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Abstract: (1) Background: Excessive nitrogen (N) fertilizer application in tea plantations leads to
challenges such as soil acidification and nitrogen loss, impending the sustainable development of the
plantation system. Yet, there is a lack of research on blended fertilization strategies, and limited data
regarding N loss when substituting with organic fertilizer. (2) Methods: A year-long field monitoring
experiment was conducted to evaluate the effects of substituting compound fertilizer with organic
fertilizer, specifically with respect to runoff N loss and uptake of chemical fertilizer N by tea trees.
(3) Results: The annual runoff N loss ranged from 0.16 to 0.57 kg·hm−2 and accounted for a mere
0.22–0.48% of N from fertilizer applications. Substitution with organic fertilizer reduced runoff N loss
by 21–53% and improved the tea tree utilization efficiency of chemical fertilizer N from 16% to 27%.
A 50% organic fertilizer substitution (based on the amount of N) promoted a net soil N mineralization
rate, creating an ammonium-rich environment favored by tea trees. (4) Conclusions: The positive
effects of partially substituting N fertilizer with organic fertilizer in tea plantation systems on both N
utilization efficiency and N loss were confirmed. If conditions permit, the study team would aim to
expand the temporal scope of the study, and to investigate the impact of organic fertilizer substitution
on N loss under various precipitation intensities.

Keywords: organic fertilizer; tea; nitrogen; runoff; utilization efficiency

1. Introduction

The cultivation of tea tree crops is a prominent agricultural specialty on sloped farm-
land in the hilly terrain surrounding the Taihu Basin [1]. Since 2010, the selling price of
tea from this region has been rising, thanks to its use by commercial brands and national
geographical indications. Data from Suzhou City shows that the average productive value
for tea exceeded 90,000 CNY per hectare in 2021, demonstrating the higher economic value
of tea as compared to other crops, such as fruits and vegetables [2]. Within the tea industry,
tea leaves are a commodity raw material; therefore, high yields of high quality tea leaves
are a prerequisite for favorable economic returns. The role of fertilizer in enhancing tea
yield is sufficient and self-evident [3,4]. Within the industry, much focus is invested into
the leaf buds and young leaves of tea trees; as a result, tea tree cultivation fosters a high
demand for nitrogen (N). Additionally, these crops are quite sensitive to N fertilizer [5,6].
Consequently, the application of N fertilizer significantly impacts both tea yield and tea
quality [7,8]. Previous research data has indicated that over 30% of tea plantation manage-
ment relies on the excessive application of chemical fertilizers to boost yield, leading to a
widespread nutrient imbalance within the tea plantation system [9]. Annually, Chinese
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tea plantations apply an average of 533 kg·ha−1 of N per year (with individual plantation
values ranging between 0 and 1200 kg·ha−1 of N), far exceeding the necessary amount for
tea growth [8,10]. Therefore, it is widely acknowledged that tea plantations exhibit low
fertilizer utilization efficiency [11]. Given the preference of tea trees for ammonium-N as
a fertilizer, farmers predominantly choose urea and ammonium-based fertilizers as their
primary N fertilizer. However, the absorption of ammonium-N by tea trees, along with
subsequent nitrification processes, both result in the release of H+ ions into plantation soil,
thereby accelerating soil acidification within the tea plantation system [12–15]. Less than
half (43.9%) of tea plantations maintain a soil pH within the recommended range for opti-
mum tea tree cultivation [16,17]. Moreover, according to the “Second National Pollution
Source Census Bulletin”, tea plantations and fruit orchards are classified as ‘garden’ type
plantations, with a designated N loss coefficient of 2.78% in the Taihu Basin [18]. This
indicates that approximately 2.78% of N from fertilizer used in tea plantations is considered
to be lost into the environment. The above mentioned challenges pose a threat to the long-
term sustainability of tea plantation systems [12,19–21]. These challenges are particularly
pronounced on sloped farmlands, where N loss often coincides with the occurrence of soil
erosion, thereby presenting subsequent environmental risks.

Compound fertilizers and urea, which have a higher total nutrient content than or-
ganic fertilizers, continue to serve as the main sources of N in tea plantation systems. In
comparison, organic fertilizer accounts for less than 30% of overall nutrient input [20].
There is a dearth of current research on variations in fertilization strategies within tea
plantation systems, leading to an ambiguous understanding of nutrient inputs among
farmers and resulting in significant individual discrepancies in regards to the use of or-
ganic fertilizer [10,20]. Moreover, the advanced age of tea plantation owners is another
contributing factor, considering that most tea plantations in the Taihu Basin are situated
on sloped farmland [22,23]. Due to the unavailability of slope-specific equipment, the
application of organic fertilizer on slopes poses greater challenges as compared to the ap-
plication of compound fertilizer. Previous studies conducted in crop and vegetable systems
have demonstrated that the substitution of compound fertilizer with organic fertilizer can
effectively mitigate N loss [20,24], creating a more suitable soil environment for microor-
ganisms. This in turn enhances soil-based N transformation [25,26], ultimately leading to
ongoing soil fertility [27]. Evidence supporting the impact of organic fertilizer substitution
on maintaining soil N pool levels in the tea plantation system has been established [28].
Furthermore, the application of organic fertilizer in tea plantations has been proven to alle-
viate soil acidification [12,29], influence nitrogen transformation in the soil, and enhance N
utilization efficiency, thereby resulting in better economic and environmental benefits [19].

