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Abstract: The prompt and precise identification of corn and soybeans are essential for making
informed decisions in agricultural production and ensuring food security. Nonetheless, conventional
crop identification practices often occur after the completion of crop growth, lacking the timeliness
required for effective agricultural management. To achieve in-season crop identification, a case
study focused on corn and soybeans in the U.S. Corn Belt was conducted using a crop growth
curve matching methodology. Initially, six vegetation indices datasets were derived from the publicly
available HLS product, and then these datasets were integrated with known crop-type maps to extract
the growth curves for both crops. Furthermore, crop-type information was acquired by assessing the
similarity between time-series data and the respective growth curves. A total of 18 scenarios with
varying input image numbers were arranged at approximately 10-day intervals to perform identical
similarity recognition. The objective was to identify the scene that achieves an 80% recognition
accuracy earliest, thereby establishing the optimal time for early crop identification. The results
indicated the following: (1) The six vegetation index datasets demonstrate varying capabilities in
identifying corn and soybean. Among those, the EVI index and two red-edge indices exhibit the
best performance, all surpassing 90% accuracy when the entire time-series data are used as input.
(2) EVI, NDPI, and REVI2 indices can achieve early identification, with an accuracy exceeding 80%
around July 20, more than two months prior to the end of the crops’ growth periods. (3) Utilizing
the same limited sample size, the early crop identification method based on crop growth curve
matching outperforms the method based on random forest by approximately 20 days. These findings
highlight the considerable potential and value of the crop growth curve matching method for early
identification of corn and soybeans, especially when working with limited samples.

Keywords: early identification; crop growth curve; corn; soybean; crop-type classification

1. Introduction

Precise and timely mapping of crop distribution is indispensable for agricultural
monitoring and decision-support applications, encompassing crucial tasks, such as crop
yield estimation, optimization of crop planting structures, early detection of crop disasters,
agricultural insurance, and land leasing [1–4]. This mapping is pivotal not only for the
efficiency of agricultural management but also for guaranteeing food security [5–7]. Remote
sensing-based methods for crop identification have become essential tools for crop-type
recognition, playing a crucial role in various early detection systems in agriculture [7,8].

At present, scholars have extensively investigated crop-type identification using a
variety of remote sensing data sources [9,10]. The integration of multi-temporal remote
sensing data, coupled with spectral and temporal information, enhances the monitoring of
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crop growth variations throughout the growing season and improves crop-type recogni-
tion [11,12]. Despite these advancements, many studies necessitate complete time-series
data for an entire growing season, resulting in a delay of several months or even a year
in obtaining crop-type information and distribution mapping after the conclusion of the
growing season. This delay hinders the timely and practical significance of crop monitoring
for scientific agricultural management, including irrigation scheduling and yield estima-
tion [13–15]. Current methods for identifying crop types often require extensive ground
samples for training and validation, leading to inefficiencies, especially in large-scale crop
remote sensing monitoring, where sample scarcity is a common challenge [16]. Therefore,
early crop identification research has gained increasing attention [17–22]. This involves
obtaining information on crop-type distribution several months before the end of the grow-
ing season to meet the actual needs of agricultural management. Simultaneously, early
identification of crop types implies the absence of complete remote sensing data for the
entire growing season. Moreover, the limited number of input images and the necessity to
reduce reliance on ground survey samples impose higher requirements on the selection of
data sources and identification methods for early crop identification [23].

