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Abstract: Insect recognition, crucial for agriculture and ecology studies, benefits from advancements
in RGB image-based deep learning, yet still confronts accuracy challenges. To address this gap,
the HI30 dataset is introduced, comprising 2115 hyperspectral images across 30 insect categories,
which offers richer information than RGB data for enhancing classification accuracy. To effectively
harness this dataset, this study presents the Two-Branch Self-Correlation Network (TBSCN), a novel
approach that combines spectrum correlation and random patch correlation branches to exploit both
spectral and spatial information. The effectiveness of the HI30 and TBSCN is demonstrated through
comprehensive testing. Notably, while ImageNet-pre-trained networks adapted to hyperspectral data
achieved an 81.32% accuracy, models developed from scratch with the HI30 dataset saw a substantial
9% increase in performance. Furthermore, applying TBSCN to hyperspectral data raised the accuracy
to 93.96%. Extensive testing confirms the superiority of hyperspectral data and validates TBSCN’s
efficacy and robustness, significantly advancing insect classification and demonstrating these tools’
potential to enhance precision and reliability.

Keywords: hyperspectral image; insect classification; self-correlation; deep learning

1. Introduction

Accurately identifying insects has profound significance in contemporary society,
particularly within the realms of agriculture and economy, as it influences strategies for
pest management, crop protection, and sustainable economic development. Firstly, insects
are the most diverse and widely distributed biological community on earth [1], playing
an important role in the stability and function of ecosystems. Secondly, accurately identi-
fying insects can help develop better strategies to reduce risks, protect crops, and ensure
sustainable economic growth. More specifically, it helps agricultural workers take timely
and appropriate measures to protect crops from pests and reduce crop losses. On the other
hand, beneficial insects such as bees and ladybugs promote agricultural production and
need to be recognized. Furthermore, by judging whether insects are beneficial to human
society based on their value, policymakers and economists can make wise decisions in pest
control, resource allocation, and risk management [2]. For example, identifying invasive
species, preventing the spread of pests and diseases, and controlling fruit flies or weevils in
food cannot only prevent pollution but also help ensure food safety.

In the pre-technology era, people mainly relied on the professional knowledge of
entomologists to identify insects. The methods employed by experts to identify and classify
insects were reliable but slow, observing the morphological characteristics of insects, such
as wing shape, color, and antennae. Based on existing visual insect recognition research in
recent years, with the development of visual insect recognition research, this study briefly
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divides these works into legal computer vision technology-based and deep learning-based
methods. Traditional computer vision methods, exemplified by works such as [3,4], rely on
feature extraction and automated classification, but they often exhibit lower accuracy or
limited generalization. By contrast, applying deep learning based on convolutional neural
networks (CNNs) to insect recognition can more accurately identify insects without the
need for manual feature extraction. However, insect recognition methods based on deep
learning require high-quality datasets. In the field of agricultural pest and disease control,
much work has been devoted to constructing and researching relevant datasets [5–12].
However, some works only focus on specific species or domains, such as Tiger Beetle [9],
Deng et al. [5], Alfaris et al. [6], and Kusrini et al. [11]. The most prominent example
among these tasks is IP102 [7], which provides a dataset source or baseline for many
insect classification algorithms [13,14]. Acquiring data on insects poses challenges, and
currently, insect classification usually only considers RGB to identify insects. The reliance
on RGB data, which only captures information across three channels (red, green, and blue),
inherently limits the depth of spectral information that can be gathered. Given the subtle
variations in texture and color among different insect species, RGB-based classification
methods may struggle to effectively distinguish between them. However, hyperspectral
imaging provides a solution by providing rich spectral information in multiple bands. This
allows for a more comprehensive representation of insect features; even with the same
number of samples, richer features can be extracted.

Spectra are the intensities of light reflected, emitted, or projected by an object at dif-
ferent wavelengths. Unlike traditional color imaging techniques, hyperspectral imaging
captures the spectral information of a target object in hundreds of consecutive and dense
spectra, thus providing a continuous spectral profile or spectral signature (Spectral sig-
nature means that the molecular structure of each substance has unique absorption and
reflection properties for specific wavelengths of light, which gives rise to the “spectral
signature”) for each pixel. A three-dimensional (3D) data cube can be obtained through
hyperspectral equipment. Two spatial dimensions represent the width and height of the
image, while the third dimension represents the spectral dimension (wavelength). Each
spatial pixel has a spectral vector representing its reflectance, emissivity, and projection
characteristics at all wavelengths, as seen in Figure 1.

Figure 1. A sample in the HI30 dataset comprises 3D data, with H and W denoting the height and
width of the image, respectively, while B represents the spectral dimension of the data.

Hyperspectral image classification typically refers to the classification of pixels in
hyperspectral images based on their spectral characteristics in multiple narrow and con-
tinuous spectral bands. Common strategies in hyperspectral classification tasks include
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feature selection [15], feature extraction [16], grayscale co-occurrence matrix [17], and Gabor
filters [18]. Techniques like tLTSL [19] and L2,p-RER [20] introduce innovative techniques
for feature extraction and dimensionality reduction in hyperspectral imagery, overcom-
ing the curse of dimensionality and noise issues, validated by thorough experimentation.
Although manual feature extraction has significant effects and applications, it requires
domain expertise and has poor universality. Machine learning tools including Support
Vector Machines (SVM) [21], K Nearest Neighbors [22], Random Forests [23], and Logistic
Regression [24], have shown efficacy in hyperspectral image classification. Concurrently,
deep learning-based hyperspectral classification methods [25–28] are emerging as research
trends, offering new insights and techniques for spectral data processing and analysis.
Based on the above content, researchers are able to distinguish objects that appear the
same in traditional RGB images based on rich spectral information, which can be used
for non-destructive chemical and biological analysis. Therefore, hyperspectral technology
has been used in multiple fields such as agriculture and precision agriculture [29], mineral
exploration [30], chili pepper root rot detection [31], and rice variety identification [32], etc.