Current research on N loss in tea plantations, particularly regarding substitution
with organic fertilizers, primarily focuses on N concentration in runoff [4,30,31], while
lacking sufficient data pertaining to the total amount of N loss incurred on an annual
basis. In practical scenarios, when the water quality in river network systems underneath
hills in the tea plantation region is affected by an excess of N, blame is often attributed
to tea plantations due to a lack of quantified data on N loss. Therefore, it is of immense
importance to quantify the impact of different fertilizer strategies (i.e., the substitution of
compound fertilizer with organic fertilizer) on annual nitrogen loss from tea plantations in
order to accurately predict the contribution of tea cultivation to changes in water quality in
mixed farming regions.

Given this background, the Tianwangwu tea plantation (located in Jinting Town,
Wuzhong District, Suzhou City, China) was selected as the region of interest, and the
present study aimed to investigate variations in N utilization efficiency and N loss under
different conditions of partial or full N input substitution with organic fertilizers. This
study investigated the impact of annual fertilizer application on N loss in runoff pathways,
utilized 15 N-urea tracer to clarify the role of organic fertilizer substitution in reducing N
loss and in nitrogen loss from fertilizer sources, and predicted the nitrogen uptake of tea
trees by comparing soil nitrogen content between tea-tree-planted and non-planted areas.
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Furthermore, this study provided clarified evidence on the enhancement of N utilization
efficiency and reduction in N loss via the substitution of chemical fertilizer with organic
fertilizer, thereby offering valuable data-based support for the formulation of sustainable
green production and agricultural practices for tea plantations located on sloped farmland
within the Taihu Basin.

2. Materials and Methods
2.1. Site Description
2.1.1. Climatic Conditions

This study was carried out in Tianwangwu tea plantation, Jinting Town, Wuzhong
District, Suzhou City, Jiangsu Province, China (31◦08′14′′ N, 118◦51′48′′ E). This region
exhibits a typical northern subtropical humid monsoon climate, also influenced by the
microclimate of the surrounding Taihu Lake water body. The climate could be characterized
as having abundant precipitation and sufficient sunshine. The annual mean temperature
is approximately 16 ◦C, with the annual precipitation levels ranging between 1000 and
1500 mm. The study’s experimental plots were established in the tea farm with a slope
angle ranging from 9.0◦ to 9.2◦, while the thickness of the cultivated soil layer was only 40
to 60 cm.

2.1.2. Soil Condition

The Tianwangwu tea farm has been a site for tea cultivation for more than a hundred
years and has only begun to engage in chemical fertilizer usage within the past three
decades. In certain regions, tea farm owners have implemented fertilizer transport tracks,
while some elevated regions are equipped with integrated water and fertilizer facilities.
The soil properties are listed in Table 1.

Table 1. Properties of soil.

Soil

Total N (g·kg−1) 2.0
Total P (g·kg−1) 2.8
Ammonium-N (mg·kg−1) 5.3
Nitrate-N (mg·kg−1) 6.4
Available phosphorus (mg·kg−1) 48.7
Available potassium (mg·kg−1) 159.4
pH (H2O) 4.8
Soil organic matter (g·kg−1) 21.0
Water holding capacity (%) 46.1

2.2. Experimental Design
2.2.1. Experiment

Based on preliminary research conducted in the Wuzhong District tea plantation sys-
tem, the level of N application in tea plantations ranged from 0 to 240 kg·hm−2 (calculated
as N), with a mean value of near 150 kg·hm−2. The substitution rate with organic fertilizer
ranged from 22% to 43% [20]. In order to incentivize large-scale tea farm owners who have
the means to transport fertilizer to sloped farmland, the local agricultural department sub-
sidize organic fertilizer usage, aiming to enhance the rate of organic fertilizer substitution.
This study implemented treatments with a 50% and 100% proportion of organic fertilizer
substitution, with proportions being calculated according to the amount of N contained in
the fertilizer. To address the issue of soil acidification impacting tea tree growth in the long
run, a treatment with biochar addition (0.3% w/w of topsoil weight) was also set (Table 2).
These treatments were universally applied in both tea-tree-planted and non-planted micro-
zones, enabling a comparison of soil nitrogen content under different planting conditions.
This experiment spanned one year, from 1 November 2022 to 31 October 2023.
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Table 2. Detail of treatments.

