

1

Supplementary Material S1. Table of input covariates for the quantile random forest models built for surface (0-5 cm) and rootzone (0-1 m) soil

moisture (volumetric water content).

Surface

soil

moisture

Satellite

or

model

products

Variables Abbreviation

Original

spatial

resolution

Original

temporal

resolution

Version Reference

Sentinel-

1

backscatter

at VV and

VH modes

and

incidence

angle

vv, vh, angle 10-20 m 6-12 days

Ground Range

Detected (GRD)

scenes

https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_S1_GRD

 SMAP
Surface soil

moisture
ssm 10 km 3 days

NASA-USDA

Enhanced SMAP

Global Soil

Moisture Data

https://developers.google.com/earth-

engine/datasets/catalog/NASA_USDA_HSL_SMAP10KM_soil_moisture

 MODIS

Land

surface

temperature

LST 1 km Daily
MOD11A1.061

Terra

https://developers.google.com/earth-

engine/datasets/catalog/MODIS_061_MOD11A1

Landsat

8

Surface

reflectance

of bands 5

(near-

infrared), 6

(shortwave

infrared-1),

7

(shortwave

infrared-2),

10 (thermal),

NDVI

B5, B6, B7,

B10, NDVI,

NDWI

30 m or

100 m
16 days

Level 2, Collection

2, Tier 1

https://developers.google.com/earth-

engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2

2

(Normalized

Difference

Vegetation

Index),

NDWI

(Normalized

Difference

Water

Index)

USGS

DEM

Elevation,

slope,

aspect,

hillshade

elevation,

slope, aspect,

hillshade

10 m Constant

USGS 3DEP

National Map

Spatial Metadata

1/3 Arc-Second

https://developers.google.com/earth-

engine/datasets/catalog/USGS_3DEP_10m

 Polaris

Clay and

sand

content,

bulk density

at 0-5 cm

clay_5,

sand_5, bd_5
30 m Constant 1 Chaney et al. (2019)

 NLCD
Land cover

type
landcover 30 m Constant

USGS National

Land Cover

Database, 2016

release

https://developers.google.com/earth-

engine/datasets/catalog/USGS_NLCD_RELEASES_2016_REL

Rootzone

soil

moisture

Sentinel-

1

backscatter

at VV and

VH modes

and

incidence

angle

vv, vh, angle – – – –

 SMAP

subsurface

soil

moisture

susm 10 km 3 days

NASA-USDA

Enhanced SMAP

Global Soil

Moisture Data

https://developers.google.com/earth-

engine/datasets/catalog/NASA_USDA_HSL_SMAP10KM_soil_moisture

3

 MODIS

Land

surface

temperature

LST – – – –

Landsat

8

Surface

reflectance

of bands 5,

6, 7, 10,

NDVI,

NDWI

B5, B6, B7,

B10, NDVI,

NDWI

– – – –

USGS

DEM

Elevation,

slope,

aspect,

hillshade

elevation,

slope, aspect,

hillshade

– – – –

 Polaris

Clay and

sand

content,

bulk density

at 0-1 m

clay_100,

sand_100,

bd_100

30 m Constant 1 Chaney et al. (2019)

 NLCD
Land cover

type
landcover – – – –

4

Supplementary Material S2. Package installation instructions.

1. Install the latest version of RTools (e.g., RTools 4.3 or the version

that is compatible with the user’s R console, https://cran.r-

project.org/bin/windows/Rtools/).

