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Abstract: The fruit weight is an important guideline for breeders and farmers to increase marketable
productions, although conventionally it requires destructive measurements. The combination of
image-based phenotyping (IBP) approaches with multivariate analysis has the potential to further
improve the line selection based on economical trait, like fruit weight. Therefore, this study aimed
to evaluate the potential of image-derived phenotypic traits as proxies for individual fruits weight
estimation using multivariate analysis. To this end, an IBP experimentation was carried out on five
populations of low-land tomato. Specifically, the Mawar (M; 10 plants), Karina (K; 10 plants), and F2
generation cross (100 lines) samples were used to extract training data for the proposed estimation
model, while data derived from M/K//K backcross population (35 lines) and F5 population (50 lines)
plants were used for destructive and non-destructive validation, respectively. Several phenotypic
traits were extracted from each imaged tomato fruit, including the slice and whole fruit area (FA),
round (FR), width (FW), height (FH), and red (RI), green (GI) and blue index (BI), and used as inputs
of a genetic- and multivariate-based method for non-destructively predicting its fresh weight (FFW).
Based on this research, the whole FA has the greatest potential in predicting tomato FFW regardless
to the analyzed cultivar. The relevant model exhibited high power in predicting FFW, as explained
by R2-adjusted, R2-deviation and RMSE statistics obtained for calibration (81.30%, 0.20%, 3.14 g,
respectively), destructive (69.80%, 0.90%, 4.46 g, respectively) and non-destructive validation (80.20%,
0.50%, 2.12 g, respectively). These results suggest the potential applicability of the proposed IBP
approach in guiding field robots or machines for precision harvesting based on non-destructive
estimations of fruit weight from image-derived area, thereby enhancing agricultural practices in
lowland tomato cultivation.

Keywords: digital imaging; fruit prediction; non-destructive validation; regression analysis; Solanum
lycopersicum
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1. Introduction

Tomato is one of the most widely cultivated horticultural crops in the world [1]. The
well-known health and nutritional benefits of tomato, namely vitamins C and E, carotenoids,
phenolic compounds, sucrose, hexoses, citrate, malate and ascorbic acid, have led this fruit
to be often present in the daily diet [1–3]. Such properties correlate with the increasing
demand for tomatoes along with population growth [4,5]. However, the global warming
experienced in recent years have caused tomatoes to suffer a decline in production and
quality [6]. This is mainly dictated by alterations in the growing environment which
favor more intense and frequent attacks by parasites and diseases, as well as increased
competition phenomena with other crops [7–9]. Therefore, it is necessary to identify
genotypes adaptable to warmer conditions, especially within global regions most expose to
the effects of climate change (e.g., Tropics) [6,10,11]. In particular, the higher temperatures
registered in the areas of Asian countries most suited to tomato cultivation (i.e., highlands)
has stimulated interest in new varieties adaptable to the climatic conditions typical of lower
altitudes [10]. Consequently, the selection of improved tomato cultivars through innovative
and effective plant breeding programs is required to safeguard production standards at
different altitudes.

Several genetic efforts have been conducted to increase tomato production and quality
in the Asiatic lowlands [6,11–13]. Cross-breeding programs have allowed the identification
of candidate varieties to generate offspring tomato lines better adaptable to new growth
conditions, as previously reported for the Mawar (M) and the Karina (K) cultivars [13,14].
The Mawar variety is well adapted to lowland conditions for the production of fruits with
a relatively large wavy shape and a high market value given by the richness in nutrients
and antioxidants. On the other hand, Karina is a variety grown mainly in middle plains
with round shaped fruits [13,15].

The results of crossing M and K varieties have been analyzed in depth regarding
traits that have the potential to be used as selection criteria [13,14]. In several studies, the
significance of fruit weight stands out as a key determinant in shaping the direction of
selection, closely aligned with considerations of overall productivity [14,16–19]. Further-
more, in the hybridization of these two varieties, both the shape and weight of the fruit
exhibit remarkable similarity [13,14]. Consequently, prioritizing the enhancement of fruit
weight attributes emerges as a pivotal strategy in steering the course of selection progress.
However, the assessment of tomato fruit weight primarily relies on destructive samplings,
demanding considerable energy, time, and streamlined processes, especially when dealing
with extensive populations [20–23]. In addition, inaccuracy during the handling process can
adversely impact the fruit weight and, consequently, the breeding process [24,25]. Hence, a
meticulous approach is imperative for accurately predicting the potential of segregating
line populations. Image-based phenotyping (IBP) represents an effective technique for
this purpose.

