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Abstract: Soil temperature directly affects the germination of seeds and the growth of crops. In
order to accurately predict soil temperature, this study used RF and MLP to simulate shallow soil
temperature, and then the shallow soil temperature with the best simulation effect will be used to
predict the deep soil temperature. The models were forced by combinations of environmental factors,
including daily air temperature (Tair), water vapor pressure (Pw), net radiation (Rn), and soil moisture
(VWC), which were observed in the Hejiashan watershed on the Loess Plateau in China. The results
showed that the accuracy of the model for predicting deep soil temperature proposed in this paper is
higher than that of directly using environmental factors to predict deep soil temperature. In testing
data, the range of MAE was 1.158–1.610 ◦C, the range of RMSE was 1.449–2.088 ◦C, the range of
R2 was 0.665–0.928, and the range of KGE was 0.708–0.885 at different depths. The study not only
provides a critical reference for predicting soil temperature but also helps people to better carry out
agricultural production activities.

Keywords: soil temperature; soil moisture; long short-term memory; Savitzky–Golay filter

1. Introduction

Promoting the sustainable development of agriculture is one of the United Nations Sus-
tainable Development Goals (SDGs) [1]. However, an extraordinary challenge in achieving
Sustainable Development Goal 2 (SDG2) is the food problem [2]. Reasonable and effective
agricultural production activities can help to meet this challenge. Soil environment plays
a vital role in human agricultural production activities [3]. As one of the key parameters
of the soil environment, soil temperature directly affects the germination of seeds and the
growth of crops [4]. In addition, soil temperature (Ts) plays an important role in many
critical processes [5]. It strongly influences a wide range of biotic and abiotic processes,
plays an important role in the exchange of energy and matter between the soil and the
air, and even affects the local climate [6–8]. Ts is usually influenced by many factors [9],
such as meteorological and topographical conditions [10]. To more accurately estimate
soil temperatures, scientists have developed three primary methods, including statistical
models [11], physical models [12,13], and machine learning [14].

With the development of computer science, machine learning methods have been
widely used in many fields [15–20], including agriculture [21,22]. Soil temperature research
based on machine learning has also received much attention in recent years [14]. At present,
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there are more than a dozen machine learning methods for simulating soil temperatures,
including wavelet neural network (WNN) [23], long short-term memory (LSTM) [24],
extreme learning machine (ELM) [7,25], and random forest (RF) [26,27]. Due to the excel-
lent ability of machine learning methods to handle multiple complex data and nonlinear
relationships, studies can make full use of the data for simulations [28,29]. In addition,
many researchers have demonstrated that coupling multiple machine learning methods
can effectively improve a simulation’s accuracy and increase the model’s stability [30–33].
Thus, the coupling of multiple machine learning methods has become one of the leading
research directions.

Machine learning methods have substantially improved our understanding of Ts,
proving the potential of machine learning methods using meteorological and environmental
factors to simulate Ts. Many studies have simulated the predicted temperature of surface
or shallow soil, but not many simulations of deep soil temperatures have been carried out.
However, setting up deep soil monitoring equipment requires a large amount of labor and
material costs [34]. Thus, the simulation of deep soil temperatures provides a critical data
source for agricultural and land surface management.

Therefore, the objectives of this study were: (1) to simulate the shallow soil temper-
ature by using environmental factors as input and evaluate the performance difference
between RF and MLP; (2) to construct deep soil temperature prediction models based on
the simulated shallow soil temperature and the air temperature; and (3) to evaluate the
performance of deep soil temperature prediction models.

This study explores the feasibility of using environmental factors to simulate shallow
soil temperature and using shallow soil temperature to simulate deep soil temperature. It
will not only provide a reference for simulations of deep soil temperatures but will also be
conducive to better agricultural work on the Loess Plateau in China. For farmers, accurate
prediction of soil temperature based on machine learning is also conducive to helping them
make decisions in a timely manner and reduce financial losses [35].

2. Materials and Methods
2.1. Study Area

The study area is located in gully regions of the Loess Plateau in China, which has
a continental monsoon climate [36]. The Chunhua Ecohydrology Experimental Station
in the Hejiashan watershed in Chunhua County, Xianyang City, Shaanxi Province, was
constructed for on-site observations, and its location is shown in Figure 1a. The station
is equipped with a conventional meteorological observation system, a soil temperature
observation system, and an eddy correlation system, which can continuously observe
various meteorological elements and soil temperatures at different depths in the field. The
detail of the observation system was described by Guo et al. [37]. The soil type in the area
is dominated by loess soil, and the average elevation is about 1330 m. In the Chunhua
Ecohydrology Experimental Station, meteorological observation tower and equipment are
shown in Figure 1b, three-component soil sensors (CS655, Campbell Scientific, Inc., Logan,
UT, USA) have been buried alongside the meteorological observation tower, and these can
be used to measure the actual soil temperature (Ts) and soil moisture (VWC) at different
depths. On the tower, an air temperature sensor (HMP155A, Vaisala, Vantaa, Finland) can
be used to measure air temperature (Tair), relative humidity, and daily water vapor pressure
(Pw), and a four-component radiation sensor (CNR4, Kipp&Zonen, Delft, The Netherlands)
can be used to measure net radiation (Rn).
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between soil moisture and soil temperature is low, soil moisture can affect temperature 
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thus increase surface temperatures. Conversely, wet soils usually make surface tempera-
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Figure 1. The location of the experimental station and the observation system. (a) DEM of Shaanxi
Province and the location of Chunhua Ecohydrology Experimental Station. (b) Meteorological
observation tower and equipment at the station.

2.2. Data Analysis and Processing

The data used in this study were all measured at the Chunhua Ecohydrology Ex-
perimental Station, and the dataset is named as Chunhua Ecohydrology Experimental
Station Dataset (CEESD) including the daily soil temperatures at different depths (Ts20cm,
Ts40cm, Ts80cm, Ts120cm, Ts160cm, Ts200cm), daily soil moisture at 20 cm depth (VWC20cm), daily
air temperature at a height of 2 m (Tair), daily water vapor pressure (Pw), and daily net
radiation (Rn). The data used in this study were measured from 1 March 2020 to 30 October
2023. There are 1340 valid daily data. For outliers and missing values in the measured data,
linear interpolation was used for processing. After that, SG filter was applied to the data,
and the processed data are shown in Figure 2.

As shown in Figure 2a,b,d, the daily changes in temperature, daily water vapor
pressure, and daily net radiation are very drastic. But both of soil temperature at different
depths, air temperature, and net radiation all have strong seasonal patterns of change. All
show high values in summer and low values in winter. During the spring and summer,
shallow soil temperatures are higher than deep soil temperatures. In the autumn and
winter, deep soil temperatures were higher than shallow soil temperatures. Figure 2c shows
that the peak of VWC20cm is concentrated from May to August each year, which is the same
as the time when there is more rainfall in the region. In addition, the study area receives
less precipitation in winter, resulting in a decreasing trend in VWC20cm during winter.