In recognition of the limitations in RGB data and the demonstrated superiority of hy-
perspectral imaging—coupled with its extensive applicability—some studies have emerged
in this domain. Xiao et al. [33] applied hyperspectral imaging to insect classification tasks
in their research in this field, utilizing only nine insect samples in a single field of view.
They mainly conducted a pixel segmentation task based on spectral information. However,
this method has evident shortcomings in sample size and analysis depth, which constrain
the generalization ability and credibility of the research results. Another pertinent study
involves a flower classification dataset named HFD100 [34], comprising 100 species. A
comparison of the classification results of common methods on artificially selected 3 and 31
channels, lacking credibility to a certain extent, indicates that the more channels there are,
the greater the information content.

Considering the limitations of traditional RGB models in hyperspectral classification
tasks, the research community has begun exploring innovative approaches to overcome
these challenges. Confronted with the challenge of limited labeled samples in hyperspectral
data, Yonghao Xu et al. [35] proposed the Random Patch Network (RPNet) as a cost-effective
method to enrich information by associating random patches of a given input, eliminating
the need for three-dimensional scanning. The goal of RPNet is to achieve robust results
in limited sample situations by integrating shallow and deep features. Later researchers
made a series of improvements based on this foundation. Cheng Chunbo et al. [36] con-
sidered spectral information, stacked the features extracted from SSRPNet layer by layer
into high-dimensional vectors, and then used a graph-based learning model for classifi-
cation. Qu Shenming et al. [37] also used Gabor filters, which combine two-dimensional
and three-dimensional features. However, as mentioned earlier, this work differs from
traditional hyperspectral classification, which focuses on pixel-level classification using one-
dimensional vectors. On the contrary, we focus on the classification of three-dimensional
vectors and stand out in the utilization of spectral information. Considering the distinctions
between hyperspectral data and RGB data, along with the fundamental differences between
our task and traditional hyperspectral classification tasks, we propose a straightforward
and effective processing method, termed TBSCN, for insect image classification utilizing
hyperspectral data.

The main contributions of this article can be summarized as follows:

• A new benchmark hyperspectral dataset for the classification of insect species is established,
captured via a line-scanning hyperspectral camera, consisting of 2115 samples across
30 insect species. This dataset is publicly available to the community at: https://github.
com/Huwz95/HI30-dataset (accessed on 12 April 2024). To the best of our knowledge,
this is the first work to use hyperspectral images for insect classification.

• This paper develops a novel algorithm, TBSCN, which merges PCA dimensionality
reduction with correlation processing, tailored for efficient classification of insect

https://github.com/Huwz95/HI30-dataset
https://github.com/Huwz95/HI30-dataset
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hyperspectral images. By combining spectral and spatial information, this method
significantly enhances classification accuracy while maintaining processing speed.

• A thorough evaluation is provided, comparing original and PCA-compressed hyper-
spectral data, as well as raw hyperspectral versus derived RGB data. This comparative
analysis underscores the effects of hyperspectral data on classification efficiency and
potential, offering crucial insights for the advancement of future algorithms and
their applications.

2. Materials and Methods
2.1. Dataset
2.1.1. Data Collection

Hyperspectral Imaging System The hyperspectral imaging system used for the data
collection is shown in Figure 2, composing of a SOC710-VP (The other parameters of this
device include a spectral range of 376.9 nm to 1050.16 nm and a lens type of C-Mount)
imaging spectrometer, a variable focal length lens, a halogen lamp, a flat stage and a
profiling computer. The spectrometer covers wavelength from 377 nm to 1050 nm (binned
in 128 bands), recording 12-bit 696 × 520 images.

Data Collection Over 2000 samples of 30 species were collected via placing on the
imaging stage, in batches. The illuminant source, halogen lamp, is fixed through the whole
collecting process for data uniformity. Three narrow bands representing RGB triplet are
selected for visualization. Using the Labelimg tool (https://github.com/HumanSignal/
labelImg (accessed on 15 August 2023)) to mark the bounding boxes of insects. Each insect
is cropped from its respective hyperspectral cube and then resized to a consistent size of
128 × 128 × 128, only spatially. The data are stored in the format following ImageNet [38].

Figure 2. Schematic of hyperspectral imaging system.

2.1.2. Dataset Construction and Labeling

Pest Taxonomy The HI30 dataset is organized according to the biological taxonomic
system, following the hierarchical tree structure shown in Figure 3. The chart provides a
clear representation of the detailed classification of the dataset, which includes 30 species,
25 families, and 9 orders (Species represents the most fundamental unit of classification,
while family is the most commonly used unit. As we move from the highest level, “king-
dom”, to “species” at the lower level, the characteristics of the grouped organisms become
increasingly similar). The orders include Hemiptera, Lepidoptera, Coleoptera, Diptera, Hy-
menoptera, Orthoptera, Dermaptera, Odonata, and Isoptera Brullé. Each order serves as a
super-class. There are corresponding sub-classes below, for example, under the super-class

https://github.com/HumanSignal/labelImg
https://github.com/HumanSignal/labelImg
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of Hemiptera, there are two sub-classes: Pentatomidae and Fulgoridae, and Pentatomidae in-
cludes species such as Nezara viridula and Erthesina fullo. Each insect species belongs to a
sub-class, and each sub-class is classified under the corresponding super-class based on the
insect order.

Data Filtering and Expert Annotation Eight experienced insect experts were assigned
to contribute to data filtering and annotation. To enhance objective accuracy, the annotation
strategy involves two phases: initial classification of insects based on physical appearance
and shape, followed by verification of their names, families, genera and Latin names. For
the insect samples that couldn’t be classified confidently, we set them aside temporarily
and invited eight professional entomologists for more detailed and in-depth classification
to ensure accuracy of information. Experts thoroughly analyzed samples that posed
challenges in classification. In instances where identification proved difficult, such samples
were meticulously reviewed, and if classification remained elusive, they were excluded
from the dataset. Following this procedure, a total of 2115 insect samples were categorized
into 30 classes, which is of significant importance for the overall quality and readability of
the dataset.