IBP is a digitalization approach in the 4.0 era, encompassing the accurate and non-
destructive screening of imaged objects [24–29]. The precision of the analysis is dependent
on the type of imaging sensors employed, including Red, Green and Blue (RGB) cameras,
multispectral cameras, hyperspectral cameras, Light Detection and Ranging (LiDAR) cam-
eras, and Magnetic Resonance Imaging (MRI) [28,29]. The higher spatial resolution of the
camera sensor, the more comprehensive the data obtained, especially when integrated with
automation and big data concepts, such as high-throughput phenotyping [28,30–34]. In
this context, RGB cameras represent an affordable tool which can be used to indirectly
obtain reliable information on the agronomic potential of plants and/or crops [27,29,35–38].
Therefore, phenotypic traits derived from RGB images can serve as inputs for models
aimed at predicting tomato fruit weight. This approach not only helps breeders in selection
programs but could also contribute to optimize the subsequent robotic harvesting process
in the field.

Previous researches has focused on exploring the potential application of IBP tech-
niques for analyzing both tomato fruits [26,38–40] and canopy [41,42]. Specifically,
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Nyalala et al. [26,38] highlighted the efficacy of IBP in non-destructively predicting tomato
fruit weight. Although their results were satisfactory (1.47 ≤ RMSE ≤ 15.84 g and
0.92 ≤ R2 ≤ 0.97), it’s important to note that the proposed predictive models are appli-
cable exclusively to a specific tomato cultivar (i.e., cherry tomato) and lack generalizability
to other larger-fruited varieties. Similarly, studies conducted by Taheri-Garavand et al. [43]
and de Luna et al. [44] employed IBP for assessing fruit size and weight of specific tomato
genotypes (R2 ≥ 0.90), but their method was exclusively destructive. Therefore, evaluating
the potential application of IBP for non-destructively predicting tomato fruit weight is an
essential research topic, particularly in lowlands F2 lines characterized by high segregation
complexity and large population sizes [6,45]. To ensure optimal generalizability, a system-
atic analysis of the image-derived traits is essential for identifying the appropriate inputs
for the predictive model.

Multivariate analysis stands out as a solution for systematically determining potential
predictive traits, as reported by [46–49]. This approach involves gathering all dimensions
of an extensive crop data collection to be processed collectively, leading to a more straight-
forward interpretation [15,50,51]. Although several studies have employed multivariate
analysis on image-derive phenotypic traits [37,38,52,53], the joint application of IBP and
multivariate analysis in detecting tomato fruit fresh weight has not been extensively tested,
particularly in segregated populations.

Building upon previous research efforts, this study aims to address the critical need
for a generalized and non-destructive predictive model applicable to lowland tomato
varieties. To this end, a multivariate approach was developed to systematically analyze
image-derived phenotypic traits, providing a comprehensive understanding of the best
predictor for tomato fruit fresh weight.

2. Materials and Methods
2.1. Plant Material and Growing Conditions

The research was conducted from January to May 2022 on the Mawar (M) variety,
Karina (K) variety, and their respective crossbreed populations, including F2 and M/K//K
backcross Additionally, an investigation into the F5 population was carried out in October
2023. Each parent was represented by 10 plant samples, while the F2 cross-segregation
population consisted of 100 lines. In contrast, the backcross population and F5 populations
were comprised of 35 lines and 50 lines, respectively. Field experiments were carried out at
the Experimental Garden of the Faculty of Agriculture, Hasanuddin University, located
in Tamalanrea District, Makassar City, South Sulawesi (Indonesia). The elevation of the
location is 22.4 m above sea level.

Sowing was conducted using a planting medium comprising a blend of soil, burnt
husks, and compost in a ratio of 2:1:1. The prepared planting medium was then placed in
seedling trays and thoroughly saturated with water to ensure even distribution. Subse-
quently, tomato seeds were sown and treated with Furadan to mitigate potential distur-
bances or pest attacks. Seedlings maintenance involved daily watering, and after 7 days
after sowing (DAS), Goodplant Ab mix fertilizer was applied at a concentration of 5 mL per
1 L. This fertilizer contains essential nutrients such as N Total (20.7%), P2O5 (5.1%), K2O
(24.80%), MgO (5.1%), CaO (14.5%), S (8.9%), Fe (0.10%), Mn (0.05%), Cu (0.05%), B (0.03%),
Zn (0.02%), and Mo (0.001%).