In general, the selection of input variables should be based on a simple relationship
to achieve high accuracy in the simulation. The Pearson’s correlation coefficients among
the variables (Table 1) indicated a high correlation between soil temperature and the soil
temperature in the adjacent layers. The air temperature and water vapor pressure had the
highest correlation with soil temperature, followed by net radiation. All of them are very
suitable as input variables for soil temperature simulation. Although the linear correlation
between soil moisture and soil temperature is low, soil moisture can affect temperature by
controlling evaporation from the soil surface. Dry soils will reduce evaporation and thus
increase surface temperatures. Conversely, wet soils usually make surface temperatures
cooler [38]. Therefore, soil moisture is important for simulating shallow soil temperature,
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and it is also used as one of the input variables for simulating soil temperature at a depth
of 20 cm (Ts20cm).
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Figure 2. Time series of data. (a) The daily soil temperatures at different depths and daily air
temperature at a height of 2 m. (b) The daily water vapor pressure. (c) The daily soil moisture at
20 cm depth. (d) The daily net radiation.

Table 1. Pearson’s correlation coefficients among the variables.

Statistics Ts20cm Ts40cm Ts80cm Ts120cm Ts160cm Ts200cm

Tair 0.92 0.89 0.81 0.73 0.63 0.48
Pw 0.91 0.91 0.89 0.84 0.77 0.66

VWC20cm 0.14 0.16 0.17 0.18 0.18 0.16
Rn 0.74 0.69 0.60 0.50 0.38 0.24

Ts20cm 1.00 0.99 0.95 0.89 0.79 0.66
Ts40cm 0.99 1.00 0.98 0.93 0.85 0.74
Ts80cm 0.95 0.98 1.00 0.99 0.94 0.85
Ts120cm 0.89 0.93 0.99 1.00 0.98 0.93
Ts160cm 0.79 0.85 0.94 0.98 1.00 0.98
Ts200cm 0.66 0.74 0.85 0.93 0.98 1.00

To analyze the statistical information of the selected measured data, the mean (xmean),
maximum (xmax), minimum (xmin), standard deviation (xstd), variation coefficient (Cv),
skewness (CS), and kurtosis (Ck) of each data series were calculated in this study. The
results in Table 2 show that the maximum and minimum soil temperatures at different
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depths varied considerably, but the mean values of the soil temperatures at different depths
did not differ much from those of the air temperatures, as soil temperatures are mainly
influenced by air temperatures [26]. Both the air and soil temperatures at different depths
were negatively skewed. Still, the degree of skewness of soil temperature became closer to
a normal distribution as the depth of soil increased. Compared with shallow soils, deeper
soil temperatures were less susceptible to strong influences from soil surface temperatures
and seasonal fluctuations in temperature [39]. The results of xstd, Cv, and Cs also show that
deeper soil temperatures were more stable and less volatile.

Table 2. Summary of the descriptive statistics of the soil temperature and climate data at different
depths.

Data xmean xmax xmin xstd Cv CS Ck

Tair (◦C) 11.66 26.07 −11.44 8.64 0.74 −0.37 −0.90
Pw (kPa) 0.95 2.62 0.00 0.62 0.65 0.50 −0.83

Rn (W/m2) 87.68 229.85 −31.50 54.80 0.63 0.30 −0.89
VWC20cm (%) 0.22 0.37 0.08 0.07 0.31 −0.26 −0.84

Ts20cm (◦C) 11.27 22.96 −1.38 7.56 0.67 −0.17 −1.34
Ts40cm (◦C) 11.23 21.50 −0.36 6.93 0.62 −0.18 −1.36
Ts80cm (◦C) 11.14 19.56 1.49 5.80 0.52 −0.16 −1.40
Ts120cm (◦C) 11.09 18.24 2.95 4.96 0.45 −0.14 −1.43
Ts160cm (◦C) 11.10 17.09 4.21 4.18 0.38 −0.11 −1.46
Ts200cm (◦C) 11.04 15.90 5.45 3.46 0.31 −0.07 −1.48

The first 80% of the data were used as the training set for training the model, and the
last 20% were used as the set for testing the model. Since the observational data showed
large variations, all variables used in the model were first normalized as follows:

xnormal =
x − xmean

xstd
(1)

where xnormal is the normalized series of the variables, x is the original series of the observed
variables, xmean is the mean of the series of the corresponding variable and xstd is the
standard deviation of the series of the corresponding variable.

2.3. Methods
2.3.1. Principles of RF

Random forest (RF) is a machine learning algorithm proposed by Breiman in 2001
based on methods such as classification, regression trees, and random subspaces [40,41].
Random forest is composed of multiple decision trees, where each regression tree is
trained on a subset of data and a subset of explanatory variables that together deter-
mine the predicted values [42]. The construction process of random forest is shown in
Figure 3. Random forest can effectively reduce the risk of overfitting due to its high sta-
bility and feature robustness [43]. It is now widely used in stochastic classification and
stochastic regression.
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2.3.2. Principles of MLP

Perceptron was first proposed by Frank to solve the classification problem [40]. Multi-
layer perceptrons (MLP) are formed by connecting several perceptrons. MLP is a multilayer
artificial neural network that can handle nonlinear relationships [44]. MLP is a forward
feedback artificial neural network with good nonlinear global effect and high parallel ability.
It can be used to solve classification and regression problems, and its basic structure is
composed of input layer, hidden layer, and output layer [45,46], as shown in Figure 4.
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2.3.3. Principles of LSTM

LSTM is widely used in simulation [47] and was first proposed by Hochreiter and
Schmidhuber [48]. It is a good solution to the problems of insufficient long-term memory
capacity, gradient explosion, and gradient vanishing that exist in traditional RNN [49]. It
solves these problems by setting up forgetting gates, input gates, and output gates [50]. Its
conventional unit structure is shown in Figure 5.

Its operation process can be expressed as follows:

it = σ(Whiht−1 + Wxixt + Wcixt−1 + bi)
ft = σ(Wh f ht−1 + Wx f xt + Wc f xt−1 + b f )
ct = f ⊗ ct−1 + it ⊗ tanh(Whcht−1 + Wxcxt + bi)
ot = σ(Whoht−1 + Wxoxt + Wcoxt + b0)
ht = ot ⊗ tanh(ct)
yt = Whyht + b0

(2)

where xt and yt are the inputs and outputs of LSTM at moment t; it, ft, ct and ot are the input
gates, forgetting gates, memory cell states, and output gates, respectively, at moment t; w
and b are, respectively, the weight coefficient matrices and bias terms for the corresponding
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moments and corresponding gates; ht is the recursive input at moment t; σ is the sigmoid
activation function and tanh is the hyperbolic tangent activation function.
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2.3.4. Schematic Workflow of Deep Soil Temperature Prediction

Figure 6 shows the schematic workflow of the methodology used in this study. The
workflow consists of three main components: constructing input portfolios, model devel-
opment, and model evaluation.
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Figure 6. Schematic workflow of this study. (RF, MLP, and LSTM are different machine learning
models. RF = random forest, MLP = multilayer perceptron, LSTM = long short-term memory).