> install.packages(c(‘raster’, ‘rgee’, ‘sf’, ‘tidyverse’, ‘viridis’, ‘FedData’,

‘RColorBrewer’, ‘caret’, ‘chillR’, ‘leaflet’, ‘hydroGOF’, ‘quantregForest’,

‘randomForest’, ‘reshape2’, ‘rgdal’, ‘sp’, ‘lubridate’, ‘geojsonio’, ‘stars’))

2. Install the following dependency R packages.

3. Install R package mlhrsm. The users can install it from GitHub.

> install.packages(c(“devtools”,”R.rsp”))

> devtools::install_github(“soilsensingmonitoring/mlhrsm_1.0”,

build_vignettes = T)

4. Set up a Google Earth Engine account, project, and API. First, all

users need to create a free Google Earth Engine account

(https://earthengine.google.com/signup/). Second, install gcloud

CLI before downloading maps from Google Earth Engine

(https://dl.google.com/dl/cloudsdk/channels/rapid/GoogleCloudS

DKInstaller.exe). Third, create a project on the Google Earth

Account for future use. After installing the gcloud CLI, if a CMD

window pops out (when the user enables configuration of gcloud)

to ask the user to connect gcloud CLI, select “Y” to log in. Then a

web page will appear with a message saying, “Google Cloud SDK

wants to access your Google Account”; select Allow and return to

the CMD, where the system asks the user to “Pick cloud project to

use.” Select the project the user wants to use, and close CMD. Lastly,

relaunch R software and install Google Earth Engine API in the R

environment.

> library(mlhrsm)

> ee_Initialize(“Your email address”, drive = T) # insert your email

address

If it is the first time the user uses ee_Initialize() on the computer, R

will print downloading and installation messages when preparing for

the initialization. Select “Y” when R asks to install Miniconda. If the

https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/

5

computer does not have the Python package “earthengine-api”

installed, an error message will appear, and the user should run the

following command line to install it.

> .rs.restartR() # If this does not work, please restart the R session

manually

> ee_install()

Then R will ask the user to store environment variables

EARTHENGINE_PYTHON and EARTHENGINE_ENV in

the .Renviron file to use the Python path in future sessions. Type “Y”

to continue and restart the R session when prompted to do so after

installation is completed. Run ee_Initialize(“Your email address”, drive

= T) again. A new window will pop up in the browser saying, “Google

Earth Engine Authenticator wants to access your Google Account”;

then, select Allow to allow the local R environment to connect to the

user’s Google Earth Engine. If successful, the user will see the following

messages in the R console. The user can now access the maps in Earth

Engine from the local R environment and download them to the user’s

Google Drive.

Fetching credentials using gcloud

Successfully saved authorization token

Supplementary Material S3. Instructions for accessing the default

ML models and refitting the models.

S3.1 Viewing the default ML models

The input training and testing data and the quantile random forest

models for surface and rootzone soil moisture are saved in “all.rda”,

“model_surface.rda”, and “model_rz.rda”. These files can be accessed

from the folder “mlhrsm_1.0/data/” under the R library directory. The

user can also download them from the GitHub site

(https://github.com/soilsensingmonitoring/mlhrsm_1.0/tree/main/data

). Once downloaded, the user can input them into the R environment.

Load packages

> library_names <- c(‘raster’, ‘rgee’, ‘sf’, ‘tidyverse’, ‘viridis’, ‘FedData’,

‘RColorBrewer’, ‘caret’, ‘chillR’, ‘leaflet’, ‘hydroGOF’, ‘quantregForest’,

‘randomForest’, ‘reshape2’, ‘rgdal’, ‘sp’, ‘lubridate’, ‘geojsonio’, ‘stars’)

> lapply(library_names, require, character.only = TRUE)

> setwd(“directory where the installed mlhrsm package is located”)

> load(“all.rda”)

6

> load(“model_surface.rda”)

> load(“model_rz.rda”)

> ## Split the data into training (calibration) and testing (validation) datasets

> all_surface <-

all[!is.na(all$VWC_5)&!is.na(all$elevation)&!is.na(all$clay_5)

 &!is.na(all$VWC_5)&!is.na(all$vv)&!is.na(all$vh)&!is.na(all$LST)

 &!is.na(all$LS_B4)&!is.na(all$LS_B10)&!is.na(all$landcover),]

> all_rz <-

all[!is.na(all$VWC_100)&!is.na(all$elevation)&!is.na(all$clay_100)

 &!is.na(all$VWC_100)&!is.na(all$vv)&!is.na(all$vh)&!is.na(all$LST)