Fertilizer and Treatments N Application Rate (Calculated as N),
Fertilizer Type and Biochar Addition (kg·hm−2)

Treatments Abb. Basal Fertilizer Additional
Fertilizer Total Biochar

Nitrogen control CK 0 0 0 0
100% organic

fertilizer ON 90
organic fertilizer

60
organic fertilizer

150
organic fertilizer 0

Pure chemical
fertilizer CN 90

chemical fertilizer
60

chemical fertilizer
150

chemical fertilizer 0

50% organic + 50%
chemical fertilizer OCN 75 organic +

15 chemical fertilizer
60

chemical fertilizer
75 organic +

75 chemical fertilizer 0

Chemical fertilizer
+ biochar CN + BC 90

chemical fertilizer
60

chemical fertilizer
150

chemical fertilizer 6000

2.2.2. Plots

In October 2022, 15 experimental plots [each 1.5 m (horizontal) × 10 m (vertical) in
size] were established for the five treatments in three replications mentioned above, based
on tea planting density. These plots were constructed using welded stainless steel plates
that were trenched underneath to a depth of 40 cm for separation (see Figure 1a). A runoff
convergence area was constructed at the foot of each experimental plot using sand and
gravel, which were intended to facilitate physical filtration. Additionally, a 25 L runoff
collection bucket was buried at the periphery of each experimental plot for filtered runoff
liquid collection (blue circle in Figure 1b). Measurement of the estimated amount of N
uptake by tea trees was conducted through a comparison of soil nitrogen content between
tea-tree-planted areas and non-planted areas. For this specific purpose, plots of bare land,
measuring 0.5 m × 0.5 m, at the foot end of each experimental plot were demarcated as
non-planted control group micro-zones. These micro-zones were enclosed on three sides
by buried stainless steel plates, trenched to a depth of 40 cm below the ground (orange
frames in Figure 1b), effectively isolating the root systems of the tea trees from absorbing
nutrients within these micro-zones while also allowing proper runoff drainage.
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Figure 1. Layout of the experiment plots: (a) Actual view; (b) Diagram of different treatments in the
test plot. * CK represents the treatment with N control; CN + BC represents the treatment with the
N input all from chemical fertilizer and 0.3% w/w biochar addition; OCN represents the treatment
with 50% of N input from organic fertilizer and 50% of N from chemical fertilizer; CN represents the
treatment with the N input all from chemical fertilizer; ON represents the treatment with the N input
all from organic fertilizer.

2.2.3. Management

After establishing the experimental plots, desiccated branches and fallen leaves were
removed from the surface layer of soil in their respective designated plots prior to the
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addition of biochar. The selected biochar was produced by Nanjing Qinfeng Straw Tech-
nology Co. (Nanjing, China) through wheat straw pyrolysis at 500 ◦C. The properties of
the biochar are shown in Table S1. Considering the preference of tea trees for ammonium
fertilizer [12,15], urea with 10.15% 15N abundance was chosen as the N fertilizer, with
an application rate of 150 kg·hm−2 (calculated as N) in this experiment. The selected
organic fertilizer (N-P2O5-K2O = 2.0%–1.1%–1.2%) was produced by Shandong Pangda
Biological Group Ltd. (Heze, China) Phosphorus and potassium fertilizers were applied
as basal fertilizer in all treatments, with phosphorus fertilizer (calcium superphosphate)
application performed at 80 kg·hm−2 (calculated as P2O5) and potash fertilizer (potassium
chloride) application also performed at 80 kg·hm−2 (calculated as K2O). The OCN and ON
treatments were the only two treatments that involved the use of organic fertilizers, which
naturally contain a certain amount of phosphorus and potassium. In order to balance the
consistency of phosphorus and potassium in all treatments, any elemental deficiencies in
the OCN and ON treatments were made-up using a single phosphorus and potassium
fertilizer, respectively. Basal and additional fertilizer application occurred on 13 December
2022, and 20 February 2023, respectively. The experimental plots relied on natural pre-
cipitation as the primary water supply and no active irrigation practices were involved.
In its harvesting period from mid-March to mid-April, the tea farm yielded high-quality
Biluochun as its output.

2.3. Sampling, Testing and Calculations
2.3.1. Yield of Tea

Between 14 March and 10 April 2023, tea tree shoots (consisting of two rounds of young
leaves and one round of leaf buds) were harvested in three rounds within the experimental
area. The fresh yields of each treatment plot were individually quantified each time and
then summed up. The fresh leaf yield of each treatment plot was determined through
conversion of the measured area. Although Biluochun tea leaves are sold as dry matter,
differences in processing techniques and leaf conditions bring about variable differences in
the weight ratio of dry leaf vs. fresh leaf yield. To this end, in this study, fresh leaves were
used for yield measurement to avoid the uncertainties caused by later processing.