In constructing the input combination, pre-processed air temperature data (Tair), water
vapor pressure data (Pw), net radiation (Rn), and soil moisture data (VWC20cm) are used as
inputs for preliminary simulation of soil temperature at 20 cm depth (Ts20cm) and 40 cm
depth (Ts40cm). In this section, both MLP and RF are used to simulate Ts20cm and Ts40cm. A
model with better performance (evaluation metrics with better results on the test set) will be
selected. After that, the simulated Ts20cm, Ts40cm, and Tair (preprocessed by SG filter) were
used as the input combination to simulate soil temperature at other depths (Ts80cm, Ts120cm,
Ts160cm, Ts200cm). In the model development, the first 80% of the input data were used as
the training set for training the model. Five-fold cross-validation is used on the training
dataset for performance evaluation of the model parameters. Random search is used to find
optimal hyperparameters. The built model can predict the soil temperature of the target
layer in the previous seven days based on the soil temperature and air temperature. In the
model evaluation, each model predicts the concentration of Ts from the held-out testing
dataset (last 20%), which was separated in the beginning and is only used for validation.
The performance differences of LSTM in simulating deep soil temperature using simulated
shallow soil temperature (Ts20cm, Ts40cm) and observed environmental factors (Tair, Pw) are
mainly evaluated.
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2.3.5. Evaluation Metrics

In this study, mean absolute error (MAE), root mean square error (RMSE), coefficient of
determination (R2), and Kling–Gupta efficiency coefficient (KGE) were chosen to evaluate
the results of the simulation. The formulas for calculating these are as follows:

MAE = ∑N
1 |yi−ysi |

N

RMSE =

√
∑N

1 (yi−ysi)
2

N

R2 = 1 − ∑N
1 (yi−ysi)

2

∑N
1 (yi−ym)2

KGE = 1 −
√
(r − 1)2 +

(
µs
µ0

− 1
)2

+
(

σs/µs
σ0/µ0

− 1
)2

(3)

where ysi and yi are the simulated values and measured values, ym is the mean of the
series of measured values, N is the number of samples, µs and µ0 are the mean square
deviation of the simulated values and the series of measured values, σs and σ0 are mean
square deviation of the simulated value and the series of measured values, and r is the
linear correlation coefficient between the simulated values and the series of measured
values. Among the four model evaluation metrics, a smaller MAE and RMSE mean better
performance, while when R2 and KGE are closer to 1, the result of the simulation is better.

3. Results
3.1. Input Combination of Shallow Soil Temperature

The daily air temperature (Tair), daily water vapor pressure data (Pw), net radiation
(Rn), and soil moisture data (VWC20cm) were selected as input variables in this study. On the
basis of the results of the correlation analysis (Table 2), four different input combinations
were set up (Table 3). The correlation between air temperature, water vapor pressure, and
shallow soil temperature is high. Therefore, the air temperature is used as combination 1,
and the combination of air temperature and water vapor pressure is used as combination 2.
Then, other variables are added to become combination 3 and combination 4.

Table 3. Combinations of different input variables.

Combination No. Input Variables

1 Tair
2 Tair-Pw
3 Tair-Pw-Rn
4 Tair-Pw-Rn-VWC20cm

The input combinations in Table 3 were used as input data in the RF and MLP to
simulate the daily soil temperature at different depths (20 cm, 40 cm) and determine the
optimal combination of input. In this preliminary simulation process, the first 80% of
the data was selected for training the model, and the last 20% of the data was used for
testing. Five-fold cross-validation is used on the training dataset for evaluation of the
model parameters. Random search is used to find optimal hyperparameters.

3.2. Evaluation of the Results of Different Combinations of Input

The evaluation metrics of RF and MLP for simulating shallow soil temperature with
different combinations of input are shown in Table 4. Both the training dataset and testing
dataset reported acceptable and close results to each other according to the following:
the minimum value of R2 was 0.81, the minimum value of KGE was 0.88 for the training
dataset, also, the minimum value of R2 was 0.75, the minimum value of KGE was 0.80 for
the testing dataset. The range of results showed a reasonable accuracy for shallow soil
temperature simulation. According to the results of the evaluation metrics of different
input combinations, the worst evaluation metrics of RF and MLP appear in the simulation



Agronomy 2024, 14, 703 9 of 18

with input combination 1, and the best evaluation metrics mostly appear in the simulation
with input combination 4. The addition of meteorological factors improved the model’s
performance further, and the evaluation metrics of the simulation mostly improved. The
addition of meteorological factors improved the model’s performance further, and the
evaluation metrics mostly improved. In the simulation of soil temperature at 40 cm depth
by MLP, the MAE of input 4 is 1.1 ◦C lower than that of input 1, and the RMSE of input
4 is 1.47 ◦C lower than that of input 1. Overall, the results of the training dataset and the
testing dataset all showed that input 4 produced the best simulation of the daily average
temperature of the soil at different depths, so it was used as the optimal combination of
the input and can be a more accurate simulation to the shallow soil temperature for the
simulation of deep soil temperature.

Table 4. The evaluation metrics of soil temperature simulated by RF and MLP with different
combinations of input at shallow depths.

Model Depths Input
Training Dataset Testing Dataset

MAE
(◦C)

RMSE
(◦C) R2 KGE MAE

(◦C)
RMSE

(◦C) R2 KGE

RF

20 cm

1 1.924 2.565 0.889 0.918 2.125 2.924 0.804 0.867
2 1.266 1.693 0.952 0.947 1.309 1.725 0.932 0.958
3 1.109 1.484 0.963 0.952 1.173 1.497 0.949 0.925
4 0.771 1.088 0.980 0.972 1.161 1.538 0.946 0.963

40 cm

1 2.131 2.823 0.839 0.877 2.415 3.151 0.750 0.804
2 1.437 1.935 0.924 0.927 1.491 1.879 0.911 0.915
3 1.280 1.719 0.940 0.929 1.434 1.782 0.920 0.892
4 0.857 1.236 0.969 0.962 1.379 1.769 0.921 0.958

MLP

20 cm

1 2.111 2.731 0.874 0.916 2.104 2.783 0.823 0.876
2 1.339 1.796 0.946 0.967 1.203 1.551 0.945 0.955
3 1.319 1.778 0.947 0.938 1.118 1.436 0.953 0.958
4 1.241 1.614 0.956 0.935 1.041 1.404 0.955 0.973

40 cm

1 2.323 3.032 0.814 0.896 2.375 3.113 0.756 0.834
2 1.523 2.064 0.914 0.880 1.389 1.803 0.918 0.891
3 1.476 1.997 0.919 0.952 1.296 1.652 0.931 0.959
4 1.384 1.879 0.929 0.960 1.278 1.639 0.932 0.966

Note that the optimal models are boldfaced.