Figure 3. Taxonomy of the HI30 dataset. Displaying only a portion of the genera and species
within the dataset as a taxonomic representation, with more comprehensive information available in
the appendices.

Once classified, the HI30 dataset consisted of 2115 insect images distributed across
30 categories. In order to achieve more reliable test results, it was necessary for each
category in the test set to have an adequate number of samples. An approximate 7:3 split
ratio at the sub-class level was employed for dividing the dataset into training and testing
sets. Specifically, the HI30 was divided into 1502 training images and 613 testing images
for the classification task. More detailed information about HI30 can be found in Table A1.

2.2. Methods
2.2.1. Framework

The sample consisted of 3D cube data. Most datasets used in previous classifica-
tion tasks were collected in the same scene. Despite efforts to ensure a data acquisition
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environment free from other interferences, to fully utilize the low information on the spec-
trum, a spectral library was created to complement each sample with spectral information.
The introduction of a preprocessing net was first given, followed by classifiers for the
final decision.

A data processing method with a two-branch architecture was developed, as illustrated
in Figure 4. Beginning with the original spectral input, the approach employed two
network branches designed for extracting features from distinct perspectives: one focused
on random spatial correlation and the other on random spectral correlation. The fusion
of spectral and spatial information involved concatenating these two types and then
performing PCA to extract features and downscale them. The original hyperspectral data
could be seamlessly integrated into traditional methods or deep learning networks for
subsequent feature extraction and classification.

Figure 4. The feature extractor proposed for tackling spectral pest classification. Starting with the
original spectral input, two net branches featuring random spatial correlation and random spectral
correlation are used for extracting features from different prospective. For the random spatial
correlation, cp patches are selected randomly, serving as convolutional kernel weights, resulting in
cp feature maps after convolution (denoted as ⊗ in the figure). This is repeated L times. For the
random spectral correlation, cs patches are selected and averaged along the spatial dimensions, saved
as kernels, resulting in cs feature maps after convolution. Two kinds of feature maps are fused and
compressed using PCA, then combined with the original spectral input to feed the classifier.

Random spatial correlation involves selecting cp patches from itself as convolution
kernel weights and performing convolution operations with these kernels, yielding cp

feature maps, followed by L iterations. In contrast, random spectral correlation involves
choosing and spatially averaging cs patches to create kernels, resulting in cs feature maps
post-convolution. The resulting PCA-transformed data, along with the original PCA data
obtained by reducing the dimensionality of the original data in the spectral domain, were
combined and fed into the classifier.

2.2.2. PCA

Since the original hyperspectral data are high-dimensional, redundant, and noise-
prone, it is common to apply PCA to reduce dimension before further processing.

For the original image Io ∈ RW×H×B, where W, H, and B refer to the width, height, and
number of spectral channels, respectively, PCA projected the original data into a new set of
orthogonal coordinates ordered with the corresponding variance and selected the top M
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channels to obtain the squeezed Ip ∈ RW×H×M. As seen in Figure 5, hyperspectral samples
of the Pieris rapae, Gryllidae, Nyctemera adversata Walker, and Melolontha are displayed
separately. After dimensionality reduction to 10 channels using PCA, the visualization of
each channel is presented.

Figure 5. Visualization of top 10 PCA channels of the selected HI30 samples. The Viridis colormap is
used for color encoding. The first column is rendered RGB data. a,b,c,d, respectively, represent Pieris
rapae, Gryllidae, Nyctemera adversata Walker, and Melolontha.

2.2.3. Random Spectrum Correlation

Random Spectrum Correlation borrows the idea from the task of illumination chro-
maticity estimation or auto white balance [39], which refers to the method of estimating
illumination property and color-correct the processed image.

In the experiment context, the described method serves as a treatment for looking for
a “normalized” illumination setting and data augmentation in a spectrum manner. Given a
spectral input with B channels, with a random location on the background (using object
mask), we extract a square patch with a shape of (h,w) and average the patch spatially to
obtain a vector with a length of B. Repeat this operation N times on each training sample
to obtain a so-called spectral library (in Figure 4, the spectral library is of the shape of
(1,1,B,N)).

Before training, for an input Io ∈ RW×H× B, the spectral correlation operation is
formulated as:

Zs
i =

N

∑
j=1

Io
j ∗ Sj

i , i ∈ {1, . . . , cs}, (1)

where ∗ denotes the 2D convolution operator, Zs
i ∈ RW×H is the resulted ith feature map,

Io
j ∈ RW×H the jth dimension of the input, Sj

i ∈ R1×1×K the jth dimension of the ith
random vector. Zs = concat(Zs

1, Zs
2, . . . , Zs

cs) ∈ RW×H×cs
represents the output.

2.2.4. Random Patch Correlation

It was first introduced by Yonghao Xu et al. [35], which treats random patches extracted
from images as convolutional kernels. It originates from random projection, where edges
between different classes are well-preserved, and it is training-free. Different from the
hyperspectral segmentation tasks above, this work addresses the global classification task.
The target is generally located in the middle of the image; thus, the selection of the random
patch is based on the Gaussian distribution with its mean in the middle.
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Specifically, for the obtained Ip ∈ RW×H× M, following the Gaussian distribution, we
select cp points (for cp patches) around the image center point, and crop cp size-k patches.
The process involves convoluting input with a random patch kernel as described:

Zp
i =

N

∑
j=1

Ip
j ∗ W j

i , i ∈ {1, . . . , cp}, (2)

where ∗ denotes the 2D convolution operator, Zp
i ∈ RW×H is the resultant ith feature map,

Ip
j ∈ RW×H the jth dimension of the input, W j

i ∈ Rk×k×N the jth dimension of the ith
random patch. Zp = concat(Zp

1 , Zp
2 , . . . , Zp

cp) ∈ RW×H×cp
represents the output.