In early crop identification research, it is customary to leverage the characteristic dif-
ferences in the time-series data of different crops. These distinctions become evident early
in the time series, emphasizing the need for time-series data sufficient temporal density.
Moderate-Resolution Imaging Spectroradiometer (MODIS) data, re-known for their daily
observation capabilities, have been widely employed in early crop identification [24–27].
Skakun utilized historical MODIS-derived Normalized Difference Vegetation Index (NDVI)
data and a Gaussian mixture model (GMM) to distinguish winter crops from spring and
summer crops in the state of Kansas in the US and Ukraine [26]. The results revealed
accuracy exceeding 90%, achievable almost two months before the winter crop harvest,
presenting an opportune timeframe for crop distribution mapping. Nevertheless, the
utilization of low spatial resolution imagery like MODIS may inevitably result in mis-
classification and omission errors owing to mixed pixels. Therefore, data with higher
spatiotemporal resolution would be more applicable in early crop identification [28,29]. In
a study by You and Dong, the Google Earth Engine (GEE) platform, in conjunction with
Sentinel-1/2 imagery, was employed for the early identification of crops, such as rice, maize,
and soybean. This investigation generated crop distribution maps for the current year with
an overall accuracy of 0.91 by combining historical images and ground survey samples
using a random forest classifier [17]. In a related study, Wei conducted research to identify
rice, maize, and soybean early using Sentinel-2A/B data on the GEE platform, achieving an
accuracy exceeding 90% [30]. The study compared the effectiveness of different vegetation
indices combined with various deep learning algorithms for early identification. Utilizing
high-spatial-resolution data, these studies have the potential to enhance the accuracy of
crop-type identification. However, they often require sufficient samples for model training,
limiting their applicability in research areas with a scarcity of samples. Certain studies
have used data with higher spatiotemporal resolution for crop identification. For example,
Gao utilized VENµS satellite imagery to identify maize and soybean at the sub-field scale.
However, the prohibitive cost of acquiring data from commercial satellites renders them
unsuitable for large-scale crop distribution mapping studies [31].

Currently, widely used data sources with higher spatial resolution include Landsat and
Sentinel-2 data [32–35]. Both datasets are publicly accessible and share comparable spatial
resolutions. The National Aeronautics and Space Administration (NASA) initiated the
Harmonized Landsat and Sentinel-2 (HLS) dataset, which combines Landsat 8 and Sentinel-
2 data to generate surface reflectance data with high spatial and temporal resolutions [36].
Many scholars have leveraged HLS products for remote sensing studies, such as monitoring
dynamic changes in grassland landscapes and mapping crop planting frequencies [37,38].
Due to its optimal temporal density and spatial resolution, the HLS dataset holds significant
potential for further applications in early crop identification research.
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Numerous previous classification studies have progressively embraced machine learn-
ing algorithms, such as random forest (RF), support vector machine (SVM), and con-
volutional neural networks (CNNs), known for their efficacy in various classification
tasks [39–42]. In contrast, this study adopts a novel approach to crop identification based
on evaluating the similarity between time-series data and crop growth curves. This method
aims to reduce dependence on ground samples and eliminate the need for intricate algo-
rithm parameter configurations. The objectives of this study are as follows: (1) utilize the
high spatiotemporal resolution and multi-band advantages of the HLS dataset for research
on the identification of corn and soybean types; (2) generate various vegetation index
datasets to ascertain the optimal vegetation index type for enhancing crop identification
accuracy; (3) pinpoint the earliest time range for both crops with high classification accuracy
by configuring various scenarios with distinct input image data.

2. Materials and Methods
2.1. Study Area

The study area is situated in DeKalb County, northern Illinois, USA, covering an area
of approximately 1645 square kilometers (Figure 1). Illinois stands as a leading agricultural
state in the United States, with 80% of its land dedicated to agricultural purposes. The
average cultivated land per household is 140 hectares (around 2100 acres), predominately
featuring major crops such as corn and soybeans.
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Figure 1. Location map and distribution map of corn and soybean of the study area.

Illinois exhibits a flat topography with an average elevation of 182 m, sloping grad-
ually from north to south. The northwestern region showcases slightly elevated terrain
characterized by gently rolling hills, reaching the state’s highest point at an elevation of
378 m. The climate in Illinois is classified as temperate, marked by cold and snowy winters
and hot summers. The average winter temperatures in the northern part hover around
−6 ◦C, while in the southern part, they reach approximately 3 ◦C. The summer tempera-
tures average at 21 ◦C in the north and 25 ◦C in the south. Annual precipitation averages
between 800–1200 mm in the north and 1200–1600 mm in the south. The growing season
for crops in the south spans 210 days, while in the north it is limited to 160 days.