Upon reaching 30 DAS, transplanting was carried out into beds constructed with a
width of 80 cm and a length of 2.5 m, spaced 30 cm apart, and with a height of 30 cm. The
beds were covered with silver mulch and perforated according to the planting distance,
specifically 50 cm between rows and 80 cm within rows. Watering was conducted twice
daily, both in the morning and evening, until the soil achieves a consistently damp ap-
pearance. Replanting occurred 7–14 days after transplanting (DAT) for tomato seedlings
exhibiting abnormal growth, wilting, or pest and disease infestations. In such cases, af-
fected samples were replaced with new ones matching their genetic code. Plant fertilization
was initiated at 7 DAT and subsequently applied weekly. Mutiara NPK (16:16:16) fertilizer,



Agronomy 2024, 14, 338 4 of 17

at a concentration of 10 g/L of water, was used initially. During the generative phase, this
was replaced with KNO3 at a concentration of 5 g/L. Each plant received 200 mL of the
fertilizer solution. Additionally, foliar fertilization was conducted using Gandasil D and
Gandasil B during the vegetative and generative phase, respectively. Pruning involved the
removal of small shoots in the leaf axils, directing the tomato’s growth towards the main
stem, while weeds hindering plant growth were manually removed in the planting area or
treated with herbicide between the beds. The final maintenance stage involved controlling
pests and diseases weekly. To this end, a combination of 2 cc/L of water of insecticide
Curacron 500 EC and 2 g/L of water of fungicide Antracol 70 WP were alternated with
Dhitane M-45 WP at a concentration of 2 g/L of water, replacing Antracol 70 WP to enhance
efficacy. Pesticides were applied through surface spraying on the plants. Finally, periodic
harvests, occurring up to three times over an 8-week span, were conducted to achieve
optimal genetic potential in tomatoes, with the readiness for collection indicated by fruits
displaying a reddish-yellow color.

2.2. Fruits Imaging and Traits Extraction

The detached tomato fruits were firstly weight on a precision scale for obtaining
the weight of whole and sliced fresh fruit (FFW; g) and subsequently photographed at
the Agronomy Department of Hasanuddin University (Indoensia) for phenotypic traits
extraction. Five tomato samples were collected from all plants in each generation, except
for F5, for which only two samples were directly photographed on the plant. In total,
875 photos were gathered for IBP analysis (Figure 1).

Specifically, each sample was placed onto a portable lightbox photography studio
(50 cm × 50 cm × 50 cm) and illuminated with an 8-watt LED light against a white back-
ground to better distinguish the fruit shape. Taking photos in destructive concept is also
arranged by placing the fruit in the best or widest position, so that the fruit has an opti-
mal area to photograph. This is so that the photo can represent the true trait. A Canon®

EF 28–135 mm f/3.5–5.6 commercial camera (Canon Inc., Tokyo, Japan) was fixed on the
top-hole of the box ensuring a 90-degree vertical shooting. For each sample, 1 top-view
RGB image was collected by setting the camera with 5.6 F-stop, 1/160 s exposure time, ISO
800 and no-flash mode. The scene also included a graduated ruler with markings every
1 mm as a reference scale to xy-metrically calibrate the image. Meanwhile, non-destructive
shooting is done with a white background too. This aims to sharpen the ruler scale when
taking photos of fruit directly in the field, so that the model could be optimize in predic-
tion. In addition, non-destructive photography is also done by taking the best or widest
angle of the target fruit in the field. This also aims to ensure that the model formed at the
initial development stage can be optimized in predicting fruit fresh weight (FFW; g) as the
primary trait.