According to the scatterplots of the results from the models’ simulations versus the
measured values, as shown in Figure 7, the two models simulated the soil temperature
well at shallow depths (R2 was close to 1), and the accuracy of the simulations was high.
Figure 8 is the time series of soil temperature measured and simulated soil temperature by
RM and MLP models during the study period. It also shows an acceptable soil temperature
simulated by RF and MLP however, simulating the steady change in soil temperature is
a challenging task for them. The main reason is that the change in the air temperature
and water vapor pressure in the input combination is very severe, while the change in soil
temperature is relatively gentle. Even the air temperature after SG filtering changes much
more violently than the soil temperature. It is worth noting that the simulation performance
of RF on soil temperature in winter is better than that of MLP, which can simulate the steady
change in soil temperature in winter. This is also the main reason why the r2 of RF is better
than MLP. Figure 8 is the time series of soil temperature measured and predicted by the RF
and MLP model during the study period (with the optimal combination of input). As a
whole, the trend in soil temperature can be better simulated, however, the two methods
have a certain underestimation of soil temperature in October.
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3.3. Evaluating the Performance of LSTM Prediction of Deep Soil Temperature

The simulated shallow soil temperature (Ts20cm, Ts40cm) and air temperature (Tair)
will be used for deep soil temperature (Ts80cm, Ts120cm, Ts160cm, Ts200cm) prediction. In the
model development, five-fold cross-validation is used on the training dataset for evaluation
of the model parameters, and random search is used to find optimal hyperparameters.
Figure 9 shows scatterplots of measured and predicted deep soil temperatures (LSTM).
Their linear correlation of r2 decreases with increasing soil depth, with a maximum value
of 0.928 and a minimum value of 0.625. With the increase in soil depth, the prediction error
increases gradually.
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Table 5 displays the evaluation metrics results. The MAE and RMSE metrics among
the four evaluated metrics increased when soil depth increased, whereas R2 and KGE
decreased. Both results of the training dataset and testing dataset were reported to be
acceptable according to the following: the minimum value of R2 was 0.60, the minimum
value of KGE was 0.74 for the training dataset, also, the minimum value of R2 was 0.66,
the minimum value of KGE was 0.71 for the testing dataset. The range of results showed a
reasonable accuracy for deep soil temperature prediction.

Table 5. The evaluation metrics of soil temperature predicted by LSTM at deep depths.

Depths
Training Dataset Testing Dataset

MAE
(◦C)

RMSE
(◦C) R2 KGE MAE

(◦C)
RMSE

(◦C) R2 KGE

80 cm 1.192 1.637 0.921 0.910 1.158 1.449 0.928 0.885
120 cm 1.418 1.913 0.848 0.869 1.436 1.773 0.868 0.815
160 cm 1.538 2.098 0.741 0.827 1.554 1.971 0.787 0.775
200 cm 1.561 2.155 0.600 0.740 1.610 2.088 0.665 0.708

The time series of the soil temperature observed and the predicted soil temperature
using the LSTM model during the study period are shown in Figure 10. As a whole, the
trend in soil temperature can be better predicted after using the shallow soil temperature
and air temperature from seven days prior. It also shows that the LSTM model simulates
high and low temperatures more accurately and that the simulation error-prone places are
distributed close to the temperature change. The soil temperature is higher in summer and
lower in winter. One of the primary reasons the soil temperature predicted is more precise
and constant is that the summertime temperature is a continuous hot temperature, and the
wintertime temperature is also a continuous low temperature.



Agronomy 2024, 14, 703 12 of 18

Agronomy 2024, 14, x FOR PEER REVIEW 12 of 18 
 

 

The time series of the soil temperature observed and the predicted soil temperature 
using the LSTM model during the study period are shown in Figure 10. As a whole, the 
trend in soil temperature can be better predicted after using the shallow soil temperature 
and air temperature from seven days prior. It also shows that the LSTM model simulates 
high and low temperatures more accurately and that the simulation error-prone places 
are distributed close to the temperature change. The soil temperature is higher in summer 
and lower in winter. One of the primary reasons the soil temperature predicted is more 
precise and constant is that the summertime temperature is a continuous hot temperature, 
and the wintertime temperature is also a continuous low temperature. 

Table 5. The evaluation metrics of soil temperature predicted by LSTM at deep depths. 

Depths 
Training Dataset Testing Dataset 

MAE 
(°C) 

RMSE 
(°C) 

R2 KGE MAE 
(°C) 

RMSE 
(°C) 

R2 KGE 

80 cm 1.192 1.637 0.921 0.910 1.158 1.449 0.928 0.885 
120 cm 1.418 1.913 0.848 0.869 1.436 1.773 0.868 0.815 
160 cm 1.538 2.098 0.741 0.827 1.554 1.971 0.787 0.775 
200 cm 1.561 2.155 0.600 0.740 1.610 2.088 0.665 0.708 

 
Figure 10. Predicted and measured deep soil temperatures. Figure 10. Predicted and measured deep soil temperatures.

The air temperature, water vapor pressure, net radiation, and soil moisture can also be
directly used to predict deep soil temperature. The evaluation metrics are shown in Table 6
(prediction using environmental factors from seven days ago). In the testing dataset, the
prediction results are worse than the prediction method proposed in this study, especially
at 200 cm, where r2 is only 0.579.

Table 6. The evaluation metrics of soil temperature predicted by LSTM at deep depths (using
environmental factors prediction).

Depths
Training Dataset Testing Dataset

MAE
(◦C)

RMSE
(◦C) R2 KGE MAE

(◦C)
RMSE

(◦C) R2 KGE

80 cm 1.144 1.619 0.923 0.901 1.249 1.647 0.908 0.949
120 cm 1.146 1.663 0.886 0.927 1.586 2.042 0.825 0.888
160 cm 1.243 1.769 0.816 0.869 1.786 2.330 0.703 0.779
200 cm 1.158 1.763 0.732 0.821 1.666 2.339 0.579 0.741

3.4. Impact of Sliding Panes on Prediction Accuracy

The LSTM model was used to predict deep soil temperature. In this study, shallow
soil temperatures are the important input variables for prediction, and their simulation
accuracy certainly has an impact on the prediction accuracy. Not only do the input variables
have an effect on the prediction accuracy, but the length of the data used for prediction
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(the size of the sliding panes) also has an effect on the prediction accuracy. The sliding
panes refer to dividing the time series data into continuous windows during the training
process and using these panes to train the model. In this section, setting different sizes of
the sliding panes are used for prediction and their performance differences are compared.
The different sizes of the sliding panes are shown in Table 7.

Table 7. The different sizes of the sliding panes.

Models Different Size of the Sliding Pane

LSTM3 3
LSTM7 7
LSTM10 10
LSTM14 14
LSTM21 21

The prediction results of the different models in Table 7 are shown in Table 8. The
results show that all evaluation metrics become better with the increase in the size of the
sliding panes. It was also found that the size of the sliding pane was directly related to the
magnitude of the fluctuations in the predicted values. The larger the size of the sliding
pane, the smoother the predicted values. This suggests that when the size of the sliding
panes is too small, the model is likely to fail to capture long-term data features. Thus,
choosing the right sliding window size is equally important. The optimal sliding pane size
is often achieved through continuous experimentation.