Then, whitening is performed to shift the per-channel mean and rescale the standard
deviation, followed by a ReLU, which is formulated as:

F = σ(Norm(Z)), (3)

F ∈ RW×H×cp
, and the σ means the Relu operation. Repeating the operations above L

times yields a list of feature maps [F1, F2, . . . , FL] ∈ RW×H×(L·cp), representing the spatial
information. Such spatial information can be fused with the spectral information Zp as
complementary information to Ip in conjunction with it to inform the classifier.

2.2.5. The Classifier

Selection of two classifiers for evaluation, a non-linear SVM classifier and deep learn-
ing classifier.

Support Vector Machine (SVM)
The core idea of SVM, originally proposed by Cortes and Vapnik in 1995, is to find an

optimal hyperplane in a transformed feature space that maximizes the interval between
two categories. Direct application of SVM on spectral input or rendered RGB images is
impractical. A deep net was employed to extract fewer-channel features, which were then
processed by a non-linear SVM. The apparatus served as a feature extractor in combination
with SVM, following the training of the deep classification network for classifying all data.

Deep Net Classification Layer The CNN evolved into a strong image classifier due
to its back-propagation capability. A list of representative classification networks was
selected to benchmark the performance of HI30. ResNet [40], proposed in 2016, solved the
degeneracy problem in deep networks by introducing residual blocks and has been the
cornerstone of many subsequent studies. DenseNet [41], proposed in 2017, further enhances
feature propagation by connecting each layer to all previous layers. Mobilenetv2 [42] aims
to provide efficient CNNs for mobile and embedded devices, proposed by Howard in
2017, it uses deeply separable convolutions to reduce computation and model size without
sacrificing much performance.

3. Results
3.1. Experimental Setup and Evaluation Metrics

In order to scientifically compare the effectiveness of the hyperspectral data versus
RGB data, and to establish the superiority of hyperspectral information, the processing [43]
was adopted to convert the hyperspectral data into corresponding RGB representations.
Traditional classification tasks utilize the commonly employed SVM, which has been im-
plemented using the publicly available framework [44]. The performance of advanced
deep convolutional networks was evaluated, namely ResNet18 [40], ResNet34 [40], Mo-
bileNetv2 [42], and DenseNet121 [41]. Recently, for classification tasks, it has become
common practice to pre-train models on large-scale datasets and fine-tune them using
downstream task data, as demonstrated by the effectiveness of pre-trained models on
IP102 [7] after being pre-trained on the ImageNet [38] dataset. Given that common visual
network architectures are designed for RGB images, hyperspectral data, with their signifi-
cantly higher dimensionality compared to RGB, possesses inherent differences. Therefore,
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during the training stage, models were trained from scratch, avoiding the utilization of
dataset pre-training.

During the training of deep networks, the batch size is 64. The AdamW optimizer
was chosen with an initial learning rate of 0.001 and a decay rate of 0.0001, using cosine
annealing. While keeping the basic architectures of these deep models unchanged, the only
modification made involves adjusting the output of the last fully connected layer from 1000
to the number of classes. The experiments based on deep features were implemented using
PyTorch2.0 and executed on an NVIDIA RTX 3060 GPU with 12 GB memory.

In the experiments, four evaluation metrics widely used in classification tasks were
used for quantitative evaluation, including Accuracy, Recall, F1-score, and Kappa coefficient.
Accuracy quantifies the ratio of the number of samples correctly predicted by the model
to the total number of samples. Recall metric quantifies the model’s capacity to recognize
positive classes, defined as the proportion of correctly classified positive instances over
all actual positive ones. The F1-score, a balanced blend of precision and recall, provides a
more comprehensive performance metric than accuracy alone, particularly in scenarios
with imbalances in positive and negative categories. Kappa coefficient is a performance
metric that goes deeper than simple accuracy and takes into account stochastic prediction.
Kappa coefficients usually take values in the range of [0, 1], with higher values implying
higher model classification accuracy, as well as a more comprehensive representation of
the model’s classification performance across categories. The formulas for these evaluation
metrics are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (4)

Recall =
TP

TP + FN
, (5)

Precision =
TP

TP + FP
, (6)

F1-score =
2 × Precision × Recall

Precision + Recall
, (7)

Kappa =
po − pe

1 − pe
. (8)

TP, TN, FP, and FN stand for true positive, true negative, false positive, and false
negative samples, respectively. po and pe represent the observed accuracy and the expected
accuracy, respectively.

3.2. Results and Analysis

Accuracy is the most intuitive performance metric, indicating the percentage of correct
classifications. As shown in Table 1, it demonstrates the image classification accuracy of
RGB data and hyperspectral data under different processing conditions using the same
method, as well as Kappa.

Table 1 reveals that hyperspectral experiments show a much higher accuracy (the
accuracy exceeding 80% for each network, reaching up to 90% for DenseNet, while RGB data
only achieved 70%). This clearly confirms the significant advantages of the hyperspectral
modality in insect applications and also confirms the necessity of HI30. Specifically, we
compared the classification performance between original hyperspectral data and RGB
data across various categories using DenseNet121, as seen in Table 2. Hyperspectral
data perform well in almost all categories, with the majority achieving an accuracy rate
surpassing 80%, and 12 categories even achieving 100% accuracy. In contrast, while RGB
data perform admirably in specific categories, their performance falters in others, reaching
only about half of that observed with hyperspectral data.
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Table 1. Comparison of Classification Accuracy (Acc) and Kappa score (multiplied by 100, denoted as
κ) for different methods on varying input: rendered RGB, the original spectral data, and dimension-
reduced PCA feature. “PCA_i” refers to the i-dimension PCA feature. Model abbreviations: RN18
(ResNet18), RN34 (ResNet34), MobileV2 (MobilenetV2), and Dense (Densenet121). A dash (—) means
“not available”. Color convention: best, 2nd-best.