Fiji® open-source software [54] was used to semi-automatically obtain phenotypic
measurements from individual tomato scans, as similarly reported by Woolf et al. [55]
and Ayenan et al. [56]. Firstly, the ruler markings were manually selected and used
to calculate a scaling factor for obtaining absolute morphometric values. Subsequently,
foreground objects (i.e., fruit) were segmented from the background pixels by applying a
triangle thresholding method. In particular, the original RGB colorspace was automatically
converted to a Hue, Saturation, Brightness (HSB) stack to emphasize spectral dissimilarities
between vegetal and non-vegetal features. In the HSB model, H (0–360◦) differentiates pure
colors while S (0–100%) and B (0–100%) characterizes the shade and the overall brightness of
the color, respectively, offering manipulable indicators for intuitive selection of foreground
and background color-fingerprints. To this end, the HSB histogram of the whole stack
was computed, and the ideal threshold (THR) automatically identified as the point of
maximum distance between the histogram and the line connecting its peak to the farthest
end [57]. Thus, the pixels outside THR were labelled as ‘0′ (i.e., background), while the
remaining points were coded as ‘1′ (i.e., fruit). The original RGB image was superimposed
to the resulted binary mask to retrieve solely the region of interest (ROI). Then, the ROI
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was automatically analysed to measure the whole and slice fruit area (FA), round (FR),
width (FW), height (FH), and red (RI), green (GI) and blue index (BI). Specifically, FA was
obtained as the surface of all the selected pixel (cm2), FR was the length of the outside
boundary of the ROI (cm), while FW and FH represented the maximum x- and y-axis length
of a fitted ellipse (cm), respectively. Finally, RI, GI and BI were calculated as the average
red-, blue- and green-channel value of all the ROI pixels. As the fruit’s appearance was
categorized into whole and sliced, a total of 14 image-based phenotyping traits per sample
was extracted.
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Figure 1. Image-based phenotyping workflow for non-destructive fruit fresh weigh (FFW; g) estima-
tion on tomato segregated populations.

2.3. Development of the Fruit Fresh Weight Estimation Model

The analysis of fruit-derived data involved an initial examination of genetic param-
eters (i.e., heritability analysis), wherein heritability values were categorized into three
groups: high (>50%), medium (20–50%), and low (<20%) [58]. Subsequently, Pearson
correlation analysis was conducted, and image-based phenotyping traits demonstrating
a significant positive correlation proceeded to path and multiple regression analyses us-
ing the “agricolae” package in Rstudio® 3.6.3 [59]. The results were then subjected to
secondary trait (i.e., phenotypic predictors) validation, encompassing the (i) analysis of
selection intensity, (ii) genetic progress percentage, and (iii) effectiveness of secondary traits.
The selected secondary traits were combined into a linear regression analysis model for
FFW estimation [38,40,59]. Then, destructive and non-destructive data from the backcross
M/K//K and F5 samples were used for validating the predicting mode. Such generations
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were chosen due to their optimal diversity, as they consistently exhibited robust segregation
characteristics [60–62].

2.3.1. Selection Intensity and Genetic Progress Percentage

Selection intensity (i) represents the mean of the selected proportion in phenotypic
standard deviations, enabling the comparison of the effectiveness of each selection when
considered collectively (Equation (1)). Following previous researches [21,63], i was em-
ployed to assess the effectiveness of selected secondary traits.

i =
(xi − x)√

SD
(1)

where xi represents the average value of the i-th lines, x is the general average value, and
SD refers to the standard deviation.

The selection progress (∆G%) was included in the model evaluation process to gain
more effective results (Equation (2)). Indeed, the ∆G% explains the extent to which the
mean value of the chosen population undergoes alteration upon continuation into the next
generation [5,64,65]

∆G% =
(xi − x)× h2

x
× 100% (2)

where h2 represents the heritability.

2.3.2. Effectiveness of Secondary Traits

The ultimate validation assessment involved the evaluation of the efficacy of secondary
traits (Equation (3)). This analysis aims to discern the secondary trait’s effectiveness in
indirectly predicting the success of selection on the primary trait [66,67].

CRx

Rx
= rg ×

(
iy × hy

)
(ix × hx)

(3)

where CRx/Rx is the effectiveness of secondary traits, rg represents the genetic correlation
between secondary and primary traits, while y indicates the secondary traits and x the
primary trait.

2.3.3. Model Sensitivity and Effectivness

The sensitivity and effectiveness of the developed model were further assessed through
the analysis of confidence interval (CI), prediction interval (PI), determination value (R2;
Equation (4)), determination adjustment value (R2-adjusted; Equation (5)), and root mean
square error (RMSE; Equation (6)).

CI and PI are statistics commonly used for evaluating models’ sensitivity. CI indicates
the accuracy of model estimates with a certain confidence level from samples, while PI
explains the prediction range of a new object entering a population based on a regression
analysis. R2 and adjusted R2 show how much the independent variable determines a
proportion of the variance in the dependent variable. Adjusted R2 places more emphasis on
penalizing the addition of independent variables, measuring the goodness of fit in forming
a model [68,69]. Finally, RMSE serves as an error validation method typically conducted by
assessing the average standard deviation or the disparity between predicted and actual
outcomes [68].