2.3.2. Runoff

Runoff is initiated by precipitation events. When precipitation reaches a certain
intensity or occurs for multiple consecutive days, runoff flowed into the collection bucket.
All runoff in the collection bucket was extracted within one to three days following the
end of precipitation. The volume of each collection bucket was recorded, and the runoff
samples were collected after stirring and divided into four parts for chemical analysis
replication. Mineral N content and total N content were tested for using a continuous-flow
analyzer (Skalar Corp., Breda, The Netherlands). During the experimental period, there
were four runoff events. The annual runoff water volume was calculated according to the
volume and total N content of each runoff event [Equation (1)] and the average total N
content of annual runoff [Equation (2)]. The annual N loss in the runoff pathway was the
sum of the N loss of the four runoff events [Equations (3) and (4)]. The loss of mineral N
was calculated the same way [Equations (5) and (6)]. The calculation of the ratio of mineral
N in runoff pathway N loss is shown in Equation (8). The ratio of annual runoff pathway
nitrogen losses to total N inputs is given in Equation (7).

V = ∑n
k=1 Vk ÷ S1 × S2 ÷ 106 (1)

cRN =
–
cRNk (2)

NRk = cRNk × Vk ÷ S1 × S2 ÷ 106 (3)

NR = ∑n
k=1 NRk (4)
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MNRk = cMNk × Vk ÷ S1 × S2 ÷ 106 (5)

MNR = ∑n
k=1 MNRk (6)

RNR = NR ÷ Ninput (7)

RMN = MNR ÷ NR (8)

where V refers to the annual runoff water volume in m3·hm−2; Vk represents the volume of
the kth runoff collection bucket (mL); S1 represents the area of the runoff collection area, set
at 15 m2; S2 is the discounted area, set at 104 m2; cRN represents the average total N content
of the annual runoff in mg·L−1; cRNk is the total N content of the kth runoff in mg·L−1; NRk
is the N loss of the kth runoff event in kg·hm−2; NR is the N loss of the runoff pathway in
kg·hm−2; cMNk is the mineral N content of the kth runoff in mg·L−1; MNRk is the mineral
N loss of the kth runoff event in kg·hm−2; MNR is the mineral N loss of the runoff pathway
in kg·hm−2; RNR stands for the proportion of N loss by runoff pathway in %; Ninput is the
total annual N input, set at 10 kg·hm−2; and RMN is the proportion of mineral N in the
N loss by runoff pathway in %. n in Equations (1), (4) and (6) was the number of runoff
events, set at four, i.e., k = 1, 2, 3, 4. The constants 103 and 106 were used as the numbers
for unit conversions.

2.3.3. Soil

After the initial collection of soil samples prior to the commencement of the experiment,
subsequent soil sampling was conducted at fixed intervals (monthly) from the tillage layer
in each treatment plot. At the end of the annual experiment, soil samples were collected
from both the tillage layer of planted and non-planted areas. All soil samples were analyzed
using three chemical analysis replications. They were extracted in a two mol·L−1 KCl
solution, and the mineral N content of the soil was determined using a continuous-flow
analyzer (Skalar Corp., Breda, The Netherlands), while the total N content was determined
using an elemental analyzer (FlashSmart™, Thermo Scientific, Waltham, MA, USA).

2.3.4. 15N Abundance Testing

Only the CN, OCN, and CN + BC treatments had 15N urea added in this experiment.
Therefore, measurements of 15N abundance and fertilizer N distribution were conducted
only for the planted and non-planted soils that were under these three treatments.

At the end of the anniversary trial for these three treatments, soil samples were
repeatedly rinsed using KCl solution and deionized water to remove the mineral N from
them. The runoff samples, soil KCl leachate samples, and treated soil samples were
pre-treated [32] separately. After that, 15N abundance was determined using an isotope
mass spectrometer (MAT-251, Thermo Scientific, Waltham, MA, USA) and converted to
N abundance in the runoff (Ar in %), planted soil mineral N (Apms in %), planted soil
organic N (Apos in %), non-planted soil mineral N (Anms in %), and non-planted soil
organic N (Ano in %s).

2.3.5. Calculation of Chemical Fertilizer N Distribution

Based on the measured 15N abundance, the amount of fertilizer N loss through
the runoff pathway was calculated using Equations (9) and (10), and the remaining
amount of fertilizer N in the soil in both mineral and organic states was calculated by
Equations (11) and (12). The amount of fertilizer N used in tea tree uptake [Equation (15)]
and the amount of fertilizer N lost through other routes [Equation (16)] were estimated by
the difference between planted and non-planted micro areas. The natural abundance of
15N was taken as 0.366%. It was assumed that runoff N losses were the same in planted
and non-planted areas of the same treatment.

