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Abstract: Bacterial blight is a destructive disease in rice caused by Xanthomonas oryzae pv. oryzae (Xoo).
Single resistance genes often have limitations in providing broad-spectrum resistance, as pathogens
continuously evolve and vary. Breeding rice varieties with multiple disease resistance genes has
proven to be an effective strategy for controlling bacterial blight. In this study, a single Cas9/gRNA
construct was used to target the homologous sequences of Xa13 and Xa25 genes through destroying
the target gene function, creating bacterial blight resistance in five rice varieties. These materials
provide promising germplasm resources for the development of rice varieties with durable resistance
to bacterial blight.

Keywords: bacterial blight resistant; CRISPR/Cas9; Xa13; Xa25; rice

1. Introduction

Bacterial blight (BB) of rice, caused by the Gram-negative bacterium Xanthomonas
oryzae pv. oryzae (Xoo), is one of the most devastating bacterial diseases in rice produc-
tion [1]. This pathogen infects rice plants and disrupts their normal physiological functions,
particularly photosynthesis. By colonizing the vascular tissues, the bacterium obstructs
the movement of water and nutrients, impairs the plant’s ability to absorb sunlight, and
hampers the synthesis of essential carbohydrates. As a result, infected plants exhibit char-
acteristic symptoms such as leaf wilting, chlorosis, and necrosis, ultimately leading to
significant yield reductions that can reach up to 50% [2]. Evidence from crop research
has shown that plants have co-evolved resistance (R) genes that can specifically recognize
pathogen effectors to activate effector-triggered immunity [3,4]. Therefore, breeding rice
varieties with major disease resistance genes is an effective and economical strategy for
controlling bacterial blight disease in rice production [5].

Genome editing, facilitated by engineered nucleases, has revolutionized basic and
applied biology. This technology offers significant advantages in both fundamental research
and crop improvement by enabling precise modifications at specific target sequences. The
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emergence of CRISPR/Cas9 has greatly contributed to the widespread use of genome
editing in plant breeding. It has been instrumental in exploring gene function and enhanc-
ing desirable traits in plants [6–9]. CRISPR/Cas9 is particularly effective in introducing
mutations through non-homologous end joining of site-specific double–stranded DNA
breaks [10,11]. Deletions were found to be the most common type of mutation, followed by
insertions, with the majority of mutations being single base changes. Occasionally, base
replacements and combined mutations were also observed at the target sequence. Notably,
numerous agronomic trait-related genes have been successfully edited in rice using this
technology [12,13].

To date, many genes that confer dominant or recessive host resistance to Xoo have
been identified and some of them have been molecularly cloned, including Xa1, Xa2,
Xa3/Xa26, Xa5, Xa7, Xa10, Xa13, Xa21, Xa23, Xa25, Xa26, Xa27, Xa31(t), Xa41(t), Xa45(t),
and Xa46(t) [4,14–18]. Of these, most are effective resistance (R) genes against bacterial
blight which have been integrated into cultivated rice varieties for genetic improvement
mainly through continuously hybridized or transgenic means. Nevertheless, crossbreeding
is time-consuming and transgenesis introduces exogenous genes, resulting in limited
applications. In contrast with the numerous examples of dominant R gene-mediated
resistance, only a few susceptibility (S) genes, such as Xa5, Xa13, Xa25, and Xa41(t), have
been identified in effector-triggered susceptibility [4,14,19,20]. Xa5 encodes a γ subunit
of the transcription factor IIA (TFIIAγ), inhibiting the transfer of pathogens to disrupt
disease progression [4,21]. Three S genes, Xa13, Xa25, and Xa41(t), belong to the SWEET
multiple gene family, leading to sucrose exportation into the xylem vessels and facilitating
the pathogen’s proliferation in rice [14,20,22]. Thus, S genes can serve as targets for
genome editing to create new materials resistant to bacterial blight disease. However,
single resistance genes generally have limitations in broad-spectrum resistance due to the
continuous evolution and variation of pathogens. Therefore, the development of durable
and broad-spectrum resistant materials would be of significant importance for research on
the control of bacterial blight in rice.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

Two indica varieties, YuXiangYouZhan (YXYZ) and WuXiangSiMian (WXSM), an in-
dica restorer line, Shuhui143 (S143), an indica sterile line, ZhiNongS (ZNS), and a maintainer
line, GuFengB (GFB), of rice were used as the wild type (WT) control and transformation
host. Most of the WT and transgenic plants were cultivated in a standard greenhouse at
Fuzhou Experimental Station (26.08◦ N, 119.28◦ E), Fujian Province, China. The growing
season in this province begins in May and extends to mid-October.