R2 = 1 − SSresidual
SStotal

(4)

Adjusted R2 = 1 −
SSresidual
(n−K)
SStotal
(n−1)

(5)
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RMSE =

√
1
n

n

∑
i=1

(Xi − Yi)
2 (6)

where SS is the sum square, n represents number of data, K refers to the number of parame-
ters fit by the regression, while Xi and Yi are the predicted and actual value, respectively.

3. Results

The heritability results of each image-derived phenotypic trait are shown in Table 1.
There was no statistically significant difference in the average values (x) across genotype
backgrounds for all fruit image-based phenotyping (IBP) traits, including fruit fresh weight
(FFW). Although Karina samples (parents) exhibited relatively higher FFW compared
to other genotypes, this difference lacked statistical significance. In contrast, there were
significant differences in the diversity of values among genotype backgrounds, with the F2
population displaying higher diversity than other samples (σ2 ). Notably, traits showing
low- to medium-range heritability (H) included fruit fresh weight (34.44), whole fruit area
(37.47), whole fruit roundness (27.79), whole fruit width (39.69), whole fruit height (43.73),
whole blue index (31.96), wide fruit slices (26.39), area of fruit slices (29.76), height of fruit
slices (45.64).

Table 1. Heritability results of all the analyzed phenotypic traits.

GB S FFW WFA WFR WFW WFH WRI WGI WBI SFA SFR SFW SFH SRI SGI SBI

K
x 20.71 9.33 0.89 3.53 3.39 125.72 44.43 33.87 9.84 0.94 3.60 3.43 118.87 47.26 29.62

σ2 5.71 1.98 0.04 0.48 0.27 26.35 14.59 11.74 2.69 0.02 0.54 0.46 25.16 15.86 12.59

M
x 18.26 8.90 0.71 3.94 2.97 114.24 44.09 30.24 6.95 0.92 3.94 3.75 114.24 44.09 30.24

σ2 5.98 2.66 0.11 0.49 0.51 12.27 9.97 5.89 1.79 0.04 0.49 0.36 12.27 9.97 5.89

F1
x 19.91 9.90 0.94 3.56 3.54 115.73 44.37 32.32 6.54 0.93 3.74 3.61 128.91 60.58 38.38

σ2 3.91 0.96 0.02 0.25 0.16 27.34 14.96 12.23 0.88 0.02 0.33 0.22 25.48 24.45 11.79

F2
x 17.32 8.49 0.84 3.56 3.12 114.35 40.49 31.75 5.93 0.93 3.53 3.41 121.95 50.99 33.25

σ2 7.93 2.98 0.08 0.68 0.56 22.54 15.83 14.63 2.43 0.03 0.64 0.64 22.95 18.96 12.50

VE 5.20 1.87 0.06 0.41 0.31 21.99 13.17 9.95 1.79 0.03 0.45 0.35 20.97 16.76 10.09
VP 7.93 2.98 0.08 0.68 0.56 22.54 15.83 14.63 2.43 0.03 0.64 0.64 22.95 18.96 12.50
VG 2.73 1.12 0.02 0.27 0.24 0.55 2.66 4.68 0.64 0.01 0.19 0.29 1.98 2.20 2.41
H 34.44 37.47 27.79 39.69 43.73 2.44 16.82 31.96 26.39 18.86 29.76 45.64 8.62 11.62 19.27

Notes: GB = genotype background, S = statistic (x = average value; σ2 = population variance; VE = environ-
mental variance; VP = phenotypic variance; VG = genetic variance; H = heritability), FFW = fruit fresh weight,
WFA = whole fruit area, WFR = whole fruit round, WFW = whole fruit width, WFH = whole fruit height,
WRI = whole red index, WGI = whole green index, WBI = whole blue index, SFA = slice fruit area, SFR = slice fruit
round, SFW = slice fruit width, SFH = slice fruit height, SRI = slice red index, SGI = slice green index, SBI = slice
blue index. The bold number shows moderate heritability.

Figure 2 displays the results of the correlation analysis among various image-derived
phenotyping traits and destructively collected FFW. In general, the whole fruit height (0.68),
slice fruit area (0.66), whole fruit area (0.73), slice fruit height (0.69), whole fruit width (0.71),
and slice fruit width (0.68) showed a significant positive correlation both among the traits
and with FFW. A significant positive correlation was also observed between the traits’ red
index, green index, and blue index in both whole and sliced fruits. Conversely, the whole
fruit round negatively correlated with both whole (−0.33) and slice fruit width (−0.31).