Table 8. The evaluation metrics of soil temperature predicted by different LSTM.

Model Depths

Training Dataset Testing Dataset

MAE
(◦C)

RMSE
(◦C) R2 KGE MAE

(◦C)
RMSE

(◦C) R2 KGE

LSTM3

80 cm 1.383 1.900 0.894 0.923 1.371 1.732 0.901 0.881
120 cm 1.589 2.173 0.805 0.866 1.599 2.013 0.835 0.808
160 cm 1.711 2.327 0.683 0.808 1.740 2.203 0.738 0.751
200 cm 1.768 2.314 0.541 0.697 1.842 2.292 0.598 0.653

LSTM7

80 cm 1.192 1.637 0.921 0.910 1.158 1.449 0.928 0.885
120 cm 1.418 1.913 0.848 0.869 1.436 1.773 0.868 0.815
160 cm 1.538 2.098 0.741 0.827 1.554 1.971 0.787 0.775
200 cm 1.561 2.155 0.600 0.740 1.610 2.088 0.665 0.708

LSTM10

80 cm 1.040 1.448 0.938 0.951 0.926 1.215 0.948 0.935
120 cm 1.233 1.720 0.877 0.917 1.161 1.525 0.900 0.889
160 cm 1.387 1.933 0.780 0.879 1.310 1.800 0.820 0.839
200 cm 1.421 1.997 0.655 0.794 1.385 1.937 0.709 0.772

LSTM14

80 cm 0.957 1.289 0.951 0.975 0.829 1.051 0.960 0.971
120 cm 1.132 1.531 0.902 0.949 0.991 1.269 0.929 0.914
160 cm 1.262 1.754 0.818 0.902 1.166 1.510 0.870 0.848
200 cm 1.255 1.699 0.774 0.776 1.280 1.825 0.711 0.836

LSTM21

80 cm 0.724 0.979 0.972 0.977 0.679 0.833 0.972 0.981
120 cm 0.752 1.052 0.954 0.967 0.797 1.007 0.952 0.957
160 cm 0.802 1.171 0.918 0.950 0.850 1.135 0.923 0.949
200 cm 0.795 1.238 0.866 0.909 0.842 1.221 0.880 0.895

3.5. Effect of Savitzky–Golay Filter on Prediction Accuracy

The Savitzky–Golay filter is commonly used in data preprocessing processes to elimi-
nate data noise and reduce data fluctuations. Compared to simple moving average filtering,
SG filter can better retain the overall trend of the data while smoothing it. SG filter is also
used in this study for post-processing the prediction data of the LSTM7 model (projec-
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tions using data from the previous seven days) to explore whether it can further improve
prediction accuracy. The postprocessed model is named LSTM7-SG. The results of the
evaluation indicators are shown in Table 9. It shows that SG filter postprocessing of LSTM7
can improve the results of some evaluation metrics, but the improvement is very limited.
This also suggests that the SG filter is more suitable for data preprocessing.

Table 9. The evaluation metrics of soil temperature predicted by LSTM7 and LSTM7-SG.

Model Depths
Training Dataset Testing Dataset

MAE
(◦C)

RMSE
(◦C) R2 KGE MAE

(◦C)
RMSE

(◦C) R2 KGE

LSTM7

80 cm 1.192 1.637 0.921 0.910 1.158 1.449 0.928 0.885
120 cm 1.418 1.913 0.848 0.869 1.436 1.773 0.868 0.815
160 cm 1.538 2.098 0.741 0.827 1.554 1.971 0.787 0.775
200 cm 1.561 2.155 0.600 0.740 1.610 2.088 0.665 0.708

LSTM7-SG

80 cm 1.186 1.626 0.922 0.909 1.152 1.435 0.930 0.885
120 cm 1.409 1.896 0.851 0.869 1.430 1.755 0.871 0.814
160 cm 1.526 2.076 0.747 0.827 1.543 1.948 0.792 0.774
200 cm 1.548 2.128 0.610 0.742 1.598 2.061 0.673 0.707

4. Discussion

From the perspective of energy exchange, heat transfer occurs between the temperature
of the air and the soil, and the air temperature greatly affects the soil temperature [51]. The
change in soil moisture can control the partitioning of surface energy between sensible
and latent heat fluxes through evapotranspiration, and they jointly drive the change in
soil temperature [52–54]. Shallow soil temperature plays a significant role in the land–air
heat exchange that determines the underground temperature of deep soil [55]. This shows
that both air temperature and soil moisture have the potential to simulate soil temperature,
and shallow soil temperature also has the potential to simulate deep soil temperature.
Currently, a number of researchers have found that air temperature, solar radiation, and
rainfall in combination may accurately simulate the soil temperature of different areas that
have different climatic and geographical circumstances [7,25,56,57]. In our research, air
temperature, water vapor pressure, net radiation, and soil moisture were used to simulate
soil temperature. Air temperature has a direct impact on soil temperature. The magnitude
of water vapor pressure depends on the amount of water vapor in the atmosphere [58]. Soil
moisture directly indicates the condition of water content in the soil. The difference between
downward and upward (sun and earth) radiation is referred to as net radiation [59]. To
an extent, soil moisture and water vapor pressure can reflect the amount of rainfall. In
contrast to solar radiation, net radiation takes into account the impact of upward radiation
on the Earth. The selection of input variables is an essential task in time series prediction,
and the choice of variables is dependent on the quality and correlation of the data. Rainfall
has a far lower correlation with shallow soil temperature than water vapor pressure and
soil moisture. Based on the findings of previous research, this is a new attempt to simulate
soil temperature using several factors, which may potentially have broader applicability.
However, the experimental site is only Chunhua Experimental Station in the Hejiashan
watershed, its applicability in other regions still needs to be verified.

For the machine learning methods used in this study, RF may reduce the danger of
overfitting for the machine learning methods utilized in this work [60]. MLP is quite good
at modeling nonlinearities [23]. Both of them are more skilled at using a wide range of
environmental inputs to determine the temperature of the shallow soil and improve the
simulation’s impact. Furthermore, neither of the two models will lose data and their simu-
lation speeds are quicker than LSTM. Therefore, to simulate the shallow soil temperature,
RF and MLP have been used. Long-term dependencies in sequence data may be efficiently
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captured by LSTM, which can also thoroughly mine the link between input data and target
variables. It is excellent for forecasting [55].

Accurately estimating soil temperature is critical to carry out agricultural planting
activities. To a certain extent, the planting time of field crops and greenhouse crops all de-
pends on the optimal soil temperature for seed germination and seedling emergence [34,61].
Different crops demand different temperatures for optimal growth. In order to help farmers
better plan when to sow their crops, this study proposes a model that can accurately predict
soil temperature. This could improve the crop’s survival rate, which will raise output and
boost farmers’ income. In addition, the exploration of input combinations can also identify
the number of environmental factors, so as to select the most suitable number of equipment
to monitor research areas and reduce the cost of site equipment.