Classifiers
RGB Original PCA_3 PCA_10 TBSCN

Acc. (%) κ Acc. (%) κ Acc. (%) κ Acc. (%) κ Acc. (%) κ

DL
RN18 58.40 56.69 88.25 87.78 78.63 77.76 87.93 87.44 89.72 89.30
RN34 59.87 58.21 84.99 84.38 80.27 79.45 88.09 87.60 89.23 88.79

MobileV2 64.44 62.97 84.50 83.88 81.07 80.31 84.50 83.87 88.74 88.29
Dense121 71.77 70.62 90.05 89.64 87.28 87.60 91.68 91.34 93.96 93.72

DL + SVM
RN18 + SVM 58.70 56.73 89.23 88.79 89.56 89.13 90.54 90.15 89.39 88.97
RN34 + SVM 56.42 55.36 85.97 85.40 87.44 86.92 87.92 87.44 91.57 91.18

Mobile + SVM 63.49 61.56 84.99 84.38 82.38 81.66 86.30 85.74 89.23 88.80
Dense + SVM 71.17 70.49 91.19 90.83 87.60 87.10 92.50 92.19 92.49 92.19

HandScraft
+

SVM

Gabor + SVM 43.28 43.28 __ __ 52.37 52.37 __ __ __ __
SIFT + SVM 28.06 24.77 __ __ 29.36 26.40 __ __ __ __

Histogram + SVM 58.78 56.14 __ __ 71.45 70.30 __ __ __ __

Given the challenges associated with collecting hyperspectral data and ensuring
equitable data acquisition, we opted to pre-train neural networks on the comprehen-
sive ImageNet dataset, which contains over 14 million labeled images across more than
20,000 categories, while maintaining consistent training parameters. This pre-training
approach is widely recognized for enhancing accuracy and is extensively utilized in prior
research. As illustrated in Figure 6, we compare experimental results between networks
with and without pre-training. Although pre-training on ImageNet improves classification
accuracy for RGB data, it still underperforms compared to hyperspectral data across all net-
works. As shown in Tables 1 and 3, DenseNet121 achieves the highest RGB data accuracy
of 81.73% after ImageNet pre-training. In contrast, unprocessed hyperspectral data without
pre-training reach an accuracy of 90.05%, marking an 8.32% increase, which represents
a substantial gap in classification performance. Additionally, some hyperspectral-based
networks exhibit decreased performance when pre-trained on ImageNet, likely due to
the spatial distribution discrepancies between RGB and higher-dimensional data. This
mismatch suggests the need for alternative technical adaptations. However, reducing data
to three-dimensional PCA, closely resembling RGB data, slightly enhances performance in
certain networks.

Figure 6. Comparison of classification accuracy among neural network architectures using varied
inputs: “PCA_i” denotes the i-dimensional PCA feature, and “-F” indicates fine-tuning on Ima-
geNet pre-trained weights. Model abbreviations: RN18 (ResNet18), RN34 (ResNet34), MobileV2
(MobilenetV2), and Dense (Densenet121).
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Table 2. The classification performance of different categories was compared using original hyper-
spectral data and RGB data on the DenseNet121. In the ‘Species’ column, only the first word of
each species name is displayed. For complete names, please refer to Appendix A. Moreover, bolded
items indicate cases where it was observed that RGB data performed worse than half of the original
hyperspectral data. “Acc.” stands for Accuracy.

Species RGB Data Hyperspectral Data
Acc. (%) Recall F1 − Score Acc. (%) Recall F1 − Score

Polygonia 100 1.00 0.97 100 1.00 1.00
Ctenoplusia 31 0.31 0.42 62 0.62 0.77
Oedipodidae 64 0.65 0.65 82 0.82 0.82

Pieris 93 0.94 0.91 87 0.88 0.88
Nezara 97 0.98 0.99 100 1.00 1.00

Gryllotalpa 76 0.77 0.77 69 0.69 0.78
Atractomorpha 64 0.64 0.64 71 0.71 0.74

Lycorma 85 0.86 0.83 100 1.00 1.00
Nyctemera 87 0.88 0.86 93 0.94 0.94

Sweetpotato 76 0.77 0.80 100 1.00 1.00
Diaphania 52 0.52 0.63 96 0.96 0.98

Odontotermes 66 0.67 0.70 95 0.95 0.93
Vespidae 57 0.57 0.53 64 0.64 0.72

Calliphoridae 89 0.89 0.83 100 1.00 0.95
Erthesina 83 0.83 0.73 100 1.00 1.00
Pyralidae 89 0.90 0.81 89 0.90 0.93

Forficulidae 77 0.77 0.77 86 0.86 0.90
Spilarctia 94 0.94 0.76 100 1.00 0.94

Melolontha 87 0.88 0.76 100 1.00 1.00
Platycnemididae 81 0.81 0.79 93 0.94 0.91

Syrphidae 48 0.49 0.47 100 1.00 1.00
Tephritidae 30 0.30 0.43 70 0.70 0.78
Gomphidae 100 1.00 0.90 100 1.00 0.93

Athetis 43 0.44 0.48 100 1.00 0.94
Deudorix 71 0.71 0.77 92 0.93 0.96
Prodenia 54 0.54 0.53 91 0.92 0.83
Gryllidae 26 0.26 0.36 78 0.79 0.79

Lycaenidae 67 0.68 0.63 97 0.97 0.96
Parnara 46 0.47 0.54 93 0.93 0.82

Apis 74 0.74 0.74 100 1.00 0.99

Table 3. Comparison of Classification Accuracy (Acc.), Recall (multiplied by 100), F1 − Score (F1,
multiplied by 100), and Kappa Score (κ, multiplied by 100) among neural networks fine-tuned on
ImageNet pre-trained weights using varied inputs: dimension-reduced PCA features. “PCA_i”
represents the i-dimensional PCA feature. Model abbreviations: RN18 (ResNet18), RN34 (ResNet34),
MobileV2 (MobilenetV2), and Dense (Densenet121). Color convention: best and second best.