The path analysis results revealed that whole fruit width (WFW) has a direct impact on
fruit weight, with a coefficient of 0.6 (Table 2). This trait also exerted a substantial indirect
influence on other phenotypic traits. In addition to WFW, fruit fresh weight was directly
influenced by both whole fruit area and whole fruit height, each having a corresponding
coefficient of 0.21. Conversely, the trait with the least direct influence resulted the wide
fruit slice (−0.49).
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Figure 2. Correlation analysis of all analyzed traits; a significant correlation at 5% error level is
denoted by color and value, while a lack of significance is represented by blank cells; FW = fruit
weight, WFA = whole fruit area, WFR = whole fruit round, WFW = whole fruit width, WFH = whole
fruit height, WRI = whole red index, WGI = whole green index, WBI = whole blue index, SFA = slice
fruit area, SFR = slice fruit round, SFW = slice fruit width, SFH = slice fruit height, SRI = slice red
index, SGI = slice green index, SBI = slice blue index.

Table 2. Path analysis of traits that remained positive toward results.

Trait Direct
Effect

Indirect Effect
Correlation

WFA WFW WFH SFA SFW SFH

WFA 0.21 0.54 0.19 0.13 −0.44 0.1 0.73
WFW 0.60 0.19 0.16 0.13 −0.47 0.1 0.71
WFH 0.21 0.19 0.47 0.12 −0.39 0.08 0.68
SFA 0.15 0.18 0.51 0.17 −0.44 0.09 0.66
SFW −0.49 0.19 0.58 0.17 0.13 0.1 0.68
SFH 0.11 0.19 0.57 0.17 0.13 −0.47 0.69

total 0.94 2.67 0.86 0.63 −2.21 0.47

Notes: WFA = whole fruit area, WFW = whole fruit width, WFH = whole fruit height, SFA = slice fruit area,
SFW = slice fruit width, SFH = slice fruit height.

Traits that exhibited positive correlations with FFW were then selected as inputs for
the stepwise multiple regression analysis, leading to the development of an estimation
model with a reasonably high determination value (0.544; Table 3). The model incorporates
three traits for predicting FFW: intercept, whole fruit area (WFA), and WFW. However,
upon single component analysis, solely the WFA emerged as significantly significant trait
based on the student t-test.

Validation of secondary traits was carried out by the three genetic approaches showed
in Table 4. When considering the intensity of selection through direct selection, the fruit
fresh weight exhibited the highest intensity (4.09), followed by whole fruit area (4.06)
and whole fruit width (0.90). In terms of selection intensity with indirect selection, the
WFA resulted, instead, in a selection intensity of 3.66 for fruit weight, while the WFW
yielded a lower value (3.53). Examining the percentage of selection progress through direct
selection, FFW resulted in the highest progress (39.05%), followed by WFA (29.29%) and
WFW (15.90%). Concerning selection progress through indirect selection, FFW showed
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a progress of 12.53% when selection is focused on the WFA. Conversely, when the focus
shifted to the WFW, FFW demonstrated a lower selection intensity of 12.06%. Accordingly,
the effectiveness of selection progress based on secondary traits revealed that the WFA has
an effectiveness of 0.68 in representing FFW, while the WWF only reached a value of 0.32.

Table 3. Stepwise multiple regression analysis of traits that resulted positively correlated with the
fruit fresh weight.

Parameters Estimate Std. Error t Value Pr (>|t|)

(Intercept) −4.9456 3.7527 −1.318 0.19071
WFA 1.2911 0.4217 3.062 0.00286 **
WFW 3.2015 1.8520 1.729 0.08711

Notes: R2: 0.554, Adjusted R2: 0.5446, ** significant effect at 1% error level, WFA = whole fruit area, WFW = whole
fruit width.

Table 4. Validation analysis of secondary traits using genetic approaches.

Grouping Traits SG S i ∆G ∆G% (Cr/Rx)

Independent
WFW 4.45 0.90 1.81 0.57 15.90
WFA 12.56 4.06 2.35 2.49 29.29
FFW 28.85 11.53 4.09 6.76 39.05

Dependent

WFA 12.56 2.65 2.70 0.99 10.03 0.68
FFW 27.16 7.25 3.66 2.50 12.53

WFW 4.45 0.89 1.09 0.35 9.95 0.32
FFW 26.89 6.98 3.53 2.40 12.06

Notes: WFA = whole fruit area, WFW = whole fruit width, FFW = fruit fresh weight, SG = selected genotypes,
S = selection differential, I = selection intensity, ∆G = selection progress, Cr/Rx = effectiveness of secondary traits.