5. Conclusions

With on-site observation data, including the measured temperature of the soil and
different environmental factors, RF and MLP are used to simulate shallow soil temperature,
and LSTM is used to predict deep soil temperature in the gully areas of the Loess Plateau
in China. The main conclusions are as follows:

(1) For different combinations of input variables, the inclusion of relevant environmental
factors can improve the model’s performance. When the daily temperature of the air
is at a height of 2 m (Tair), daily water vapor pressure data (Pw), net radiation (Rn),
and soil moisture data (VWC20cm) were jointly used as inputs for all the simulations at
20 cm and 40 cm depths, the results of RF and MLP were the best. Both RF and MLP
can simulate shallow soil temperature well, but the performance of MLP is better than
that of RF.

(2) It is feasible to use LSTM to predict the deep soil temperature with the simulated
shallow soil temperature and the measured air temperature as input.

(3) The accuracy of soil temperature prediction is different at different depths. With
the increase in soil depth, the accuracy of soil temperature prediction decreases.
The simulation accuracy of shallow soil temperature directly affects the prediction
accuracy of deep soil temperature. In addition, the size of the sliding pane of the
LSTM model also affects the prediction accuracy.

(4) The SG filter is more suitable for data preprocessing, and its ability to post-process
prediction results is very limited.

This study evaluated the feasibility of simulating the daily soil temperature using
conventional machine learning techniques (MLR and MLP) for shallow soil temperature.
The combination of input variables in the shallow soil simulation was mostly determined by
the variables’ physical relevance and by doing numerous experiments. More attention could
be paid to the interrelationships among the environmental factors and other environmental
factors in future studies to further improve the stability and accuracy of the simulation.
LSTM is used to predict deep soil temperature. In the process of prediction, due to the
small amount of data, the predicted soil temperature still has some instability. In addition,
the design of the sliding pane size of the prediction model also only depends on repeated
experiments. In the future, we can focus on optimizing the setting of the window size and
the setting of the input combination.
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3. Furtak, K.; Gawryjołek, K.; Marzec-Grządziel, A.; Niedźwiecki, J. The Influence of Human Agricultural Activities on the Quality
of Selected Fluvisols from the Vistula River Valley, Poland—Preliminary Research. Agronomy 2024, 14, 480. [CrossRef]

4. Zeynoddin, M.; Ebtehaj, I.; Bonakdari, H. Development of a linear based stochastic model for daily soil temperature prediction:
One step forward to sustainable agriculture. Comput. Electron. Agric. 2020, 176, 105636. [CrossRef]

5. Seyfried, M.S.; Flerchinger, G.N.; Murdock, M.D.; Hanson, C.L.; Van Vactor, S. Long-Term Soil Temperature Database, Reynolds
Creek Experimental Watershed, Idaho, United States. Water Resour. Res. 2001, 37, 2843–2846. [CrossRef]

6. Kramer, P.J. Effects of Soil Temperature on the Absorption of Water by Plants. Science 1934, 79, 371–372. [CrossRef] [PubMed]
7. Alizamir, M.; Kisi, O.; Ahmed, A.N.; Mert, C.; Fai, C.M.; Kim, S.; Kim, N.W.; El-Shafie, A.; Lin, L. Advanced machine learning

model for better prediction accuracy of soil temperature at different depths. PLoS ONE 2020, 15, e231055. [CrossRef] [PubMed]
8. Ganeshi, N.G.; Mujumdar, M.; Takaya, Y.; Goswami, M.M.; Singh, B.B.; Krishnan, R.; Terao, T. Soil moisture revamps the

temperature extremes in a warming climate over India. npj Clim. Atmos. Sci. 2023, 6, 12. [CrossRef]
9. Onwuka, B.; Mang, B. Effects of soil temperature on some soil properties and plant growth. Adv. Plants Agric. Res. 2018, 8, 34–37.

[CrossRef]
10. Yin, X.; Arp, P.A. Predicting forest soil temperatures from monthly air temperature and precipitation records. Can. J. Forest Res.

1993, 23, 2521–2536. [CrossRef]
11. Zhao, H.; Sassenrath, G.F.; Kirkham, M.B.; Wan, N.; Lin, X. Daily soil temperature modeling improved by integrating observed

snow cover and estimated soil moisture in the USA Great Plains. Hydrol. Earth Syst. Sci. 2021, 25, 4357–4372. [CrossRef]
12. Mihalakakou, G. On estimating soil surface temperature profiles. Energy Build. 2002, 34, 251–259. [CrossRef]
13. Qi, J.; Li, S.; Li, Q.; Xing, Z.; Bourque, P.A.; Meng, F.R. A new soil-temperature module for SWAT application in regions with

seasonal snow cover. J. Hydrol. 2016, 538, 863–877. [CrossRef]
14. Padarian, J.; Minasny, B.; McBratney, A.B. Machine learning and soil sciences: A review aided by machine learning tools. Soil

2020, 6, 35–52. [CrossRef]
15. Recknagel, F.; French, M.; Harkonen, P.; Yabunaka, K. Artificial neural network approach for modelling and prediction of algal

blooms. Ecol. Model. 1997, 96, 11–28. [CrossRef]
16. Lin, X.; Duan, X.; Jacobs, C.; Ullmann, J.; Chan, C.; Chen, S.; Cheng, S.; Zhao, W.; Poduri, A.; Wang, X.; et al. High-throughput

brain activity mapping and machine learning as a foundation for systems neuropharmacology. Nat. Commun. 2018, 9, 5142.
[CrossRef] [PubMed]

17. Hulbert, C.; Rouet-Leduc, B.; Johnson, P.A.; Ren, C.X.; Rivière, J.; Bolton, D.C.; Marone, C. Similarity of fast and slow earthquakes
illuminated by machine learning. Nat. Geosci. 2019, 12, 69–74. [CrossRef]

18. Fang, K.; Kifer, D.; Lawson, K.; Shen, C. Evaluating the potential and challenges of an uncertainty quantification method for long
short-term memory models for soil moisture predictions. Water Resour. Res. 2020, 56, e2020WR028095. [CrossRef]

19. Cui, Q.; Ammar, M.E.; Iravani, M.; Kariyeva, J.; Faramarzi, M. Regional wetland water storage changes: The influence of future
climate on geographically isolated wetlands. Ecol. Indic. 2021, 120, 106941. [CrossRef]

20. Zhong, L.; Lei, H.; Gao, B. Developing a Physics-Informed Deep Learning Model to Simulate Runoff Response to Climate Change
in Alpine Catchments. Water Resour. Res. 2023, 59, e2022WR034118. [CrossRef]

21. Nabavi-Pelesaraei, A.; Shaker-Koohi, S.; Dehpour, M.B. Modeling and optimization of energy inputs and greenhouse gas
emissions for eggplant production using artificial neural network and multi-objective genetic algorithm. Int. J. Adv. Biol. Biomed.
Res. 2013, 4, 170–183.