RGB Original PCA_3 PCA_10

RN18

Acc,. (%) 70.63 84.34 80.91 87.27
κ 69.42 83.71 80.13 86.75

Recall 69.06 83.08 78.84 85.74
F1 68.82 82.70 79.04 85.72

RN34

Acc,. (%) 70.96 82.87 81.40 86.62
κ 69.77 82.18 80.62 86.08

Recall 69.87 82.23 79.49 85.16
F1 69.70 81.73 79.78 85.18

MobileV2

Acc,. (%) 79.61 85.97 82.22 87.27
κ 78.78 85.40 81.49 86.75

Recall 77.52 84.69 80.33 85.88
F1 77.76 84.64 80.64 86.37

Dense

Acc,. (%) 81.73 90.53 89.23 91.68
κ 80.98 90.15 88.79 91.34

Recall 80.83 88.68 87.98 90.68
F1 81.32 88.87 88.20 90.85
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The confusion matrix diagrams in Figures 7 and 8 provide a detailed comparison of
classification between original hyperspectral and RGB data. They highlight the differences
in true and predicted categories, emphasizing the superior classification accuracy of hyper-
spectral data. This advantage is particularly evident in categories where RGB data struggle
due to morphological resemblances or taxonomic similarities among species. As seen in
Figure 8, Syrphidae is incorrectly identified as Apis cerana cerana Fabricius, and similar errors
occur with other species like Athetis fulvula and Prodenia litura (Fabricius). Notably, RGB
data also confuse Grylidae for species with transparent wings and slender bodies, such
as Oedipodidae, Atratomorpha sinensis Bolivar, and Vespidae (see Figure 9). Therefore, this
underscores RGB’s limitations in accurately classifying related species and validates the
superior efficacy of hyperspectral data in such classifications.

Figure 7. This confusion matrix illustrates the classification outcomes of original hyperspectral data
using the DenseNet121 classification method. The vertical axis represents the true labels, while the
horizontal axis indicates the predicted labels.

The noteworthy observation is that, with the hyperspectral channels reduced to three,
equating to the same memory footprint as RGB data, the achieved results surpass those
obtained with RGB data. We believe the regime behind the improvement is that the axes
PCA provides are more canonical aligned. Among the various methods we tested, the
most naive one was the traditional “sift + SVM” approach, only obtaining 28.06% accuracy.
This is significantly lower compared to the other two manually extracted feature methods.
While the histogram-based algorithm performs close to deep learning in terms of feature
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extraction and classification performance, overall, manual feature extraction methods fall
short of the effectiveness achieved by deep learning-based ones. We further operated on
hyperspectral data in Table 1, in three different settings for the input channel: the untouched
original data preserving all channels, three PCA-ed channels, and ten PCA-ed channels.
More channels were tested, showing no noticeable difference. It is obvious that shrinking
the original data to a 3-PCA-ed channel format yields superior classification accuracy
compared to RGB opponents across various metrics. However, the performance notably
deteriorates when compared to the full-spectrum original data. This gap is particularly
pronounced when utilizing the ResNet neural network architecture. In this context, the
method with three PCA-ed channels reports a significant performance drop, which is over
a 10 percent reduction in accuracy. This could be due to the loss of information when
reducing from 128 channels to 3 channels. Furthermore, with 10 PCA-ed channels, better
results were achieved compared to the full-spectrum original data. This indicates that the
shrunken data exhibit a “denoising” effect, effectively disregarding the noise present in the
full hyperspectral input and accelerating the entire inference process.

Figure 8. This confusion matrix presents the classification results using RGB data and indicates the
underperformance in certain categories compared to the original hyperspectral data. It employs
the DenseNet121 classification method, with the vertical axis representing the true labels and the
horizontal axis representing the predicted labels.
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Figure 9. The examples of misclassification derived from RGB data. Each row represents a unique
category with correct label examples on the left column and misclassified samples on the right.

A Recall score higher than the F1 − Score signifies the model’s strength in detecting
positive instances while potentially conceding lower precision. This gap may be attributable
to the model’s predisposition to designate more cases as positive—a factor that inflates
Recall but conversely amplifies the instances misclassified as positive. As observed in
Table 4, Recall slightly overshadows the F1 − Score in the original data’s classification
results across a range of methods. Especially with the ResNet34 classifier, Recall peaks at
86.27, while F1 lags at 82.74.

Table 4. Comparison of classification Recall (multiplied by 100), F1 − Score (F1, multiplied by 100)
among different methods on varying inputs: rendered RGB, the original spectral data, and dimension-
reduced PCA feature. “PCA_i” refers to the i-dimension PCA feature. Model abbreviations: RN18
(ResNet18), RN34 (ResNet34), MobileV2 (MobilenetV2), and Dense (Densenet121). A dash — means
“not availiable”. Color convention: best, 2nd-best.

Classifiers
RGB Original PCA_3 PCA_10 TBSCN

Recall F1 Recall F1 Recall F1 Recall F1 Recall F1

DL

RN18 55.67 55.25 86.15 85.59 77.08 78.00 86.00 86.00 88.26 88.24
RN34 58.41 59.05 86.27 82.74 78.00 78.20 86.34 86.31 87.6 87.76

MobileV2 63.41 63.80 83.82 83.55 80.15 79.96 81.74 82.12 87.79 87.76
Dense121 70.66 70.01 88.61 88.47 86.84 86.72 89.89 90.13 93.12 92.91

DL + SVM

RN18 + SVM 55.93 55.72 87.09 87.23 88.48 89.13 88.57 88.53 87.97 87.92
RN34 + SVM 56.75 57.73 84.28 84.35 86.33 86.68 86.59 86.35 90.74 90.60

Mobile + SVM 61.32 60.86 84.03 84.17 80.43 80.96 85.12 85.08 88.14 88.06
Dense + SVM 70.86 69.44 89.27 89.38 86.02 85.99 91.22 91.23 91.25 91.96

HandScraft
+

SVM

Gabor + SVM 40.43 43.28 __ __ 50.17 52.37 __ __ __ __
SIFT + SVM 24.70 23.88 __ __ 28.51 28.40 __ __ __ __

