £

Agronomy 2024, 14, 1038

Irrigation © Rainfed O Irrigated

Figure 13. Transpiration rate (mmol m~2 s~!) during 2020 cropping seasons under two irrigation

levels (rainfed and irrigated) for 17 wheat genotypes. The red lines represent the average value for
each genotype.
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Figure 15. Instantaneous water use efficiency (tmol mmol m~2 s~!) during 2020 cropping seasons

under two irrigation levels (rainfed and irrigated) for 17 wheat genotypes.
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water availability. The reduction in the stomatal conductance limited the transpiration
and therefore the water consumption of the crop, but also led to a reduction in the net
photosynthesis rate. During the period from anthesis to seed ripening, stomatal conduction,
transpiration, and net assimilation rate decreased in response to leaf senescence under both
irrigated and rainfed conditions. The same decreasing trend has been observed by [33] in
analogous conditions.

Few studies have compared the gas exchanges of wheat landraces and modern wheat
varieties. Among these studies, [33] found the landrace “Russello” having lower net
photosynthesis rate during the grain filling stage than the modern variety “Mongibello”,
while the transpiration rate was higher, leading to a lower iWUE in open field conditions;
under heat stress generated by a greenhouse, “Russello” achieved higher net photosynthesis
rate and similar iWUE to “Mongibello”, confirming the adaptability of landraces to under-
optimal environmental conditions.

A positive linear relation between net assimilation rate and grain yield has been found
among the genotypes, considering both years under irrigated and rainfed conditions. As
a consequence, the limited photosynthesis rate during the period from anthesis to seed
ripening led to a lower grain yield in rainfed conditions than in irrigated conditions. Similar
results have been reported by [19], who found wheat grain yield was consistently and
positively associated with net photosynthetic rates during all phenological stages and in
particular post-anthesis, and by [17], who found a positive linear relation between post-
anthesis net assimilation rate and grain yield among modern cultivar and landraces. The
same study reported lower net photosynthesis rate in wheat landraces compared to modern
cultivars under favorable climatic conditions and high nitrogen input [17]. Another study
by [18] found a weak correlation between pre-anthesis net assimilation rate and grain yield
on wheat modern commercial cultivars.

A previous study by [33] reported lower productivity of bread wheat Sicilian landraces
when compared to modern commercial varieties. In the present study, the grain yields
of modern durum wheat varieties were slightly above the average among the examined
genotypes; in spite of that, several landraces achieved higher grain yield. These landraces
were characterized by higher than average net photosynthesis rate (Margherito, Castiglione
Glabro, Bidi) and therefore higher productivity per unit of leaf area, or higher than average
iWUE (Margherito, Russello Ibleo, Bidi), which allows higher productivity per unit of
water transpired.

Considering the landraces and the modern commercial varieties in both rainfed and
irrigated conditions, grain yield was highly correlated with stomatal conductance and
transpiration rate and non-significantly correlated with iWUE, suggesting that high yield is
linked to crop water use rather than merely the efficiency of crop water use. The ability to
thoroughly utilize soil water depends on the extension of the root system [37-39], which is
particularly deep in landraces selected in semi-arid areas [7-10].

Leaf area index and leaf area duration are further responsible for biomass and grain
yield in wheat [40,41]. Whether wheat landraces are able to develop and maintain a
greater leaf area than modern commercial varieties in water-limiting conditions has yet to
be assessed.

Soil water availability effect on grain yield is more pronounced during the second part
of the trial, due to the lower rainfall during the vegetative phases. Among the high-yielding
landraces, Russello Ibleo and Pierciasacchi were least affected by the rainfed condition with
a 3.8% and 6.6% reduction, respectively, while Castiglione Glabro was the most affected by
the rainfed condition during the second year, reaching a reduction of 35%.

The reduction in grain yield due to the limiting soil water availability was higher in
modern varieties than the average of the examined genotypes.

Grain yield losses due to the effect of soil water availability were in line with the results
reported by [6], who found losses of 8% when wheat was irrigated based on long-term
precipitation, between 41% and 51%, or between 37% and 48% when wheat was affected by,
respectively, pre-heading and post-heading water limitation compared to the high water
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input yield. The same study reported that landraces from Turkey, Iran, and Afghanistan,
where the precipitation distribution is similar to that of the Mediterranean climate, had a
lower yield loss compared to modern varieties under limiting soil water, although modern
varieties achieved higher grain yield [6]. In the present study, the difference between
dry and irrigated grain yields was low due to the high soil water availability until the
beginning of the seed ripening stage, leading to an optimal seed set in both rainfed and
irrigated conditions. As a consequence, the difference in grain yield was only attributable
to differences in grain filling.

Some Sicilian landraces, namely Margherito, Castiglione Glabro, Bidi, and Russello
Ibleo, showed better performances in terms of grain yield and physiological responses than
the most suited modern commercial varieties for the local environmental conditions. The
genetic base of these phenotypic traits should be better investigated in order to provide
additional tools for the wheat breeding programs in water-limited Mediterranean regions.

5. Conclusions

Wheat landraces responded to the different levels of water availability in the soil,
showing a 26.8% reduction in stomatal conductance in rainfed condition, as a consequence
of the reduced water availability. The reduction in the stomatal conductance limited
the transpiration by 11.5% and therefore the water consumption of the crop, but also
led to a reduction in the photosynthetic rate by 18.1%. Among local wheat landraces,
Margherito, Castiglione Glabro, Bidi, and Russello exhibit equivalent or higher flag leaf
net photosynthesis rates and reduced transpiration levels, resulting in higher grain yields
under both rainfed and irrigated conditions. This reaffirms their value as a genetic resource
for wheat breeding programs in drought-vulnerable Mediterranean areas.
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