 &!is.na(all$LS_B4)&!is.na(all$LS_B10)&!is.na(all$landcover),]

> cali_surface <- all_surface[all_surface$Validation = =0,]

> vali_surface <- all_surface[all_surface$Validation = =1,]

> cali_rz <- cali_surface[!is.na(cali_surface$VWC_100),]

> vali_rz <- vali_surface[!is.na(vali_surface$VWC_100),]

To display the variable/feature importance of the surface and

rootzone models, run the following command lines:

> varImpPlot(model_surface)

> varImpPlot(model_rz)

To display the model performance of the surface and rootzone

models at the training and testing dataset, run the following command

lines:

> index_surface <- names(cali_surface) %in% c(“landcover”,

“elevation”, “slope”, “aspect”, “hillshade”,

“clay_5”, “sand_5”, “bd_5”,

“ssm”,

“vv”, “vh”, “angle”,

“LST”,

“LS_B5”, “LS_B6”, “LS_B7”, “LS_B10”, “LS_NDVI”, “LS_NDWI”)

> index_rz <- names(cali_rz) %in% c(“landcover”,

“elevation”, “slope”, “aspect”, “hillshade”,

“clay_100”, “sand_100”, “bd_100”,

“susm”,

“vv”, “vh”, “angle”,

“LST”,

“LS_B5”, “LS_B6”, “LS_B7”, “LS_B10”, “LS_NDVI”, “LS_NDWI”)

7

> soil_cali_mean = predict(model_surface, newdata = cali_surface[,

index_surface], what = mean) ## Training (5-fold cross-validation)

> soil_vali_mean = predict(model_surface, newdata = vali_surface[,

index_surface], what = mean) ## Testing

> soil_cali_rz_mean = predict(model_rz, newdata = cali_rz[, index_rz], what

= mean) ## Training (5-fold cross-validation)

> soil_vali_rz_mean = predict(model_rz, newdata = vali_rz[, index_rz], what

= mean) ## Testing

> ## Training cross-validation results for Surface Soil Moisture

> sqrt(mean((model_surface$predicted - cali_surface$VWC_5)^2)) # RMSE

training

> mean(model_surface$predicted - cali_surface$VWC_5) # bias training

> cor(model_surface$predicted, cali_surface$VWC_5)^2 # r2 training

> NSE(model_surface$predicted, cali_surface$VWC_5) # NSE training

> KGE(model_surface$predicted, cali_surface$VWC_5) # KGE training

> ## Testing for Surface Soil Moisture

> sqrt(mean((vali_surface$VWC_5 - soil_vali_mean)^2, na.rm = T)) # RMSE

Testing

> mean(vali_surface$VWC_5 - soil_vali_mean) # bias Testing

> cor(vali_surface$VWC_5 , soil_vali_mean)^2 # r2 Testing

> NSE(vali_surface$VWC_5 , soil_vali_mean) # NSE Testing

> KGE(vali_surface$VWC_5 , soil_vali_mean) # KGE Testing

Training cross-validation results for Rootzone soil moisture

> sqrt(mean((model_rz$predicted - cali_rz$VWC_100)^2)) # RMSE training

> mean(model_rz$predicted - cali_rz$VWC_100) # bias training

> cor(model_rz$predicted, cali_rz$VWC_100)^2 # r2 training

> NSE(model_rz$predicted, cali_rz$VWC_100) # NSE training

> KGE(model_rz$predicted, cali_rz$VWC_100) # KGE training

> ## Testing for Rootzone soil moisture

> sqrt(mean((vali_rz$VWC_100 - soil_vali_rz_mean)^2, na.rm = T)) # RMSE

Testing

> mean(vali_rz$VWC_100 - soil_vali_rz_mean) # bias Testing

> cor(vali_rz$VWC_100 , soil_vali_rz_mean)^2 # r2 Testing

> NSE(vali_rz$VWC_100 , soil_vali_rz_mean) # NSE Testing

> KGE(vali_rz$VWC_100 , soil_vali_rz_mean) # KGE Testing

8

S3.2 Refitting the ML models

The default models were fitted using 5-fold cross-validation and

40 trees using the selected covariates in Supplementary Material S1.