As shown in Figure 3 and Table 5, the derived model for estimating fruit fresh
weight based on whole fruit area extracted from the training samples is expressed as:
FFW = −4878 + 2619 × WFA. Notably, only 3 points out of 110 total samples fell outside
the confidence interval (CI) line, with the majority residing within the prediction interval
(PI; Figure 3). In addition, the training model was characterized by high R2 and adjusted-R2

values (81.5 and 81.3, respectively), with a reasonably low error (RMSE = 3.14 g; Table 3).
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Table 5. Analysis of model sensitivity on training and validation data.

Data n p-Value R2 Adjusted-R2 R2-Deviation RMSE

Training 96 0.000 81.5 81.3 0.2 3.14
Destructive
Validation 30 0.000 70.7 69.8 0.9 4.46

Non-destructive
Validation 45 0.000 80.7 80.2 0.5 2.12

Notes: n = number of genotypes, R2 = determination value, RMSE = root mean square error.

The model was validated by considering image-derived data from other populations,
namely M/K//K backcross crosses and F5 population for destructive and non-destructive
validation, respectively. Based on the destructive validation depicted in Figure 4, the whole
fruit area exhibited a relatively high model determination value for FFW. This was further
corroborated by the absence of samples outside the confidence interval (CI) area, although
a few samples extended beyond the prediction interval (PI). Additionally, the robustness of
this model was supported by the validation metrics, including R2-Deviation and RMSE,
which closely aligned with the training data at 0.9 and 4.46, respectively (Table 5). Similarly,
non-destructive validation (Figure 5) demonstrated the high effectiveness of the WFA-
driven model in predicting FFW. The determination was notably robust, further validated
by R2-Deviation (0.5) and RMSE (2.12 g) values comparable to the training data and
destructive validation (Table 5).
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4. Discussion

The results of this study revealed noteworthy insights into the distribution of pheno-
typic traits along different lowland tomato varieties. Although the F2 population’s mean
values generally aligned closely with those of its parental counterparts and F1 generation,
certain traits exhibited lower averages compared to other background genotypes. This
discrepancy suggests that specific F2 genotypes manifest deficient scores in comparison
to both parents and F1 line for specific traits. Nevertheless, it is imperative to recognize
that the manifestation of phenotypes is not solely governed by the segregation process
resulting from the cross. This is evident in the heritability values associated with fruit traits,
which consistently fell within the low to medium range. Such results underscored the
prevailing influence of environmental factors on the phenotypic expression of tomato fruit
traits [6,70,71]. However, the moderate heritability observed in this study provided a valu-
able reference for the selection of image-derived phenotypic traits as proxies for fruit fresh
weight (FFW). Notably, the application of the proposed image-based phenotyping (IBP)
pipeline guaranteed the extraction of morphological variables with superior heritability
compared to the principal trait (i.e., FFW). According to Acquaah [71], Lozada [67], and
Fadhilah et al. [14], this result reflects the essential criterion for a valuable secondary trait to
possess a superior heritability than the variable to be estimated. Consequently, the effective
IBP-based measurement of secondary traits to estimate FFW in different segregation lines
of lowland tomatoes emerges as a notable outcome of this research.

Within the framework of predictive models, the inclusion of numerous predictors
unrelated to the primary trait could introduce considerable bias [69,72–74]. Indeed, while
these additional data may seemingly enhance the estimation accuracy, their contributions
often yield variations that lack substantial supplemental information in model develop-
ment [71]. Therefore, a correlation analysis was performed to systematically minimize
the inputs required for an accurate estimate of the FFW. Correlation is a commonly used
approach for reducing the number of phenotypic traits that exhibit the potential to be can-
didates as predictors, as previously stated for maize [51], rice [54] and tomato [15,20,74–76].
Results highlighted specific phenotypic traits, namely whole fruit height (WFH), slice fruit
area (SFA), whole fruit area (WFA), slice fruit height (SFH), whole fruit width (WFW),
and slice fruit width (SFW), as optimal candidates for serving as predictors of the tomato
fresh weight.