15NRk = NRk × (Ar − 0.366%) ÷ 10.15% (9)
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15NR = ∑n
k=1 15NRk (10)

15NSpm = MNp × m × (Apms − 0.366%) ÷ 10.15% ÷ 106 (11)

15NSpo = (TNp − MNp) × m × (Apos − 0.366%) ÷ 10.15% ÷ 106 (12)

15NSnm = MNn × m × (Anms − 0.366%) ÷ 10.15% ÷ 106 (13)
15NSno = (TNn − MNn) × m × (Anos − 0.366%) ÷ 10.15% ÷ 106 (14)

15NT = (15NSnm + 15NSno) − (15NSpm + 15NSpo) (15)

15NL = Ninput − (15NSnm + 15NSno) − 15NR (16)

where 15NRk represents the fertilizer N loss for the kth runoff event in kg·hm−2; 15NR
represents total the runoff pathway fertilizser N loss in kg·hm−2; 15NSpm and 15NSnm refer
to the amount of fertilizer N left in the soil as a mineral state in planted and non-planted
areas, respectively, in kg·hm−2; MNp and MNn refer to the N content of soil in the mineral
state in planted and non-planted areas, respectively, in mg·kg−1; m is the weight of soil
per unit area of the ploughed layer, which is taken as 2.5 × 106 kg·hm−2 here; 15NSpo and
15NSno refer to the amount of fertilizer N left in the soil in the organic state in planted and
non-planted areas, respectively, in kg·hm−2; TNp and TNn refer to the total soil N content
in planted and non-planted areas, respectively, in mg·kg−1; 15NT stands for the amount of
fertilizer N absorbed and utilized by the plant (tea trees) in kg·hm−2; and 15NL represents
the amount of fertilizser N loss throughby other routes in kg·hm−2.

2.3.6. Calculation of Soil Net N Mineralization Rates and Nitrification Potentials

Using aerobic incubation, the soil was replenished daily to 60% of the maximum water
holding capacity and incubated at 25 ◦C with oxygen depletion for 56 days. Soil mineral N
content was determined before and after incubation, and the net mineralization rate was
calculated using Equation (17) [33]. Nitrification potential was determined using a rapid
ammonia oxidation method. Soil nitrate-N content was plotted as a linear relationship with
time, and the slope was calculated as the nitrification potential [33]:

RMN = (MNaft − MNpre) ÷ t (17)

where RMN represents the net soil N mineralization rate in mg·(kg·d)−1; MNaft and MNpre
are the soil mineral N content after and before incubation, respectively, in mg·kg−1; and t
is the incubation duration, set at 28 d in this experiment.

2.4. Statistical Analysis

The significance of differences in N concentration, volume, and N loss in runoff
(p < 0.05) was analyzed using Duncan’s multiple-range test (SPSS ver. 16.0 for Windows,
SPSS Inc., Chicago, IL, USA) in this experiment. The correlation between runoff nitrogen
concentration / loss and soil mineral nitrogen content was analyzed based on the most
recent soil samples taken prior to the runoff event.

3. Results
3.1. Yield of Tea

The tea yield in the N control treatment (CK treatment) was significantly lower than
that of the N-applied treatment, and ranged from 47% to 55%. However, there was no
significant difference in the yield of Biluochun tea when equal N input conditions were
applied to the treatments with different types of fertilizer (Figure 2).
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Figure 2. Yield of Biluochun tea (fresh leaves). * Different lowercase letters indicate significant
differences in the mean of the treatments with different fertilizer and N rates, determined by Duncan’s
test (p < 0.05).

3.2. N Loss from Runoff

The runoff N concentrations ranged from 4.4 to 17.4 mg·L−1 under N application
and from 2.4 to 4.7 mg·L−1 without N application. Substitution with organic fertilizer
reduced runoff N concentration, but this reduction was only significant at 100% organic
fertilizer substitution (ON treatment), decreasing runoff by 38% compared to pure chemical
fertilizer (CN treatment) (Figure 3a). The treatment at 50% organic fertilizer substitution
(OCN treatment) had similar runoff N concentrations to pure chemical fertilizer treatment,
due to most runoff events occurring in the spring and summer after additional fertilizer
application (chemical feritilizer was used as the additional fertilizer for OCN treatment).
The addition of biochar (CN + BC treatment) did not reduce runoff N concentrations. It is
evident that the application of chemical fertilizers during spring had a decisive impact on
the N concentration In the runoff.
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Since the intensity of precipitation in the short-term determines the volume of runoff,
it varied widely, with a range of 3.3 to 17.5 m3·hm−2 (Figure S1). The volume of cumulative
runoff loss was in the range of 22.6 to 46.4 m3·hm−2 in the anniversary year, i.e., an annual
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2.3 to 4.6 mm water layer loss due to precipitation (Figure 3a). Given the absence of active
irrigation practices in tea farm management, complete soil saturation by precipitation is
necessary for triggering runoff, therefore imposing higher demands on both short-term
precipitation intensity and cumulative precipitation and making triggering runoff more
difficult. Organic fertilizer application reduced runoff volume by more than 17% per year,
but not significantly. Biochar additions significantly reduced runoff volume by more than
35% (Figure 3a).