Histogram + SVM 55.68 54.51 __ __ 70.14 69.72 __ __ __ __

However, following PCA, the divergence between both metrics grows smaller regard-
less of channel number.With TBSCN, Recall, and F1 − Score are both enhanced, and their
respective values converge, suggesting that the model successfully obtains a high positive
class detection rate while avoiding classification error. We can obtain more information
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from Figure 10, which illustrates the UMAP [45] visualization of feature-extracted data
from DenseNet, comparing RGB and hyperspectral datasets. Notably, RGB data points
exhibit a higher degree of scatter and lack cohesive aggregation, unlike the hyperspectral
data. This disparity is particularly evident when comparing with hyperspectral data re-
duced to three dimensions using PCA, which, despite matching the dimensional volume of
RGB data, demonstrates superior clustering efficiency. However, while the PCA-reduced
(10 dimensions) hyperspectral data show promising results, their UMAP representation
reveals an excessive stacking of data points, leading to blurred inter-class boundaries.
This effect suggests a potential overemphasis on data similarities due to the reduction to
ten dimensions, possibly hindering feature extraction. Nevertheless, the application of
TBSCN mitigates this issue, likely by optimizing the redundant information inherent in the
10-dimensional PCA data.

Accordingly, this procedure refines the model’s training quality, thereby boosting its
ability to accurately recognize positive instances.

Figure 10. 2D UMAP feature visualization on different inputs. The feature used here are extracted
from last layer of DenseNet121. More distributed for different color clusters, the better discriminative
the feature is.

A study on different deep neural net backbones is given, where DenseNet [41] leads
the leaderboard no matter how many channels are given and which input format is set.
ResNet ranks the second. Fewer input channels will make accuracy more dependent
on the classification network. On ResNet, the performance of RGB and PCA_3 differs
significantly from DenseNet. It is also viable to combine deep net (as feature extractor)
and SVM (as classifier), performing slightly less accurately than pure deep solution while
over-performing handcraft features.

3.3. Further Analysis

This section prevents several ablation studies to the work. All experiment adopt the
PCA_10 setting without training, using the PCA_10 classification results as the baseline.
Figure 11 illustrates the distinctions observed in the ablation study.
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Figure 11. Ablation studies are alongside baseline metrics. (a) compares results of spectral corre-
lation and spatial correlation individually with the baseline. (b) illustrates the impact of different
fusion method on spectral and spatial information. (c) demonstrates the comparison of the final
input dimensions.

3.3.1. Ablation Study on Random Correlation Section

In order to validate the effectiveness of the spectral and spatial correlation modules,
separate experiments are conducted for each type of correlation, as seen in Table 5. In the
experiment where the spectral correlation was removed, the results for almost all deep
learning-based classifiers were found to be inferior to those with the spectral correlation
included. Similarly, when compared to scenarios where both spectral and spatial corre-
lations were combined, experiments focusing solely on the spatial level produced lower
results. It is worth noting that in experiments exclusively involving spectral correlation
on the DenseNet architecture, results surpassed those involving only spatial correlation.
Notably, the integration of both types of information resulted in a significant improvement
in the results, particularly in comparison to other network architectures.

3.3.2. Ablation on Fusion Way

Experiments were conducted to explore the fusion of spatial and spectral information
using two additional fusion methods: element-wise addition and element-wise multiplica-
tion. Importantly, when the two types of information were added together, the results were
generally even less favorable than when centering exclusively on one type of information.

This suggests that spatial and spectral information represent distinct perspectives,
and their additive combination can paradoxically deteriorate data enhancement. However,
when the two types of information were multiplied element-wise, it yielded promising
results. In a few instances, networks were able to perform well with this fusion approach,
which involved concatenating both types of information and subsequently applying PCA
for dimensionality reduction. As seen in Table 6.
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Table 5. Comparison of Classification Accuracy (Acc), Recall (multiplied by 100), F1 − Score (F1,
multiplied by 100), and Kappa score (κ, multiplied by 100) among different methods on varied
inputs: dimension-reduced PCA features. “PCA_i” represents the i-dimensional PCA feature. “Only
spatial” denotes the exclusive focus on the two-branch structure, disregarding spectral information
and concentrating solely on spatial information. Model abbreviations: RN18 (ResNet18), RN34
(ResNet34), MobileV2 (MobilenetV2), and Dense (Densenet121). Conversely, “Only spectral” refers
to the exclusive attention to spectral information, neglecting spatial aspects. Color convention:
best, 2nd-best.

RN18 RN34 MobileV2 Dense RN18 + SVM RN34 + SVM MobileV2 + SVM Dense + SVM

PCA_10

Acc. (%) 87.93 88.09 84.50 91.68 90.54 87.92 86.30 92.50
Recall 86.00 86.34 81.74 89.89 88.57 86.59 85.12 91.22

F1 86.00 86.31 82.12 90.13 88.53 86.35 85.08 91.23
κ 87.44 87.06 83.87 91.34 90.15 87.44 85.74 92.19

only spatial

Acc. (%) 89.55 90.05 87.27 92.82 91.68 91.03 90.05 93.64
Recall 87.43 88.30 84.89 90.89 90.38 89.59 89.05 92.32

F1 87.97 88.50 85.60 91.13 90.23 89.57 88.92 92.29
κ 89.13 89.64 86.75 92.53 91.34 90.66 89.65 93.38

only spectral

Acc. (%) 88.42 88.90 87.11 93.31 91.57 89.72 89.56 93.96
Recall 86.20 87.08 86.40 92.32 90.19 88.50 88.22 92.97

F1 86.00 87.20 86.31 92.50 90.00 88.51 88.39 92.68
κ 87.95 88.45 86.59 93.04 91.17 89.30 89.13 93.72

TBSCN

Acc. (%) 89.72 89.23 88.74 93.96 89.39 91.57 89.23 92.49
Recall 88.26 87.60 87.79 93.12 87.97 90.74 88.14 91.25

F1 88.24 87.76 87.76 92.91 87.92 90.60 88.06 90.96
κ 89.30 88.79 88.29 93.72 88.97 91.18 88.80 92.19

Table 6. Comparison of Classification Accuracy (Acc), Recall (multiplied by 100), F1 − Score (F1,
multiplied by 100), and Kappa score (κ, multiplied by 100) results among different methods. Model ab-
breviations: RN18 (ResNet18), RN34 (ResNet34), MobileV2 (MobilenetV2), and Dense (Densenet121).
“s × s” denotes dot multiplication for integration for two-branch structures, while “s + s” signifies
summation two information types. “ss_i” denotes information fusion downscaled to i dimensions by
PCA. Color convention: best, 2nd-best.