2.2. Vectors Construction and Rice Transformation

A single-guide RNA (sgRNA) sequence targeting the flanking sequences of the 30 bp
homologous sequences in the Xa13 and Xa25 alleles was designed. The oligonucleotides
corresponding to the designed sgRNA sequences were synthesized (Table S2), and oligonu-
cleotide dimers were cloned into a CRISPR/Cas9 plant expression vector VK005-01 (View-
Solid Biotech, Beijing, China) according to the manufacturer’s instructions. The resulting
constructs contained a Cas9 gene driven by the maize ubiquitin promoter and a designed
sgRNA sequence under control of the rice U6 promoter.

2.3. Rice Transformation

The Cas9/sgRNA construct was transfected into Agrobacterium tumefaciens EHA105 by
means of electroporation. Rice calli of YXYZ, WXSM, S143, ZNS and GFB were transformed
with Agrobacterium strains harboring the Cas9/sgRNA construct. Generation of transgenic
rice plants was carried out as previously described [23].
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2.4. Genotype Analysis

Rice leaf samples were subjected to genomic DNA extraction using the CTAB method [24].
PCR amplification was performed to determine the genotypes of Xa13/Xa25 alleles in YXYZ,
WXSM, S143, ZNS, and GFB. The annealing temperature was 58 ◦C and PCR amplification
was performed after 35 cycles. The primers were purchased from the Sangon Biological
Engineering Technology Company (Shanghai, China). Sanger sequencing was employed
to analyze the PCR products. Sequencing chromatograms were deciphered following
the protocol described [25]. The DNA sequences were aligned using Clustal Omega [26].
To assess the presence or absence of the Cas9/sgRNA T-DNA, PCR amplification was
conducted using specific primers targeting the hygromycin phosphotransferase (Hpt) gene
and the Cas9 gene.

2.5. Disease Assays

Xoo populations PXO99 were kept in a −80 ◦C refrigerator at the Institute of Biotech-
nology, Fujian Academy of Agricultural Sciences. To rejuvenate the bacteria, we incubated
the strains on TSA (tryptic soy agar) plates containing appropriate antibiotics and stored
them at 28 ◦C for 2–4 days to allow the bacteria to grow adequately. The bacteria were
then collected from the TSA plates and resuspended in sterilized distilled water to form a
suspension. The optical density of the suspension was measured at OD600 = 0.5. The scissor
blades were dipped into the Xoo suspension and cut at about 2 cm from the leaf tip, and
then the fully expanded leaves of rice plants (6–8 weeks old) were inoculated, with 5 leaves
per plant. Three or more mutants were inoculated at a time. The length of the spots was
measured 15 days after inoculation. The spots were measured on each test plant.

3. Results
3.1. Selection of the Targeted Genes and sgRNA Recognition Site

Previous studies demonstrated that knockdown of the S genes, Xa13 or Xa25, resulted
in enhanced resistance to Xoo. We discovered a 30 bp homologous sequence in the third exon
of these two genes (Figure 1; Figure S1). Hence, we designed a single Cas9/gRNA within
the shared sequence to target Xa13 and Xa25 genes simultaneously. To test our hypothesis,
we selected an elite rice variety, YuXiangYouZhan (YXYZ), which is known for its high
yield and eating quality but is susceptible to bacterial blight. Sequence analysis revealed
that the YXYZ contained the same 30 bp homologous fragments as described above.

3.2. Efficient CRISPR/Cas9-Mediated Targeted Mutagenesis in T0 Transgenic Rice

Next, the Cas9/sgRNA was constructed and transformed into calli via Agrobacterium-
mediated transformation. A total of 32 independent T0 transgenic plants were generated
from the calli of YXYZ. Subsequent genotyping of T0 transgenic plants identified 29, 26 and
18 plants harboring xa13, xa25, and xa13/xa25 double gene mutations, respectively (Table 1;
Figure 2). Among the T0 edited lines, most of the mutants obtained were bi-allelic and
homozygous mutations (Table S1). These results indicate that the xa13, xa25, and xa13/xa25
double mutants were successfully obtained by the CRISPR/Cas9 system relying on a single
Cas9/sgRNA.

