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Supplementary Material S1. Table of input covariates for the quantile random forest models built for surface (0-5 cm) and rootzone (0-1 m) soil 

moisture (volumetric water content). 

Surface 

soil 

moisture 

Satellite 

or 

model 

products 

Variables Abbreviation 

Original 

spatial 

resolution 

Original 

temporal 

resolution 

Version Reference 

 
Sentinel-

1 

backscatter 

at VV and 

VH modes 

and 

incidence 

angle 

vv, vh, angle 10-20 m 6-12 days 

Ground Range 

Detected (GRD) 

scenes 

https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_S1_GRD 

 SMAP 
Surface soil 

moisture  
ssm 10 km 3 days 

NASA-USDA 

Enhanced SMAP 

Global Soil 

Moisture Data 

https://developers.google.com/earth-

engine/datasets/catalog/NASA_USDA_HSL_SMAP10KM_soil_moisture 

 MODIS 

Land 

surface 

temperature 

LST 1 km Daily 
MOD11A1.061 

Terra 

https://developers.google.com/earth-

engine/datasets/catalog/MODIS_061_MOD11A1 

 
Landsat 

8  

Surface 

reflectance 

of bands 5 

(near-

infrared), 6 

(shortwave 

infrared-1), 

7 

(shortwave 

infrared-2),  

10 (thermal), 

NDVI 

B5, B6, B7, 

B10, NDVI, 

NDWI 

30 m or 

100 m 
16 days 

Level 2, Collection 

2, Tier 1 

https://developers.google.com/earth-

engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 
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(Normalized 

Difference 

Vegetation 

Index), 

NDWI 

(Normalized 

Difference 

Water 

Index) 

 
USGS 

DEM 

Elevation, 

slope, 

aspect, 

hillshade 

elevation, 

slope, aspect, 

hillshade 

10 m Constant 

USGS 3DEP 

National Map 

Spatial Metadata 

1/3 Arc-Second 

https://developers.google.com/earth-

engine/datasets/catalog/USGS_3DEP_10m 

 Polaris  

Clay and 

sand 

content, 

bulk density 

at 0-5 cm 

clay_5, 

sand_5, bd_5 
30 m Constant 1 Chaney et al. (2019) 

 NLCD 
Land cover 

type 
landcover 30 m Constant 

USGS National 

Land Cover 

Database, 2016 

release 

https://developers.google.com/earth-

engine/datasets/catalog/USGS_NLCD_RELEASES_2016_REL 

Rootzone 

soil 

moisture 

Sentinel-

1 

backscatter 

at VV and 

VH modes 

and 

incidence 

angle 

vv, vh, angle – – – – 

 SMAP 

subsurface 

soil 

moisture  

susm 10 km 3 days 

NASA-USDA 

Enhanced SMAP 

Global Soil 

Moisture Data 

https://developers.google.com/earth-

engine/datasets/catalog/NASA_USDA_HSL_SMAP10KM_soil_moisture 
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 MODIS 

Land 

surface 

temperature 

LST – – – – 

 
Landsat 

8  

Surface 

reflectance 

of bands 5, 

6, 7,  10, 

NDVI, 

NDWI 

B5, B6, B7, 

B10, NDVI, 

NDWI 

– – – – 

 
USGS 

DEM 

Elevation, 

slope, 

aspect, 

hillshade 

elevation, 

slope, aspect, 

hillshade 

– – – – 

 Polaris  

Clay and 

sand 

content, 

bulk density 

at 0-1 m 

clay_100, 

sand_100, 

bd_100 

30 m Constant 1 Chaney et al. (2019) 

 NLCD 
Land cover 

type 
landcover – – – – 
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Supplementary Material S2. Package installation instructions. 

1. Install the latest version of RTools (e.g., RTools 4.3 or the version 

that is compatible with the user’s R console, https://cran.r-

project.org/bin/windows/Rtools/). 