RN18 RN34 MobileV2 Dense RN18 + SVM RN34 + SVM MobileV2 + SVM Dense + SVM

s + s

Acc 88.41 90.86 86.62 91.68 91.35 91.03 88.58 92.98
Recall 86.99 89.42 89.44 90.00 89.87 89.42 87.12 92.27

F1 86.70 89.44 84.81 90.14 89.88 89.56 87.05 92.07
κ 87.95 90.49 86.08 91.34 91.00 90.66 88.12 92.70

s × s

Acc 90.21 87.76 86.95 93.15 91.19 87.93 88.74 91.68
Recall 89.10 86.04 85.74 92.32 90.06 85.71 87.48 90.37

F1 88.90 86.17 85.70 92.14 89.99 85.99 87.57 90.13
κ 89.82 87.77 86.42 92.87 90.83 87.43 88.29 91.34

ss_15

Acc 88.79 87.93 86.79 92.99 91.35 89.56 87.60 93.15
Recall 87.10 86.24 85.00 91.83 89.50 88.93 85.96 92.16

F1 87.29 86.32 84.80 91.88 89.66 88.54 85.87 92.05
κ 88.80 87.44 86.25 92.70 91.00 89.14 87.10 92.87

ss_5

Acc 87.77 88.74 88.91 92.82 90.86 89.72 88.91 93.31
Recall 85.56 87.24 87.27 91.67 89.26 88.12 87.77 92.44

F1 86.09 87.14 87.14 91.71 89.28 87.87 87.55 92.39
κ 87.26 88.29 88.46 92.53 90.49 89.30 88.46 93.04
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3.3.3. Ablation Study on Input Channel

The study concludes with the selection of channel numbers, noting that the fusion
approach, akin to TBSCN, involves concatenation followed by dimensionality reduction.
Post-dimensionality reduction, when reducing the number of channels to 5 and 15, both
outcomes surpassed the baseline results, but they exhibited a certain degree of decline
compared to the scenario where dimensionality was reduced to 10 channels.

It is observed that, regardless of reducing dimensions to 5, 10, or 15, this fusion
approach outperforms the “s + s” which means direct element-wise addition of the two
types of information. While certain networks, such as ResNet18, may exhibit slightly better
results in the classification of “s × s” scenarios, overall, concatenating the two types of
information followed by dimensionality reduction is more operationally convenient and
yields effective results. As seen in Table 6.

4. Conclusions

The recognition of insects plays a crucial role in a wide range of practical applications,
such as agriculture, biodiversity conservation, and environmental monitoring. However,
the inherent hyperspectral characteristics of insects often render them indistinguishable to
the human eye in an RGB-dominated environment, highlighting the importance of insect
recognition from a practical standpoint. Advancements in deep learning have significantly
propelled the field of insect identification, highlighting the importance of high-quality data
to support data-driven deep learning methods in this domain. While many studies have
achieved commendable results in insect recognition, they predominantly focus on RGB
data and overlook the significant role of spectral information. HI30 dataset fills this gap,
comprising 30 categories and 2115 samples, thereby facilitating comprehensive research into
hyperspectral insect classification. Experimental results strongly affirm the effectiveness of
hyperspectral data in insect classification, outperforming RGB data. TBSCN model exploits the
spatial and spectral dimensions of hyperspectral data through random spatial correlation and
spectral correlation, thereby enhancing classification accuracy.

In future work, we will focus on expanding the exploration of hyperspectral data use
in insect classification and enhancing our dataset. This initiative includes investigating the
application of hyperspectral data in categorizing distinct insect subspecies, poised to make
significant contributions to the realm of fine-grained classification tasks in this field.
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Appendix A

Table A1. This is the comprehensive information of HI30 dataset. “–” indicates that the expert
identified the sample only up to the level of “family”.

Order Genus Species Amount

HI30

Hemiptera Pentatomidae
Nezara viridula (Linnaeus) 139

Erthesina fullo (Thunberg) 63

Fulgoridae Lycorma delicatula 50

Lepidoptera

Arctiinae
Nyctemera adversata Walker 112

Spilarctia subcarnea (Walker) 60

Gelechiidae Sweetpotato leaf folder 46

Pyralidae
Diaphania indica (Saun-ders) 84

– 100

Noctuidae

Ctenoplusia albostriata (Bremer et
Grey) 55

Athetis furvula 55

Prodenia litura (Fabricius) 83

– 127

Hesperiidae Parnara guttata (Bremer et Grey) 53

Lycaenidae Deudorix dpijarbas Moore 48

Pieridae Pieris rapae 56

Nymphalidae Polygonia c-album (Linnaeus) 60

Coleoptera Scarabaeoidea Melolontha 56

Diptera

Tephritidae – 35

Syrphidae – 119

Calliphoridae – 66

Hymenoptera

Vespidae – 48

Apidae Apis cerana cerana Fabricius 132

Dermaptera Forficulidae – 74

Odonata
Platycnemididae – 56

Gomphidae – 48

Orthoptera

Gryllidae – 65

Oedipodidae – 60

Gryllotalpidae Gryllotalpa orientalis Burmeister 45

Acrididae Atractomorpha sinensis Bolivar 48

Isoptera Brullé Termitidae Odontotermes formosanus Shiroki 72
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