22. Sándor, R.; Barcza, Z.; Acutis, M.; Doro, L.; Hidy, D.; Chy, M.K.; Minet, J.; Lellei-Kovács, E.; Ma, S.; Perego, A. Multi-model
simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble
performance. Eur. J. Agron. 2017, 88, 22–40. [CrossRef]

23. Samadianfard, S.; Ghorbani, M.A.; Mohammadi, B. Forecasting soil temperature at multiple-depth with a hybrid artificial neural
network model coupled-hybrid firefly optimizer algorithm. Inf. Process. Agric. 2018, 5, 465–476. [CrossRef]

https://doi.org/10.1016/j.gfs.2019.100336
https://doi.org/10.3390/agronomy13082060
https://doi.org/10.3390/agronomy14030480
https://doi.org/10.1016/j.compag.2020.105636
https://doi.org/10.1029/2001WR000418
https://doi.org/10.1126/science.79.2051.371
https://www.ncbi.nlm.nih.gov/pubmed/17741806
https://doi.org/10.1371/journal.pone.0231055
https://www.ncbi.nlm.nih.gov/pubmed/32287272
https://doi.org/10.1038/s41612-023-00334-1
https://doi.org/10.15406/apar.2018.08.00288
https://doi.org/10.1139/x93-313
https://doi.org/10.5194/hess-25-4357-2021
https://doi.org/10.1016/S0378-7788(01)00089-5
https://doi.org/10.1016/j.jhydrol.2016.05.003
https://doi.org/10.5194/soil-6-35-2020
https://doi.org/10.1016/S0304-3800(96)00049-X
https://doi.org/10.1038/s41467-018-07289-5
https://www.ncbi.nlm.nih.gov/pubmed/30510233
https://doi.org/10.1038/s41561-018-0272-8
https://doi.org/10.1029/2020WR028095
https://doi.org/10.1016/j.ecolind.2020.106941
https://doi.org/10.1029/2022WR034118
https://doi.org/10.1016/j.eja.2016.06.006
https://doi.org/10.1016/j.inpa.2018.06.005


Agronomy 2024, 14, 703 17 of 18

24. Li, Q.; Hao, H.; Zhao, Y.; Geng, Q.; Liu, G.; Zhang, Y.; Yu, F. GANs-LSTM Model for Soil Temperature Estimation from
Meteorological: A New Approach. IEEE Access 2020, 8, 59427–59443. [CrossRef]

25. Nahvi, B.; Habibi, J.; Mohammadi, K.; Shamshirband, S.; Al Razgan, O.S. Using self-adaptive evolutionary algorithm to improve
the performance of an extreme learning machine for estimating soil temperature. Comput. Electron. Agric. 2016, 124, 150–160.
[CrossRef]

26. Bayatvarkeshi, M.; Bhagat, S.K.; Mohammadi, K.; Kisi, O.; Farahani, M.; Hasani, A.; Deo, R.; Yaseen, Z.M. Modeling soil
temperature using air temperature features in diverse climatic conditions with complementary machine learning models. Comput.
Electron. Agric. 2021, 185, 106158. [CrossRef]

27. Tsai, Y.Z.; Hsu, K.S.; Wu, H.Y.; Lin, S.I.; Yu, H.L.; Huang, K.T.; Hu, M.C.; Hsu, S.Y. Application of random forest and ICON models
combined with weather forecasts to predict soil temperature and water content in a greenhouse. Water 2020, 12, 1176. [CrossRef]

28. Recknagel, F. Applications of machine learning to ecological modelling. Ecol. Model. 2001, 146, 303–310. [CrossRef]
29. Massoud, E.C.; Hoffman, F.; Shi, Z.; Tang, J.; Alhajjar, E.; Barnes, M.; Braghiere, R.K.; Cardon, Z.; Collier, N.; Crompton, O.; et al.

Perspectives on Artificial Intelligence for Predictions in Ecohydrology. Artif. Intell. Earth Syst. 2023, 2, e230005. [CrossRef]
30. Chan, W.S.; Recknagel, F.; Cao, H.; Park, H. Elucidation and short-term forecasting of microcystin concentrations in Lake Suwa

(Japan) by means of artificial neural networks and evolutionary algorithms. Water Res. 2007, 41, 2247–2255. [CrossRef]
31. Li, C.; Zhang, Y.; Ren, X. Modeling Hourly Soil Temperature Using Deep BiLSTM Neural Network. Algorithms 2020, 13, 173.

[CrossRef]
32. Tsai, W.P.; Feng, D.; Pan, M.; Beck, H.; Lawson, K.; Yang, Y.; Liu, J.; Shen, C. From calibration to parameter learning: Harnessing

the scaling effects of big data in geoscientific modeling. Nat. Commun. 2020, 12, 5988. [CrossRef]
33. Li, X.; Zhang, L.; Wang, X.; Liang, B. Forecasting greenhouse air and soil temperatures: A multi-step time series approach

employing attention-based LSTM network. Comput. Electron. Agric. 2024, 217, 108602. [CrossRef]
34. Khosravi, K.; Golkarian, A.; Barzegar, R.; Aalami, M.T.; Heddam, S.; Omidvar, E.; Keesstra, S.D.; López-Vicente, M. Multi-step

ahead soil temperature forecasting at different depths based on meteorological data: Integrating resampling algorithms and
machine learning models. Pedosphere 2023, 33, 479–495. [CrossRef]

35. Taki, M.; Abdanan Mehdizadeh, S.; Rohani, A.; Rahnama, M.; Rahmati-Joneidabad, M. Applied machine learning in greenhouse
simulation; new application and analysis. Inf. Process. Agric. 2018, 5, 253–268. [CrossRef]

36. Zhang, K.; Liu, D.; Liu, H.; Lei, H.; Guo, F.; Xie, S.; Meng, X.; Huang, Q. Energy flux observation in a shrub ecosystem of a gully
region of the Chinese Loess Plateau. Ecohydrol. Hydrobiol. 2022, 22, 323–336. [CrossRef]

37. Guo, F.; Liu, D.; Mo, S.; Huang, Q.; Ma, L.; Xie, S.; Deng, W.; Ming, G.; Fan, J. Estimation of daily evapotranspiration in gully area
scrub ecosystems on Loess Plateau of China based on multisource observation data. Ecol. Indic. 2023, 154, 110671. [CrossRef]

38. Trok, J.T.; Davenport, F.V.; Barnes, E.A.; Diffenbaugh, N.S. Using Machine Learning with Partial Dependence Analysis to
Investigate Coupling Between Soil Moisture and Near-Surface Temperature. J. Geophys. Res. Atmos. 2023, 128, e2022JD038365.
[CrossRef]

39. Sahoo, M. Winter soil temperature and its effect on soil nitrate Status: A Support Vector Regression-based approach on the
projected impacts. Catena 2022, 211, 105958. [CrossRef]

40. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65,
386–408. [CrossRef]

41. Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844.
42. Isles, P.D.F. A random forest approach to improve estimates of tributary nutrient loading. Water Res. 2024, 248, 120876. [CrossRef]
43. Han, T.; Jiang, D.; Zhao, Q.; Wang, L.; Yin, K. Comparison of random forest, artificial neural networks and support vector machine

for intelligent diagnosis of rotating machinery. Trans. Inst. Meas. Control 2017, 40, 2681–2693. [CrossRef]
44. Mohanty, M.D.; Mohanty, M.N. Chapter 5—Verbal sentiment analysis and detection using recurrent neural network. In Advanced

Data Mining Tools and Methods for Social Computing; De, S., Dey, S., Bhattacharyya, S., Bhatia, S., Eds.; Academic Press: Cambridge,
MA, USA, 2022; pp. 85–106.