> install.packages(c(‘raster’, ‘rgee’, ‘sf’, ‘tidyverse’, ‘viridis’, ‘FedData’, 

‘RColorBrewer’, ‘caret’, ‘chillR’, ‘leaflet’, ‘hydroGOF’, ‘quantregForest’, 

‘randomForest’, ‘reshape2’, ‘rgdal’, ‘sp’, ‘lubridate’, ‘geojsonio’, ‘stars’)) 

2. Install the following dependency R packages. 

3. Install R package mlhrsm. The users can install it from GitHub. 

> install.packages(c(“devtools”,”R.rsp”)) 

> devtools::install_github(“soilsensingmonitoring/mlhrsm_1.0”, 

build_vignettes = T) 

4. Set up a Google Earth Engine account, project, and API. First, all 

users need to create a free Google Earth Engine account 

(https://earthengine.google.com/signup/). Second, install gcloud 

CLI before downloading maps from Google Earth Engine 

(https://dl.google.com/dl/cloudsdk/channels/rapid/GoogleCloudS

DKInstaller.exe). Third, create a project on the Google Earth 

Account for future use. After installing the gcloud CLI, if a CMD 

window pops out (when the user enables configuration of gcloud) 

to ask the user to connect gcloud CLI, select “Y” to log in. Then a 

web page will appear with a message saying, “Google Cloud SDK 

wants to access your Google Account”; select Allow and return to 

the CMD, where the system asks the user to “Pick cloud project to 

use.” Select the project the user wants to use, and close CMD. Lastly, 

relaunch R software and install Google Earth Engine API in the R 

environment. 

> library(mlhrsm) 

> ee_Initialize(“Your email address”, drive = T) # insert your email 

address 

If it is the first time the user uses ee_Initialize() on the computer, R 

will print downloading and installation messages when preparing for 

the initialization. Select “Y” when R asks to install Miniconda. If the 

https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/
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computer does not have the Python package “earthengine-api” 

installed, an error message will appear, and the user should run the 

following command line to install it. 

> .rs.restartR() # If this does not work, please restart the R session 

manually 

> ee_install() 

Then R will ask the user to store environment variables 

EARTHENGINE_PYTHON and EARTHENGINE_ENV in 

the .Renviron file to use the Python path in future sessions. Type “Y” 

to continue and restart the R session when prompted to do so after 

installation is completed. Run ee_Initialize(“Your email address”, drive 

= T) again. A new window will pop up in the browser saying, “Google 

Earth Engine Authenticator wants to access your Google Account”; 

then, select Allow to allow the local R environment to connect to the 

user’s Google Earth Engine. If successful, the user will see the following 

messages in the R console. The user can now access the maps in Earth 

Engine from the local R environment and download them to the user’s 

Google Drive. 

Fetching credentials using gcloud 

Successfully saved authorization token 

Supplementary Material S3. Instructions for accessing the default 

ML models and refitting the models. 

S3.1 Viewing the default ML models 

The input training and testing data and the quantile random forest 

models for surface and rootzone soil moisture are saved in “all.rda”, 

“model_surface.rda”, and “model_rz.rda”. These files can be accessed 

from the folder “mlhrsm_1.0/data/” under the R library directory. The 

user can also download them from the GitHub site 

(https://github.com/soilsensingmonitoring/mlhrsm_1.0/tree/main/data

). Once downloaded, the user can input them into the R environment. 

## Load packages 

> library_names <- c(‘raster’, ‘rgee’, ‘sf’, ‘tidyverse’, ‘viridis’, ‘FedData’, 

‘RColorBrewer’, ‘caret’, ‘chillR’, ‘leaflet’, ‘hydroGOF’, ‘quantregForest’, 

‘randomForest’, ‘reshape2’, ‘rgdal’, ‘sp’, ‘lubridate’, ‘geojsonio’, ‘stars’) 

> lapply(library_names, require, character.only = TRUE) 

> setwd(“directory where the installed mlhrsm package is located”) 

> load(“all.rda”) 
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> load(“model_surface.rda”) 

> load(“model_rz.rda”) 

> ## Split the data into training (calibration) and testing (validation) datasets 

> all_surface <- 

all[!is.na(all$VWC_5)&!is.na(all$elevation)&!is.na(all$clay_5)

 &!is.na(all$VWC_5)&!is.na(all$vv)&!is.na(all$vh)&!is.na(all$LST)

 &!is.na(all$LS_B4)&!is.na(all$LS_B10)&!is.na(all$landcover),] 

> all_rz <- 

all[!is.na(all$VWC_100)&!is.na(all$elevation)&!is.na(all$clay_100)