Agronomy 2024, 14, 146 4 of 17

2.2. Data and Processing
2.2.1. HLS Data Collection

The Harmonized Landsat and Sentinel-2 (HLS) project, initiated by the National
Aeronautics and Space Administration (NASA), aims to leverage data from the Operational
Land Imager (OLI) and Multispectral Instrument (MSI) aboard Landsat 8 and Sentinel-2
satellites. The goal of this project is to generate consistent and unified surface reflectance
products. The integration of these two sensors enables global observations of the Earth’s
surface at a spatial resolution of 30 m every 2–3 days. The resultant data products undergo
a standardized preprocessing pipeline, encompassing atmospheric correction, cloud and
cloud shadow masking, spatial co-registration, normalization of illumination and viewing
angles, and spectral bandpass adjustment. This meticulous process ensures that HLS
becomes a stackable and comparable seamless time-series product. The dense time series
afforded by HLS facilitates unprecedented monitoring of dynamic surface properties with
exceptional spatial detail [36]. The heightened temporal resolution of this dataset holds
substantial potential to significantly benefit studies on land cover change, agricultural
management, disaster response, water resources, and vegetation phenology.

To assess and analyze the identification performance of various vegetation index
data, such as the red edge vegetation index, this study exclusively utilizes the S30 product
from the HLS dataset. This product is derived from Sentinel-2A and Sentinel-2B MSI
data. The data acquisition period for this study spans from 4 April to 7 November 2021,
corresponding to the 94th to 311th day of the year (DOY), covering a duration of 218 days.
Throughout this timeframe, more than 100 HLS-S30 data acquisitions were conducted.
Following the consideration of data processing (see details in Section 2.2.3), a total of
40 images were ultimately deemed usable (Table 1).

Table 1. Eighteen scenarios of data acquisition time points with intervals of approximately 10 days
and the corresponding number of input images.

Input image number 5 7 8 10 13 16

DOY 121 131 146 156 166 174
Date 1-May 11-May 26-May 5-Jun 15-Jun 23-Jun

Input image number 18 20 23 26 28 30

DOY 186 201 211 221 229 241
Date 5-Jul 20-Jul 30-Jul 9-Aug 17-Aug 29-Aug

Input image number 32 34 36 37 38 40

DOY 251 261 271 291 301 311
Date 8-Sep 18-Sep 28-Sep 18-Oct 28-Oct 7-Nov

2.2.2. CDL Data Collection

The Cropland Data Layer (CDL) dataset is an annual land cover remote sensing
product publicly released by the United States Department of Agriculture (USDA). This
product has a 30 m spatial resolution and utilizes data from various satellites, including
the Advanced Wide-Field Sensor (AWiFS), Landsat Thematic Mapper/Enhanced Thematic
Mapper Plus (TM/ETM+), Deimos-1, UK-DMC-2, and Moderate-Resolution Imaging Spec-
troradiometer (MODIS). The ground reference data used to categorize agricultural and
non-agricultural land in the CDL product are derived from the Common Land Unit (CLU)
data, as disseminated by the USDA’s Farm Service Agency (FSA), and the 2001 National
Land Cover Database (NLCD2001) data. The CLU-based data are collected during each
growing season, when producers furnish details on crop types and corresponding areas
within their farmland to the FSA county offices. In an overarching assessment, the CDL
product exudes a robust level of confidence in its classification accuracy. Covering a range
of more than 100 crop types, the CDL dataset attains a classification accuracy surpassing
90% for major crops, like corn, soybeans, and winter wheat [43]. Its widespread applica-



Agronomy 2024, 14, 146 5 of 17

tion extends to domains such as land use and land cover change as well as agricultural
monitoring [44,45].