45. Abirami, S.; Chitra, P. Chapter Fourteen—Energy-efficient edge based real-time healthcare support system. In Advances in
Computers; Raj, P., Evangeline, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 117, pp. 339–368.

46. Abinaya, S.; Devi, M.K.K. Chapter 12—Enhancing crop productivity through autoencoder-based disease detection and context-
aware remedy recommendation system. In Application of Machine Learning in Agriculture; Khan, M.A., Khan, R., Ansari, M.A.,
Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 239–262.

47. Rahmani, F.; Shen, C.; Oliver, S.; Lawson, K.; Appling, A. Deep learning approaches for improving prediction of daily stream
temperature in data-scarce, unmonitored, and dammed basins. Hydrol. Process. 2021, 35, e14400. [CrossRef]

48. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
49. Huang, S.; Liu, Q.; Wu, Y.; Chen, M.; Yin, H.; Zhao, J. Edible Mushroom Greenhouse Environment Prediction Model Based on

Attention CNN-LSTM. Agronomy 2024, 14, 473. [CrossRef]
50. Di, Y.; Gao, M.; Feng, F.; Li, Q.; Zhang, H. A New Framework for Winter Wheat Yield Prediction Integrating Deep Learning and

Bayesian Optimization. Agronomy 2022, 12, 3194. [CrossRef]
51. Bai, Y.; Scott, T.A.; Min, Q. Climate change implications of soil temperature in the Mojave Desert, USA. Front. Earth Sci. 2014, 8,

302–308. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.2982996
https://doi.org/10.1016/j.compag.2016.03.025
https://doi.org/10.1016/j.compag.2021.106158
https://doi.org/10.3390/w12041176
https://doi.org/10.1016/S0304-3800(01)00316-7
https://doi.org/10.1175/AIES-D-23-0005.1
https://doi.org/10.1016/j.watres.2007.02.001
https://doi.org/10.3390/a13070173
https://doi.org/10.1038/s41467-021-26107-z
https://doi.org/10.1016/j.compag.2023.108602
https://doi.org/10.1016/j.pedsph.2022.06.056
https://doi.org/10.1016/j.inpa.2018.01.003
https://doi.org/10.1016/j.ecohyd.2021.10.001
https://doi.org/10.1016/j.ecolind.2023.110671
https://doi.org/10.1029/2022JD038365
https://doi.org/10.1016/j.catena.2021.105958
https://doi.org/10.1037/h0042519
https://doi.org/10.1016/j.watres.2023.120876
https://doi.org/10.1177/0142331217708242
https://doi.org/10.1002/hyp.14400
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3390/agronomy14030473
https://doi.org/10.3390/agronomy12123194
https://doi.org/10.1007/s11707-013-0398-3


Agronomy 2024, 14, 703 18 of 18

52. Miralles, D.G.; Van, D.B.M.J.; Teuling, A.J.; De Jeu, R.A.M. Soil moisture-temperature coupling: A multiscale observational
analysis. Geophys. Res. Lett. 2012, 39, 6. [CrossRef]

53. Zhang, T.; Huang, J.; Lei, Q.; Liang, X.; Lindsey, S.; Luo, J.; Zhu, A.; Bao, W.; Liu, H. Empirical estimation of soil temperature and
its controlling factors in Australia: Implication for interaction between geographic setting and air temperature. Catena 2022, 208,
105696. [CrossRef]

54. Xu, Y.; Wang, P.; Lu, Y.; Ma, M.; Dong, G.; Tang, J. Convection-permitting regional climate simulation on soil moisture-heatwaves
relationship over eastern China. Atmos. Res. 2024, 301, 107285. [CrossRef]

55. Amato, M.T.; Giménez, D. Predicting monthly near-surface soil temperature from air temperature and the leaf area index. Agric.
Forest Meteorol. 2024, 345, 109838. [CrossRef]

56. Citakoglu, H. Comparison of artificial intelligence techniques for prediction of soil temperatures in Turkey. Theor. Appl. Climatol.
2017, 130, 545–556. [CrossRef]

57. Gao, S.; Wu, Q.; Zhang, Z.; Jiang, G. Simulating active layer temperature based on weather factors on the Qinghai–Tibetan Plateau
using ANN and wavelet-ANN models. Cold Reg. Sci. Technol. 2020, 177, 103118. [CrossRef]

58. Gao, B.; Coon, E.T.; Thornton, P.E.; Lu, D. Improving the estimation of atmospheric water vapor pressure using interpretable long
short-term memory networks. Agric. Forest Meteorol. 2024, 347, 109907. [CrossRef]

59. Bonachela, S.; Fernández, M.D.; Hernández, J.; López, J.C. Adaptation of standardised (FAO and ASCE) procedures of estimating
net longwave and shortwave radiation to Mediterranean greenhouse crops. Biosyst. Eng. 2023, 231, 104–116. [CrossRef]

60. He, Z.; Wang, J.; Jiang, M.; Hu, L.; Zou, Q. Random Subsequence Forests. Inf. Sci. 2024, 667, 120478. [CrossRef]
61. Jiao, Y.; Chen, C.; Li, G.; Fu, H.; Mi, X. Research on the variation patterns and predictive models of soil temperature in a solar

greenhouse. Sol. Energy 2024, 270, 112267. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1029/2012GL053703
https://doi.org/10.1016/j.catena.2021.105696
https://doi.org/10.1016/j.atmosres.2024.107285
https://doi.org/10.1016/j.agrformet.2023.109838
https://doi.org/10.1007/s00704-016-1914-7
https://doi.org/10.1016/j.coldregions.2020.103118
https://doi.org/10.1016/j.agrformet.2024.109907
https://doi.org/10.1016/j.biosystemseng.2023.06.004
https://doi.org/10.1016/j.ins.2024.120478
https://doi.org/10.1016/j.solener.2023.112267

	Introduction 
	Materials and Methods 
	Study Area 
	Data Analysis and Processing 
	Methods 
	Principles of RF 
	Principles of MLP 
	Principles of LSTM 
	Schematic Workflow of Deep Soil Temperature Prediction 
	Evaluation Metrics 


	Results 
	Input Combination of Shallow Soil Temperature 
	Evaluation of the Results of Different Combinations of Input 
	Evaluating the Performance of LSTM Prediction of Deep Soil Temperature 
	Impact of Sliding Panes on Prediction Accuracy 
	Effect of Savitzky–Golay Filter on Prediction Accuracy 

	Discussion 
	Conclusions 
	References