 &!is.na(all$VWC_100)&!is.na(all$vv)&!is.na(all$vh)&!is.na(all$LST)

 &!is.na(all$LS_B4)&!is.na(all$LS_B10)&!is.na(all$landcover),] 

> cali_surface <- all_surface[all_surface$Validation = =0,] 

> vali_surface <- all_surface[all_surface$Validation = =1,] 

> cali_rz <- cali_surface[!is.na(cali_surface$VWC_100),] 

> vali_rz <- vali_surface[!is.na(vali_surface$VWC_100),] 

To display the variable/feature importance of the surface and 

rootzone models, run the following command lines: 

> varImpPlot(model_surface) 

> varImpPlot(model_rz) 

To display the model performance of the surface and rootzone 

models at the training and testing dataset, run the following command 

lines: 

> index_surface <- names(cali_surface) %in% c(“landcover”, 

“elevation”, “slope”, “aspect”, “hillshade”, 

“clay_5”, “sand_5”, “bd_5”, 

“ssm”, 

“vv”, “vh”, “angle”, 

“LST”, 

“LS_B5”, “LS_B6”, “LS_B7”, “LS_B10”, “LS_NDVI”, “LS_NDWI”) 

> index_rz <- names(cali_rz) %in% c(“landcover”, 

“elevation”, “slope”, “aspect”, “hillshade”, 

“clay_100”, “sand_100”, “bd_100”, 

“susm”, 

“vv”, “vh”, “angle”, 

“LST”, 

“LS_B5”, “LS_B6”, “LS_B7”, “LS_B10”, “LS_NDVI”, “LS_NDWI”) 
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> soil_cali_mean = predict(model_surface, newdata = cali_surface[, 

index_surface], what = mean) ## Training (5-fold cross-validation) 

> soil_vali_mean = predict(model_surface, newdata = vali_surface[, 

index_surface], what = mean) ## Testing 

> soil_cali_rz_mean = predict(model_rz, newdata = cali_rz[, index_rz], what 

= mean) ## Training (5-fold cross-validation) 

> soil_vali_rz_mean = predict(model_rz, newdata = vali_rz[, index_rz], what 

= mean) ## Testing 

> ## Training cross-validation results for Surface Soil Moisture 

> sqrt(mean((model_surface$predicted - cali_surface$VWC_5)^2)) # RMSE 

training 

> mean(model_surface$predicted - cali_surface$VWC_5) # bias training 

> cor(model_surface$predicted, cali_surface$VWC_5)^2 # r2 training 

> NSE(model_surface$predicted, cali_surface$VWC_5) # NSE training 

> KGE(model_surface$predicted, cali_surface$VWC_5) # KGE training 

 

> ## Testing for Surface Soil Moisture 

> sqrt(mean((vali_surface$VWC_5 - soil_vali_mean)^2, na.rm = T)) # RMSE 

Testing 

> mean(vali_surface$VWC_5 - soil_vali_mean) # bias Testing 

> cor(vali_surface$VWC_5 , soil_vali_mean)^2 # r2 Testing 

> NSE(vali_surface$VWC_5 , soil_vali_mean) # NSE Testing 

> KGE(vali_surface$VWC_5 , soil_vali_mean) # KGE Testing 

## Training cross-validation results for Rootzone soil moisture 

> sqrt(mean((model_rz$predicted - cali_rz$VWC_100)^2)) # RMSE training 

> mean(model_rz$predicted - cali_rz$VWC_100) # bias training 

> cor(model_rz$predicted, cali_rz$VWC_100)^2 # r2 training 

> NSE(model_rz$predicted, cali_rz$VWC_100) # NSE training 

> KGE(model_rz$predicted, cali_rz$VWC_100) # KGE training 

 

> ## Testing for Rootzone soil moisture 

> sqrt(mean((vali_rz$VWC_100 - soil_vali_rz_mean)^2, na.rm = T)) # RMSE 

Testing 

> mean(vali_rz$VWC_100 - soil_vali_rz_mean) # bias Testing 

> cor(vali_rz$VWC_100 , soil_vali_rz_mean)^2 # r2 Testing 

> NSE(vali_rz$VWC_100 , soil_vali_rz_mean) # NSE Testing 

> KGE(vali_rz$VWC_100 , soil_vali_rz_mean) # KGE Testing 
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S3.2 Refitting the ML models 

The default models were fitted using 5-fold cross-validation and 

40 trees using the selected covariates in Supplementary Material S1. 