A total of four runoff events were recorded throughout the experimental period. The
sample collection times and cumulative precipitation volumes for the last week before the
collection were as follows: 15 February (56 mm), 25 June (263 mm), 17 July (133 mm), and
18 September (172 mm). Although fertilizer application took place in the winter and spring
months, the runoff event that exhibited the highest N concentration values and greatest
volume of runoff for a single event occurred in June. This shows that rainfall intensity
plays a more critical role in runoff-induced N loss than distance from fertilizer application
time in upland farmland environments.

N loss in the annual runoff pathway of the tea plantation ranged from 0.16 to
0.57 kg·hm−2 (Figure 3b) in this study, accounting for only 0.22 to 0.48% of the N in-
put from fertilizer sources (Table 3). Both 50% and 100% organic fertilizer substitution
(OCN and ON treatments) significantly reduced runoff pathway N losses compared to
the pure chemical fertilizer treatment (CN treatment), with reductions of 21% and 53%,
respectively (Figure 3b). Moreover, biochar addition significantly decreased N loss via
the runoff pathway (46%). For most treatments, the mineral state was the dominant form
of N in the runoff solution, comprising more than 80% (Table 3). When 100% organic
fertilizer substitution was performed, the percentage of mineral N in the runoff flushed out
by precipitation was significantly lower, and even higher than the percentage of N in the
organic form in the no N condition (CK treatment).

Table 3. Detail of N losses from runoff pathways and chemical fertilizer.

CK ON CN OCN CN + BC

Amount of N loss from runoff pathway (kg·hm−2) 0.16 0.27 0.57 0.45 0.31
Percentage of mineral N in runoff loss (%) 60.33 54.88 89.65 80.19 82.30
Proportion of N lost in runoff pathways (%) 0.22 0.48 0.38 0.26
Amount of fertilizer N loss from runoff pathways (kg·hm−2) 0.31 0.17 0.14
Percentage of chemical fertilizer-sourced N in runoff loss (%) 54.82 38.47 45.36
Proportion of fertilizer N lost in runoff pathway (%) 0.26 0.29 0.12

The percentage of chemical fertilizer-sourced N in the runoff N loss ranged from
38% to 55% (Table 3). Both organic fertilizer substitution and biochar addition reduced
the proportion of chemical fertilizer-sourced N, but their pathways differed. In the case
of 50% organic fertilizer substitution, the chemical N input for the OCN treatment was
only half of that for the CN treatment. Despite a reduction in the percentage of chemical
fertilizer-sourced N in the runoff N loss, the actual proportion of fertilizer N lost did not
differ significantly (CN treatment 0.26%, OCN treatment 0.29%). On the other hand, biochar
addition did not alter the amount of fertilizer N inputs, resulting in a reduction in both the
percentage of chemical fertilizer-sourced N in the runoff N loss and the actual proportion of
fertilizer N lost in runoff pathway. When the most recent soil mineral N content at the time
of runoff occurrence was examined, it became evident that the mineral N concentration
in runoff is closely related to the soil mineral N content (Figure 4a). While 100% organic
fertilizer substitution did reduce soil mineral N content for a more extended period, the
content fluctuated more compared to soil under purely chemical fertilizer application.
Biochar addition helped stabilize soil mineral N content to some extent compared to the
pure fertilizer treatment. However, soil mineral N content did not correlate well with the
amount of mineral N lost in a single runoff event (Figure 4b). Under similar soil mineral
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content conditions, biochar addition reduced the loss of mineral N in runoff, whereas the
effect of organic fertilizer substitution on the loss of mineral N in runoff was uncertain.
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Figure 4. Correlation between soil mineral N and runoff N loss: (a) Runoff mineral N concentration
vs. soil mineral N content; (b) amount of mineral N loss vs. soil mineral N content.

3.3. Distribution of Fertilizer N

It was estimated that annually, tea trees would absorb and utilize 16% to 27% of the
fertilizer N (Figure 5). In comparison to the pure chemical fertilizer treatment, 50% organic
fertilizer substitution enhanced the utilization of fertilizer N by the tea trees (27% plant
uptake in OCN treatment, 16% in CN treatment) and the assimilation of fertilizer-source N
by the soil microbes (1.4% of the soil organic state N in the OCN treatment, 0.32% in the
CN treatment). This corresponded to a substantial reduction in N loss through other routes
(25% losses via other routes in OCN treatment, 33% in CN treatment). While promoting
the utilization of fertilizer N by tea trees (22% in CN + BC treatment), biochar addition
significantly increased the proportion of fertilizer N remaining in the soil in the mineral
state (67% of soil mineral N in CN + BC treatment and 50% in CN treatment) and decreased
N loss via the runoff and other routes to 46% and 33%, respectively, in pure chemical
fertilizer treatment.
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3.4. Soil N Transformations

Based on post-harvest soil, it was found that 50% organic fertilizer substitution signifi-
cantly increased the rate of net N mineralization compared to the pure chemical fertilizer
treatment (Table 4). However, 100% organic fertilizer substitution did not show a significant
effect on the rate of net N mineralization, and also reduced the nitrification potential of the
soil. Under pure chemical fertilizer conditions, biochar addition significantly promoted
both the rate of net N mineralization and the nitrification potential.
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Table 4. Soil net N mineralization and nitrification potential.