Note that the example code below only fits models using the training

dataset and then applies them to the testing data to obtain the results

in Table 1. The selection of covariates for surface and subsurface soil

moisture models was determined based on the optimal testing results

of the models, and the number of trees was set so that the models were

not over-fitted (a similar performance was observed between the

training and testing datasets). Note that the default ML models used in

the mlhrsm package were fitted using all the data points from both

training and testing stations to reach a good coverage across the

contiguous USA. To build models using all available datasets, the user

can simply replace the “cali_surface” and “cali_rz” in the “train”

functions with “all_surface” and “all_rz”, respectively.

In case the user would like to fit the models using their own

dataset, please refer to the following command lines to train the ML

models using the “train” function from the “caret” package. By

changing method = “qrf” in the caret::train function, the users can switch

to other ML algorithms. A detailed list of available ML models and their

usage in the train function can be found here

(https://topepo.github.io/caret/train-models-by-tag.html). In addition,

the user can include additional in situ soil moisture datasets along with

all the predictors in the same format of “all_surface” and “all_rz” to

build these localized models. Once the models are built for soil

moisture mapping, the user should save the models and the input data

using the same names and overwrite the existing rdata (“all.rda”,

“model_surface.rda”, and “model_rz.rda”) under the installation

directory of the mlhrsm package. After this is completed, calling the

functions to map soil moisture will automatically use the

updated/newly saved ML models.

> ## Quantile random forest parameters

> fitControl = trainControl(## 5-fold CV

method = “cv”,

number = 5)

> ntree = 40

> ## Surface model

> qrf_surface = caret::train(x = cali_surface[, index_surface],

y = cali_surface$VWC_5,

na.action = na.omit,

trControl = fitControl,

https://topepo.github.io/caret/train-models-by-tag.html

9

metric = “RMSE”,

ntree = ntree,

nodesize = 10,

method = “qrf”)

> model_surface <- qrf_surface$finalModel

> ## Rootzone model

> qrf_rz = caret::train(x = cali_rz[,index_rz],

y = cali_rz$VWC_100,

na.action = na.omit,

trControl = fitControl,

metric = “RMSE”,

ntree = ntree,

nodesize = 10,

method = “qrf”)

> model_rz <- qrf_rz$finalModel

3.3 Mapping soil moisture outside the US

The users can also modify the functions to map soil moisture

outside the USA and use the remaining functions to conduct spatial and

temporal analysis on the generated soil moisture maps. To achieve this,

two main modifications are needed.

First, because all the dynamic variables (e.g., SMAP, Sentinel-1,

and MODIS) are globally available, the users can replace the existing

static variables with the ones that are globally available and accessible

on Google Earth Engine. For example, USGS DEM can be replaced with

NASA SRTM Digital Elevation 30m product

(ee.Image(“USGS/SRTMGL1_003”)), Polaris soil maps replaced with

SoilGrids 250m map product (ee.Image(“OpenLandMap/SOL”)), and

NLCD land cover maps replaced with MODIS landcover dataset

(ee.ImageCollection(“MODIS/061/MCD12Q1”), select a specific year

and product). To ensure the spatial and temporal analysis functions can

still be used outside the US, please modify all three data downloading

functions (“large_region_prediction.R”, “small_region_prediction.R”,

“point_prediction.R”) in the source code package or directly download

them from GitHub

(https://github.com/soilsensingmonitoring/mlhrsm_1.0/tree/main/R).

Second, rename the variables for the newly modified static covariates so that they match with

the variable names previously used in the machine learning models. It is strongly recommended that

the users provide additional in situ soil moisture data to refit the models so that the models are locally

trained to represent the landscape features in the study sites outside the USA. Please refer to the

10

previous section (Supplementary Material 3.2) for details on retraining the models with new

datasets.