3.3. The Homozygous Lines Increased the Bacterial Blight Resistance of Rice

To characterize the bacterial blight resistance phenotype of the mutant lines, eight-
week-old plants of the homozygous xa13, xa25, and xa13/xa25 mutants (K4-#14, K4-#16)
were inoculated with PXO99, which is a strain of Xanthomonas oryzae pv. oryzae. The
results show that xa13/xa25 variants had short lesions on the inoculated leaves, whereas
the leaves of wild-type plants exhibited typical Xoo infection with longer water-soaked
lesions (Figure 3). Simultaneously, the obtained xa13 single-gene mutations of YXYZ were
also inoculated with pathogens, which displayed shorter lesions on the inoculated leaves
than the wild-type plants (Figure 3). These findings demonstrate that the xa13, xa25, and
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xa13/xa25 double mutants possessed enhanced bacterial blight resistance compared with
wild-type plants.
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cated by red letters and asterisks, respectively. 
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Figure 1. Homology alignment of genes Xa13 and Xa25. (A) Sequence alignment revealed a 30 bp
homologous sequence containing a gRNA recognition site. (B) Gene structures of Xa13 and Xa25. The
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Table 1. T0 plants transformed with Cas9/sgRNA constructs targeting the homologous sequences of
Xa13 and Xa25 genes.

Rice
Variety

No. of
Transgenic Plants

No. of Plants
with Mutations

No. of Plants with Single Gene Mutations No. of Plants with xa13/xa25
Double Gene MutationsMutations of xa13 (%) Mutations of xa25

YXYZ 55 32 29 26 18
WXSM 63 33 27 23 16

S143 43 26 19 19 12
ZNS 34 20 13 15 7
GFB 61 35 29 24 16
Total 256 146 127 107 69

3.4. Putative Off-Target Analysis

To identify whether the gRNA would edit a non-matching genomic sequence, the
bi-allelic and homozygous xa13/xa25 mutants YXYZ-#14, YXYZ-#16, YXYZ-#16, and YXYZ-
#26 were evaluated for potential off-target effects. Considering that the greater number of
mismatched bases and those closer to the PAM region are more likely to interfere with gRNA
recognition, we selected possible off-target sequences based on the following two criteria:
firstly, there is at least one base mismatch near the PAM region, and the total number of
mismatched bases is between 1 and 5 bp. Secondly, seven groups of Cas9/sgRNA candidate
targets were selected using CRISPR-P (http://skl.scau.edu.cn/targetdesign/, accessed on
14 February 2023) and BLASTN online tools. As a result, a 21 bp target point sequence was
obtained (Table 2; Table S2). No obvious off-target events were found in the transgenic T0
mutants (Table 2).

http://skl.scau.edu.cn/targetdesign/
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Figure 2. Mutations and corresponding sequencing chromatograms of xa13/xa25 T0 double mutants
in the YXYZ. The insertions are shown in green letters. The sgRNAs are indicated by asterisks.
Numbers on the right indicate the insertion length compared with Xa13 and Xa25. YXYZ-#14 and
YXYZ-#16 were xa13/xa25 double mutants in the YXYZ.
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Figure 3. Resistance identification of wild-type and double-gene knockout lines. (A) Phenotypic
characteristics of double-gene knockout lines xa13/xa25, the single-gene mutants xa13 and xa25, and
the corresponding wild-type YXYZ after inoculation with PXO99. Scale bar, 1 cm. (B) Statistical
analysis of associated lesion lengths (n = 5 leaves). p values were generated by means of Student’s
t test. Error bars, SEM (** p < 0.01).

3.5. Xa13/xa25 Double Mutants Show Increased Resistance to Bacterial Blight Disease under the
Background of Four High-Quality Varieties

In addition, we selected four other rice varieties to confirm whether xa13, xa25, and
xa13/xa25 double mutants displayed increased bacterial blight resistance, including an
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indica variety, WuXiangSiMian (WXSM), an indica restorer line, Shuhui143 (S143), an
indica sterile line, ZhiNongS (ZNS), and a maintainer line, GuFengB (GFB). The genotyping
of T0 transgenic plants identified 33, 26, 20, and 35 plants with mutations in the target
site in WXSM, S143, ZNS, and GFB, respectively (Figure 4; Table S1). Among the T0
mutant plants, the mutation rate of single genes ranged from 38.2% to 75%. Overall,
25.4% (16/63), 27.9% (12/43), 20.6% (7/34), and 26.2% (16/61) were xa13/xa25 double
mutants (Table S1). Likewise, the xa13/xa25 double mutants in these four cultivars also
displayed more resistance to bacterial blight disease than the corresponding wild-type
plants after inoculation with PXO99 (Figure 5).