2.2.3. Data Processing

This study employed a process to obtain HLS data in R, following the workflow
outlined by the E-Learning platform (https://lpdaac.usgs.gov/resources/e-learning/
(accessed on 7 January 2024)). This platform is collaboratively managed by the US Geo-
logical Survey (USGS) and NASA as part of the joint project known as Land Processes
Distributed Active Archive Center (LP DAAC). The HLS products, stored as GeoTIFF
files optimized for cloud storage and distribution, are archived and disseminated by LP
DAAC. To facilitate the retrieval of HLS data without downloading the source data, this
study utilized the NASA CMR-STAC (Collection for STAC) Application Programming
Interface (API). In the initial step, administrative vector data for the state and county levels
of Illinois in the United States (Figure 1) were acquired from a public database, GDAM
(https://gadm.org/ (accessed on 7 January 2024)). Subsequently, the vector file of DeKalb
county was converted into a geojson format file within RStudio, defining the study area’s
scope. After setting the time range for image acquisition, this study omitted the impo-
sition of a cloud coverage filter but instead employed HLS’s Quality Assessment (QA)
layer generated from the Fmask algorithm [46] to conduct cloud processing on all queried
data. Within the HLS framework, both values of 0 and 64 in the QA layer denote pixels
devoid of cloud, cloud shadow, water, or snow/ice. To enhance the retention of usable
pixels, this study conducted a comparative analysis of masked images generated using
different quality control schemes against the original images captured on the respective
day. The final recommendation in this study involved preserving specific QA layer values,
such as 0, 4, 64, 68, 100, 128, 132, and 192, as benchmarks for masking. Subsequently, the
mask function is applied in the calculation project to compute six vegetation index data
through the formulas presented in Section 2.3.1. The final results are then saved locally
for further analysis. Throughout the growing season, approximately 100 sets of masked
images were computed for each vegetation index dataset. Subsequently, through visual as-
sessment, masking areas were determined to be less than approximately 50%. Considering
factors such as time distribution and the spatial distribution of the masks, 40 images were
ultimately chosen as the input data representing the entire growing season.

The CDL data utilized in this study were sourced from the USDA’s National Agricul-
tural Statistics Service (https://nassgeodata.gmu.edu/CropScape/ (accessed on 7 January
2024)). This platform allows for the customization of the research area, year, crop type,
projection coordinates, and other parameters for data retrieval. The CDL images selected
cover the study area, as depicted in Figure 1, and maintain consistency in projection in-
formation and spatial resolution with HLS data, specifically WGS84-UTM 16N and 30 m,
respectively. To ensure complete spatial registration with HLS data, the CDL image is
then cropped to match the size of HLS data using the same vector file for DeKalb county.
Simultaneously, given the study focused on corn and soybeans, all other land feature types
were amalgamated into the ‘others’ category (Figure 1).

2.3. Methods
2.3.1. Construction of Vegetation Indices

This study developed six vegetation indices using various bands from the HLS-S30
product, categorized into three general categories. Firstly, common indices like NDVI and
EVI (Enhanced Vegetation Index), which combine visible and near-infrared bands, were
chosen due to their proven effectiveness in distinguishing crop types [47,48]. In comparison
to NDVI, EVI exhibits superior discrimination effects when most crops have low to medium
green biomass, such as during the greening stage and senescence stage, while NDVI’s
classification sensitivity diminishes under high green biomass levels [49,50].

The second type employs LSWI (Land Surface Water Index) and NDPI (Normalized
Difference Phenology Index) in the shortwave infrared band (SWIR). Previous studies have

https://lpdaac.usgs.gov/resources/e-learning/
https://gadm.org/
https://nassgeodata.gmu.edu/CropScape/
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demonstrated that the SWIR band possesses a better ability to differentiate between corn
and soybeans compared to the visible bands [17,32]. LSWI serves as a reliable indicator of
vegetation moisture content and captures the unique spectral characteristics of soil, water,
and open canopy during the early stages of crop growth [51]. NDPI exhibits higher sensi-
tivity to vegetation growth, particularly when vegetation growth and snowmelt coincide,
making NDPI more effective than NDVI in monitoring spring plant phenology [52].

The third category encompasses two widely used red-banded vegetation indices,
named REVI1 (Red Edge Vegetation Index 1) and REVI2 (Red Edge Vegetation Index 2)
in this study. Existing research indicates that red-edge bands and shortwave infrared
bands are expected to provide crucial information about vegetation [53]. Among the three
red-edge bands of Sentinel-2/MSI, the first red-edge band (re1) is most influenced by
chlorophyll content, followed by the second red-edge band (re2), with the third red-edge
band (re3) having minimal impact [54]. Consequently, to maximize differentiation, this
study selected the re1 and re3 bands when constructing the red-edge index. The calculation
formulas for the six vegetation indices are as follows.