CK ON CN OCN CN + BC

Rate of net N mineralization (mg·kg−1d−1) 0.30 c * 0.56 b 0.40 c 0.78 a 0.82 a
Nitrification potential (mg·kg−1 d−1) 0.27 b 0.18 c 0.30 b 0.27 b 0.46 a
R2 0.62 0.87 0.76 0.65 0.87

* Different lowercase letters indicate significant differences in the mean of the treatments with different fertilizer
and N rates, determined by Duncan’s test (p < 0.05).

4. Discussion
4.1. Effect on Yield and N Utilization of Tea

N, as the most important nutrient element supplying the growth of young tea leaves,
has a crucial impact on tea yield [3,4,8,34]. It is worth mentioning that the annual N fertilizer
application (0~240 kg·hm−2) in the area where the experiment was conducted was at a low
level compared to other areas among the green tea producing regions in China [10,20].

Appropriately increasing the rate of N fertilizer application should result in higher
tea yields and returns. Accordingly, it is perplexing as to why farmers have not taken this
approach. This question was brought to light during preliminary research on fertilizer
application in this region. It has been observed that the harvest of Biluochun tea is targeted
towards buds and young leaves as the yield, rather than big leaves. The maximum yield
of this tea occurs when there is an optimal output of new young leaves within a fixed
time period (mid-March to May). Excessive application of N fertilizer would accelerate
the growth of new buds and young leaves into large leaves. This would hamper efforts
to extend the harvesting period to obtain a higher standard biomass under labor-limited
conditions. Taking this into account, the annual N fertilizer application rate in this experi-
ment was determined to be the average value of 150 kg·hm−2 applied by local farmers as
a reflection of the actual production situation in the region. Furthermore, this study did
not observe a significant impact on the current year’s tea leaf yield (Figure 1) as a result of
organic fertilizer substitution, despite several previous studies demonstrating a positive
association between organic fertilizer substitution and tea leaf yield [28,34,35].

The period of this experiment was only one year, which may be one of the reasons for
the results acquired, but a deeper look into the pathways of the effects of organic fertilizer
on tea yield shows that these effects occur mainly due to the positive effects of organic
fertilizer on soil pH and ammonium-N content [3,7]. Previous studies have found that
proper application of organic fertilizer can improve soil acidification [35] and change the
mineral N status of soils under acidifying conditions, at which point the soils are normally
dominated by nitrate N [28,36]. Although the tea plantation where this experiment was
conducted had been cultivated for a long time, the soil pH was still maintained above 4.5,
which is a suitable soil pH condition for tea tree growth (the optimum soil pH for tea tree
growth is between 4.0 and 5.5) [12,16,17]. Additionally, there was no significant difference
in soil pH between treatments during the experiment and at the end of the experiment
(Table S2). The soil ammonium-N content varied between treatments only for a short period
after fertilizer application. The soil ammonium-N content was relatively similar most of
the time under equal N input conditions, especially in the spring when the new shoots
were promoted. This implies that organic fertilizer application in this experiment did not
bring about significant changes in soil acidification and soil ammonium-N content, and
subsequently failed to significantly affect tea yield.

However, it was estimated that fertilizer N utilization efficiency was highest at 50%
organic fertilizer substitution in this study (Figure 5). Because of the difficulty of sample
collection, not much information is available on direct studies of N utilization efficiency
by tea trees. Some studies have used the N carried away by the harvested part of the
leaves as the utilized part for estimating the N flow of production output and concluded
that the market demand for tea was the driving force affecting N flow output from tea
plantations [37]. Based on N agronomic utilization efficiency, positive correlations with
yield and economic return have been shown [19]. However, no matter how one goes about
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estimating the effective N output of tea trees, there is one conclusive consensus: the N uti-
lization efficiency of tea systems is considered to be relatively low among crop systems [11].
Thus, increasing the N uptake of tea trees and improving the efficiency of chemical N
utilization are factors of great significance in promoting green agricultural production.
Previous studies on organic fertilizer substitution in field crops and vegetable systems have
shown that 30% to 50% substitution with organic fertilizers significantly improves fertilizer
N utilization efficiency [24], and that this is closely related to N transformation in the
growing environment [38]. It is reasonable to believe that different fertilizer strategies affect
N transformation and alter the availability of ammonium-N in soils, which is the most
relevant form for N uptake by tea trees [34–36]. Previous studies have found a positive
correlation between the rate of soil N mineralization and temperature [38], specifically
showing that there is a significant interaction between soil temperature and moisture and
soil N mineralization [39]. The application of organic fertilizer should have created better
conditions for N mineralization in terms of maintaining soil moisture and temperature [40].
However, in this study, the rate of N mineralization was significantly lower in the 100%
organic substitution condition than in the 50% substitution condition (Table 4). This may be
explained by the higher C/N of the organic fertilizer we provided as a plant source, which
inhibited N mineralization to some extent [41]. This change in soil N supply capacity due
to organic fertilizer application has been found to often contribute to soil bacterial diver-
sity [42]. It has also been speculated that there is the trade-off effect between the proportion
of organic fertilizer substitution and soil N transformation. In this study, the 50% organic
fertilizer substitution condition created a more favorable ammonium-N environment for
tea growth, and also supported its role in enhancing the N utilization efficiency of tea.