Table 2. Evaluation of potential off-target sites.

Target Name of Putative
Off-Target Sites

Putative Off-Target
Locus Putative Off-Target Sequence * No. of

Mismatch Bases
No. of

Plants Examined
No. of

Indel Mutation

Cas9/sgRNA

OFF1 ch02: 18455705 GCTGAAGAGCGTCACCACGTACGG 2 4 0
OFF2 ch05: 15644350 GTCGAGGAGCGCCACCACGTGCGG 4 4 0
OFF3 ch09: 13253210 GCTGAAGGCCGTCACCACGTCCGG 4 4 0
OFF4 ch08: 25248560 GCTGAAGCACACCACCATGTACGG 4 4 0
OFF5 ch09:14373426 GCTGAACAGCTCCCCCACGTCCGG 4 4 0
OFF6 Ch03: 7709411 GCTGGAGAGCTCCACCACGGACGG 4 4 0
OFF7 Ch03: 13007484 GCTCAGCAGCGCCACCGCGTACGG 5 4 0

* PAM sequence NGG is indicated in blue. Mismatch nucleotides are marked in red.
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4. Discussion

Rice bacterial blight is a serious disease that causes huge economic losses in global
rice production. Breeding rice varieties resistant to bacterial blight is an important goal, but
it faces challenges. Gene editing approaches in rice breeding for bacterial blight resistance
in rice primarily rely on the utilization of single resistance genes or the knockout of a
single susceptible gene [27,28]. However, single-gene resistance is susceptible to being
overcome by the pathogen [29]. Therefore, combining or stacking multiple resistance genes
in a rice variety is performed to enhance resistance stability and durability and reduce the
pathogen’s ability to adapt to resistance. This approach can generate progeny with multiple
resistance genes, thereby improving resistance against bacterial blight. However, due to
the complexity of genetic inheritance and gene interactions, as well as the labor-intensive
nature of hybridization and stacking efforts, selecting suitable parents and implementing
effective hybrid combinations for resistance remain technical challenges.

With the development of genomics and gene editing technology, opportunities have
been created for the precision genetic improvement of crops. In particular, gene function
research and genome editing technologies progressing rapidly. A large number of negative
regulation genes involved in rice quality had been modified by genome engineering tech-
nologies. For instance, the knockout of OsBADH2 using the TALEN technology produced
fragrant rice, while a new glutinous rice variety was created by means of the targeted
knockout of the Waxy gene using the CRISPR/Cas9 system [30]. Low-Cd-accumulating
indica rice was generated by means of the CRISPR/Cas9-targeted mutagenesis of Os-
Nramp5 [31], while a reduction in seed chalkiness was achieved by editing OsGS3 using
CRISPR/Cas9, influencing the grain length–width ratio [32]. It is generally recognized
that genome engineering technologies can be used to knock out negative regulatory genes
efficiently for crop breeding.

5. Conclusions

In summary, we engineered a single Cas9/gRNA within a shared sequence to target
both the Xa13 and Xa25 genes. Then, xa13, xa25, and xa13/xa25 double mutants were
simultaneously obtained in a high-quality elite rice YXYZ strain using Agrobacterium-
mediated genetic transformation. As expected, the inoculation of leaves with PXO99
indicated that the xa13, xa25, and xa13/xa25 double mutants displayed a markedly increased
resistance to bacterial blight. In parallel, the mutants in the four other elite rice cultivars
also displayed enhanced bacterial blight resistance. Taken together, these results provide
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an efficient and potential strategy for developing improved rice varieties with bacterial
blight resistance.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agronomy14040800/s1. Figure S1. The CDS of Xa 13 and Xa 25 in varieties
YXYZ. The 30-bp homologous sequence is indicated by Red boxes. Table S1. Genotypes of xa13/xa25
T0 mutant plants in five rice varieties. Table S2. List of primers used in this study.
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