NDVI =
ρnir − ρred
ρnir + ρred

(1)

EVI = 2.5 × ρnir − ρred
ρnir + 6 × ρred − 7.5 × ρblue + 1

(2)

LSWI =
ρnir − ρswir1

ρnir + ρswir1
(3)

NDPI =
ρnir − (0.74 × ρred + 0.26 × ρswir1)

ρnir + (0.74 × ρred + 0.26 × ρswir1)
(4)

REVI1 =
ρnir − ρre1

ρnir + ρre1
(5)

REVI2 =
ρre3 − ρre1

ρre3 + ρre1
(6)

In the above formulas, ρblue, ρred, ρre1, ρre3, ρnir, ρswir1, respectively, represent the reflec-
tivity of the B02, B04, B05, B07, B8A, and B11 (Table 2). These six vegetation index data
were calculated in R and have the same distribution range, resolution, and spatial reference,
with the value ranging between [17,32].

Table 2. The selected bands of HLS-S30 products.

HLS-S30 Band Code Name Wavelength (Micrometers) Band

B02 0.45–0.51 Blue
B04 0.64–0.67 Red
B05 0.69–0.71 Red-Edge 1
B07 0.77–0.79 Red-Edge 3
B8A 0.85–0.88 NIR Narrow
B11 1.57–1.65 SWIR 1

2.3.2. Extraction of Crop Growth Curves

During the crop growth period, which spanned 218 days, we calculated 40 periods of
data for each vegetation index. In order to obtain a time-continuous complete vegetation
index curve and use it for subsequent crop growth curve extraction, this study uses a
flexible fitting (Flexfit) algorithm to fill in the missing data between the 40 periods of data
for each vegetation index to generate daily continuous vegetation index data [31]. The
Flexfit method is capable of addressing significant temporal gaps within time-series data,
facilitating both data noise elimination and data smoothing. Diverging from conventional
Savitzky–Golay (SG) filtering methods reliant on fixed time windows, the Flexfit tool
exhibits versatility by employing more extensive time windows. This flexibility proves
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particularly advantageous for accommodating the 40-day period under examination in this
study, wherein period data are extrapolated to yield a complete daily dataset spanning
218 days. Following rigorous testing, the parameters for Flexfit fitting in this study were
established as follows: the spike threshold, increase weight, and number of iterations for
filling large gaps were set to 3, 2, and 3, respectively. Additionally, the minimum number
of samples for smoothing was determined to be 5, while the maximum search window
size was capped at 60. Subsequently, we randomly selected 20 sample points for corn and
soybean utilizing the confidence layer of CDL data with confidence levels surpassing 0.95.
These sample points were then overlaid onto the fitted time-series vegetation index data to
extract 20 curves for each crop. Following a meticulous screening process, certain curves
whose shapes deviated from the majority, owing to poor fitting results, were eliminated.
Ultimately, only 10 curves were retained as crop growth curves for each crop. Figure 2 illus-
trates the average crop growth curve of the six vegetation indices for enhanced presentation.Agronomy 2024, 14, x FOR PEER REVIEW 8 of 18 
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2.3.3. Classifier and Accuracy Assessment

For each pixel, the 40 periods of vegetation index values are organized chronologically,
and the shapes of these 40 values are compared against a total of 20 extracted crop growth
curves for both crops. If the similarity between the pixel’s 40 data value and a particular
curve is the highest, the crop-type information for that pixel is determined by assessing
whether the curve corresponds to the corn or soybean growth curve. This pixel-wise
evaluation results in obtaining crop-type information for all pixels within the entire study
area. The process of similarity matching between pixel values and curves adheres to a
logical sequence and can be represented by the following formula [30]. The process of crop
classification involves comparing the data value of each pixel to all growth reference curves.
Then, the curve with the smallest difference is considered a match, and the crop attributes
of that growth curve are used to determine the type of crop planted at the pixel location.
This process of similarity matching between pixel values and curves adheres to a logical
sequence [55] and can be represented by the following formula.