Aiming to identify the most powerful trait for accurately estimating the FFW, our
study employed the convergence of stepwise multiple regression and path analysis, follow-
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ing [46,59,75–77]. Accordingly, these methodologies complement each other, performing
integrated roles [48,59]. Stepwise multiple regression represents a systematic and grad-
ual reduction analysis which combines information from different variables [46,59,78].
This approach mitigates information loss that can occur when comparing one model with
others [78], ensuring that the resulting model effectively encapsulates all relevant infor-
mation derived from each selected independent variable. Nevertheless, stepwise multiple
regression could not fully explain how individual independent variables influence the de-
pendent variable. To address this limitation, path analysis can improve the understanding
of how each independent variable contributes to the overall variance of the dependent vari-
ables [14,46,59,79], thus resulting essential to validate the established model [80,81]. Here,
both analyses identified whole fruit area (WFA) and width (WFW) as potential secondary
traits, with crosscheck results revealing a significant direct influence of WFW to the fruit
fresh weight, followed by WFA and whole fruit height (WFH). However, the regression
analysis presented varying results, emphasizing the importance of further validation to
increase the level of confidence in the estimations [40,82–85].

In this context, the selection intensity [63,86,87], percentage of genetic progress [5,65,88]
and the effectiveness of secondary traits [66,67,89] genetic approaches were applied to
enhance the precision of identifying optimal predictor in segregating tomato populations.
Previous researches consistently underscored the effective shared ability of such genetic
methodologies to compare secondary traits, particularly in F2 populations [6,14,90,91]. In this
study, despite WFW displaying higher direct influence and heritability values compared to
whole fruit area WFA, this superiority was deemed genetically insufficient to consider WFW
as a valuable predictor. Conversely, the WFA emerged as a reliable proxy of FFW. This result
was consistently observed across various direct and indirect selection methods, highlighting
the robust effectiveness of WFA in predicting the FFW within the proposed IBP framework.
Such evidence aligns with the findings previously reported by various researchers on several
plant species [24,27,37,92,93], including tomato [22,38–40].

The accuracy and robustness of the developed WFA-driven estimation model
(FFW = −4878 + 2619 × WFA) was both qualitatively and quantitatively ascertained.
Moreover, the effective destructive and non-destructive validation of the estimates ob-
tained in different tomato populations reinforced the generalization ability of the model
(R2 = 80.7%, Adjusted-R2 = 80.2, and RMSE = 2.12 g). In this context, the proposed non-
destructive pipeline achieved a similar or even greater accuracy of existing IBP destructive
methods which were exclusively focused on estimating the fruit weight of a specific variety,
with errors ranging from 1.27 g [26] to 15.84 g [38]. Encouragingly, the outcome of the non-
destructive validation raises promising prospects for the model’s effectiveness in directly
evaluating tomato fruit weight within field conditions. Indeed, although the model may
not accurately detect very light fruits (i.e., negative estimated values shown in Figure 5),
this represents a negligible limitation for the workflow’s applicability considering the size
and weight standards of the marketable tomatoes at the harvest time. Accordingly, the
proposed model could guide field robots or machines in the efficient harvesting of tomato
fruits, ensuring the direct identification of those that do not meet market needs while still
on the plant.

Nevertheless, the potentialities of this model invite further optimization through the
incorporation of more advanced sensors (e.g., multispectral and/or hyperspectral cameras)
or cutting-edge image-based phenotyping technologies (e.g., 3D-modeling). This could led
to the comprehensive analysis of more complex phenotypic traits involved in the formation
of the fruit weight and quality, as well as in predicting the effects of biotic and/or abiotic
stressors on marketable tomato yield [29,33,94–96]. Consequently, the proposed pipeline
could also serve as an efficient, straightforward, and rapid tool for breeding tomato varieties
highly resilient to climate change in lowland areas.
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5. Conclusions

In this study, multivariate analysis emerged as a highly efficacious approach for
identifying pivotal image-derived phenotypic traits for predicting the final yield of lowland
tomato segregation lines. Notably, the whole fruit area (WFA; cm2) displayed considerable
potential in estimating single fruit fresh weight (FFW; g). The proposed model, expressed
as FFW = −4878 + 2619 × WFA, demonstrated robustness and generalizability. Indeed,
methodological rigor characterizes the model’s construction and validation, encompassing
a comprehensive array of populations and validations, spanning both destructive and non-
destructive paradigms. This model is therefore recommended for the proactive selection of
tomato lines most adaptable to novel lowland environmental conditions, with envisioned
utility in the realm of automated harvest robotics for discerning marketable fruits during
harvesting operations.
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