Note that the example code below only fits models using the training 

dataset and then applies them to the testing data to obtain the results 

in Table 1. The selection of covariates for surface and subsurface soil 

moisture models was determined based on the optimal testing results 

of the models, and the number of trees was set so that the models were 

not over-fitted (a similar performance was observed between the 

training and testing datasets). Note that the default ML models used in 

the mlhrsm package were fitted using all the data points from both 

training and testing stations to reach a good coverage across the 

contiguous USA. To build models using all available datasets, the user 

can simply replace the “cali_surface” and “cali_rz” in the “train” 

functions with “all_surface” and “all_rz”, respectively. 

In case the user would like to fit the models using their own 

dataset, please refer to the following command lines to train the ML 

models using the “train” function from the “caret” package. By 

changing method = “qrf” in the caret::train function, the users can switch 

to other ML algorithms. A detailed list of available ML models and their 

usage in the train function can be found here 

(https://topepo.github.io/caret/train-models-by-tag.html). In addition, 

the user can include additional in situ soil moisture datasets along with 

all the predictors in the same format of “all_surface” and “all_rz” to 

build these localized models. Once the models are built for soil 

moisture mapping, the user should save the models and the input data 

using the same names and overwrite the existing rdata (“all.rda”, 

“model_surface.rda”, and “model_rz.rda”) under the installation 

directory of the mlhrsm package. After this is completed, calling the 

functions to map soil moisture will automatically use the 

updated/newly saved ML models. 

> ## Quantile random forest parameters 

> fitControl = trainControl(## 5-fold CV 

method = “cv”, 

number = 5) 

> ntree = 40 

> ## Surface model 

> qrf_surface = caret::train(x = cali_surface[, index_surface], 

y = cali_surface$VWC_5, 

na.action = na.omit, 

trControl = fitControl, 

https://topepo.github.io/caret/train-models-by-tag.html
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metric = “RMSE”, 

ntree = ntree, 

nodesize = 10, 

method = “qrf”) 

> model_surface <- qrf_surface$finalModel 

> ## Rootzone model 

> qrf_rz = caret::train(x = cali_rz[,index_rz], 

y = cali_rz$VWC_100, 

na.action = na.omit, 

trControl = fitControl, 

metric = “RMSE”, 

ntree = ntree, 

nodesize = 10, 

method = “qrf”) 

> model_rz <- qrf_rz$finalModel 

3.3 Mapping soil moisture outside the US 

The users can also modify the functions to map soil moisture 

outside the USA and use the remaining functions to conduct spatial and 

temporal analysis on the generated soil moisture maps. To achieve this, 

two main modifications are needed. 

First, because all the dynamic variables (e.g., SMAP, Sentinel-1, 

and MODIS) are globally available, the users can replace the existing 

static variables with the ones that are globally available and accessible 

on Google Earth Engine. For example, USGS DEM can be replaced with 

NASA SRTM Digital Elevation 30m product 

(ee.Image(“USGS/SRTMGL1_003”)), Polaris soil maps replaced with 

SoilGrids 250m map product (ee.Image(“OpenLandMap/SOL”)), and 

NLCD land cover maps replaced with MODIS landcover dataset 

(ee.ImageCollection(“MODIS/061/MCD12Q1”), select a specific year 

and product). To ensure the spatial and temporal analysis functions can 

still be used outside the US, please modify all three data downloading 

functions (“large_region_prediction.R”, “small_region_prediction.R”, 

“point_prediction.R”) in the source code package or directly download 

them from GitHub 

(https://github.com/soilsensingmonitoring/mlhrsm_1.0/tree/main/R). 

Second, rename the variables for the newly modified static covariates so that they match with 

the variable names previously used in the machine learning models. It is strongly recommended that 

the users provide additional in situ soil moisture data to refit the models so that the models are locally 

trained to represent the landscape features in the study sites outside the USA. Please refer to the 
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previous section (Supplementary Material 3.2) for details on retraining the models with new 

datasets. 

 