L(x) = a ∗ M(x + x0) + b (7)

Here, L(x) denotes the HLS time-series vegetation index curve function, M(x) repre-
sents the optimal crop growth curve function, x signifies a specific day within the growing
season, x0 represents the time offset (within the range of ±10 days, as set in this study), and
a and b are fitting parameters determined using the least square method. By systematically
comparing the variation between the vegetation index data and the growth curves on a
pixel-by-pixel basis, the curve exhibiting the highest R2 value is identified as the optimal
growth curve, highlighting the best similarity.

In the assessment of crop classification performance, the overall accuracy serves as
the criterion for evaluating the effectiveness of various vegetation indices in classification.
In this study, corn and soybean distribution information from the CDL classification map
with high confidence is utilized as verification data to compare spatial positions and pixel
counts with the identification results obtained through the crop growth curve matching
method. This accuracy assessment strategy, employing CDL data as verification data, is also
extended to the evaluation process of random forest classification outcomes in Section 3.2.

3. Results
3.1. Identification Performance of the Six Indices

When utilizing a dataset comprising 40 periods of vegetation index data throughout
the entire growing season for crop-type identification, all six vegetation indices demon-
strated a classification accuracy surpassing 85%. Notably, the highest classification accuracy
was attained by REVI1, reaching 91.1%. EVI and REVI2 closely followed, both achieving
classification accuracies exceeding 90%. LSWI, incorporating the shortwave infrared and
near-infrared bands, exhibited a classification accuracy of 89.7%. In contrast, NDPI, which
also integrates the shortwave infrared band, displayed a classification accuracy of 86.9%.
Similarly, the widely used NDVI yielded an accuracy of 86.4%.

When progressively reducing the number of input images at intervals of approximately
ten days, we devised an additional 17 distinct scenarios by varying the count of input
images to simulate the progressive increase in the number of images employed for crop-
type recognition over time (from early May to the end of October; see more details in
Table 1). Through a comparative analysis of the fluctuations in accuracy within crop
classification maps, this study established 80% as the standard threshold for acceptable
higher classification accuracy. It was observed that this benchmark of accuracy was initially
achieved on different dates with varying input images for the different vegetation index
data. Subsequently, these specific dates serve as critical time points for accurately achieving
early crop identifications.

The results in Figure 3 illustrate that, with an increase in the number of input image
data (corresponding to the passage of time on the horizontal axis), the overall classification
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accuracy of the six vegetation indices exhibits a consistent pattern of initial improvement
followed by stabilization. Prior to early June (around DOY156), the classification accuracy
generally remained below 60%, indicative of the emergence stage of the crops. Subsequently,
as time progressed, there was a continuous enhancement in the classification accuracy of
the six vegetation indices. By the conclusion of August (around DOY 241), during the grain-
filling maturity stage of the two crops, peak accuracy of approximately 90% was achieved.
Post this period, the classification accuracy of various vegetation indices remained stable.
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Notably, in mid-to-late July (around DOY 201), several vegetation indices demon-
strated a notable proficiency in distinguishing between corn and soybeans, achieving an
acceptable high classification accuracy of 80%. Specifically, on 5 July (DOY 186), the classifi-
cation accuracy of REVI2 reached 81%, and on 20 July (DOY201, see Figure 4), EVI achieved
a recognition accuracy of 85.7%. Overall, throughout the growing season, EVI and the two
red edge indices consistently yielded the best classification results across different input
image numbers, followed by NDPI and LSWI indices. The classification performance of
the NDVI index was relatively weak.

Analyzing the crop growth curves depicted in Figure 2, it becomes evident that around
DOY 273 (30 September), the vegetation index for corn and soybean reached its minimum
and subsequently stabilized as the lowest, indicating the conclusion of the growth phase
for both crops. Consequently, by considering the end of September as the termination point
for crop growth, the classification method utilizing crop growth curve matching attains an
accuracy exceeding 80% by mid-to-late July. This achievement precedes the conventional
endpoint of crop growth by over two months for the two crops.



Agronomy 2024, 14, 146 10 of 17Agronomy 2024, 14, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 4. Classification maps of six vegetation indices with input of 20 and full set of 40 data. 