4.2. Effect on N Loss via Runoff

N loss is determined by both runoff N concentration and runoff volume. The runoff
samples obtained in this experiment exhibited high total N concentration, which was higher
than Class V standards for surface water (both total N concentration and ammonium-N
concentration should be less than 2 mg·L−1) [43]. With the exception of N control treatment
and the 100% organic fertilizer treatment, mineral N was the predominant form of N in the
runoff, accounting for more than 80%. The N concentration in runoff showed a significant
decrease when the organic fertilizer substitution reached 100%. These results are consistent
with previous studies [28,30,31]. The tracing of chemical fertilizer N confirmed that applied
fertilizer N was an important source of runoff N (fertilizer-sourced N accounted for more
than half of the N loss in the runoff pathway of the CN treatment, as shown in Table 2).
Moreover, some studies have reported that the application of organic fertilizers has the
potential to affect the N transformation process, as the nitrification capacity of organic
fertilizers is lower than that of inorganic fertilizers [44]. This result was also reproduced in
this experiment (Table 3). Organic fertilizer extends the residence time of ammonium-N by
inhibiting the nitrification process [42], and ammonium is more favorable for adsorption by
soil colloids [45,46] and uptake by tea trees [12] than nitrate-N. Furthermore, organic fertil-
izer application promoted the immobilization rates of ammonium-N, playing a positive role
in retaining fertilizer N in the soil and consequently reducing the concentration of mineral
N in the runoff [4,42]. While soil mineral N content exhibited a positive correlation with
single runoff N concentration, it was not significantly correlated with single runoff N loss
(Figure 4). This suggests that, in this study, the volume of an individual runoff event was a
greater determining factor for the amount of N lost than the N concentration in the runoff.
The actual monitoring results of this experiment showed that the annual N loss ranges
from only 0.22% to 0.48% of the N input of the tea plantation due to the small runoff water
volume, which is much lower than the N loss coefficient of tea plantations in the region
as given by “the Second National Pollution Source Census Bullet” [18]. The cumulative
precipitation in the region where this experiment was conducted during the monitoring
period (November 2022–October 2023) reached 1300 mm, and daily precipitation exceeded
50 mm on five days, with two days exceeding 100 mm. This is considered a relatively
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normal rainfall year in the region, and therefore, the runoff data obtained in this study
are indicative.

Data in this study showed that runoff events occurred only when cumulative precipi-
tation reached 50 mm or more in a week. As confirmed by the previous studies, greater
rainfall volumes always corresponded to a greater runoff volume [47,48]. In this exper-
iment, the organic fertilizer substitution reduced the runoff volume by 15% (Figure 3),
confirming the enhancement of soil water retention capacity by organic fertilizer [49,50].
Similarly, biochar significantly reduced runoff water volume by enhancing soil water hold-
ing capacity [51]. These findings imply that effective control of runoff water volume is
crucial in mitigating losses via the runoff pathway.

5. Conclusions

This study monitored annual N loss and estimated N utilization efficiency from chem-
ical fertilizer by tea trees under various conditions of organic fertilizer substitution. The
following observations were made. (1) The N concentration of runoff in the tea plantation
under fertilizer conditions was high (compared to that of Class V surface water). However,
owing to the limited volume of runoff water, the annual N loss to runoff remained minimal,
accounting for less than 0.5% of the input N from the fertilizers. (2) Compared to pure
chemical fertilizer, substitution with organic fertilizer resulted in a significant reduction
in N loss through runoff. Moreover, the addition of biochar effectively decreased the
proportion of nitrogen loss from fertilizers. (3) Partial substitution with organic fertilizers
enhanced the N utilization efficiency of chemical fertilizer by tea trees and promoted the
assimilation of chemical-fertilizer-sourced N by soil microorganisms as compared to sole
reliance on chemical fertilizers. (4) Under optimal soil pH conditions, substitution with
organic fertilizers could promote N mineralization in soil and establish an advantageous
ammonium-N environment for tea tree growth. (5) This study provides important practical
insights into implementing organic fertilizer substitution in sloped farmland tea plantations.
Future research should consider extending the time scale to validate the efficacy of nutrient
utilization and runoff losses in tea plantations.
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