3.2. Comparison with Random Forest Mapping 

The random forest (RF) algorithm, a classical machine learning algorithm founded 

on decision tree rules, plays a crucial role in diverse research applications such as crop 

type identification and land use classification. Renowned for its robustness and noise re-

sistance, RF has demonstrated superior performance compared to various classifiers 

[56,57]. In this study, we leverage the widely used and robust RF algorithm to conduct a 

comparative analysis alongside a crop early identification study employing a novel crop 

growth curve matching method. 

In the RF classification process, we utilized a random forest classifier based on ENVI 

5.3, employing the same 18 distinct scenes with varying input data numbers, as mentioned 

in Section 3.1. The training samples comprised 20 vector files corresponding to the pixel 

positions of crop growth curves used in the crop growth curve matching method. The 

number of decision trees (number of trees) was set as 100, while the other four parameters, 

including the number of features, impurity function, min node samples, and min impu-

rity, were standardized with default settings. Subsequently, as detailed in Section 2.2.3, 

the CDL map served as verification data to assess the overall accuracy of the classification 

results in 18 RF scenarios. 

Figure 5 illustrates the trend of crop growth curves (CGC) and RF algorithm’s early 

identification accuracy, which both initially increased and then stabilized. Striving for an 

early identification accuracy of 80%, the RF algorithm pinpointed crops approximately 20 

days later than the CGC matching method, specifically around 9 August (DOY 221), as 

opposed to the CGC method, which achieved this accuracy around 20 July (DOY 201). 

Prior to DOY 221, the CGC method generally outperformed the RF method in classifica-

tion effectiveness. However, starting from DOY 221, RF demonstrated superior classifica-

tion accuracy compared to the CGC method. RF typically attains improved classification 

results with an increased number of input image features and training samples. Never-

theless, in this comparative experiment, it was constrained to align with the 20 samples 

utilized by the CGC method, thereby limiting the advantages of the RF method to a certain 

extent. 

Figure 4. Classification maps of six vegetation indices with input of 20 and full set of 40 data.

3.2. Comparison with Random Forest Mapping

The random forest (RF) algorithm, a classical machine learning algorithm founded on
decision tree rules, plays a crucial role in diverse research applications such as crop type
identification and land use classification. Renowned for its robustness and noise resistance,
RF has demonstrated superior performance compared to various classifiers [56,57]. In this
study, we leverage the widely used and robust RF algorithm to conduct a comparative
analysis alongside a crop early identification study employing a novel crop growth curve
matching method.

In the RF classification process, we utilized a random forest classifier based on ENVI
5.3, employing the same 18 distinct scenes with varying input data numbers, as mentioned
in Section 3.1. The training samples comprised 20 vector files corresponding to the pixel
positions of crop growth curves used in the crop growth curve matching method. The
number of decision trees (number of trees) was set as 100, while the other four parameters,
including the number of features, impurity function, min node samples, and min impurity,
were standardized with default settings. Subsequently, as detailed in Section 2.2.3, the CDL
map served as verification data to assess the overall accuracy of the classification results in
18 RF scenarios.

Figure 5 illustrates the trend of crop growth curves (CGC) and RF algorithm’s early
identification accuracy, which both initially increased and then stabilized. Striving for an
early identification accuracy of 80%, the RF algorithm pinpointed crops approximately
20 days later than the CGC matching method, specifically around 9 August (DOY 221),
as opposed to the CGC method, which achieved this accuracy around 20 July (DOY 201).
Prior to DOY 221, the CGC method generally outperformed the RF method in classification
effectiveness. However, starting from DOY 221, RF demonstrated superior classification
accuracy compared to the CGC method. RF typically attains improved classification results
with an increased number of input image features and training samples. Nevertheless, in
this comparative experiment, it was constrained to align with the 20 samples utilized by
the CGC method, thereby limiting the advantages of the RF method to a certain extent.

The results above indicate that under conditions of limited sample inputs (around
20 samples, as specifically employed in this study), the early identification method based
on the crop growth curve can achieve comparable classification effects to the RF algorithm
and may even outperform it to some extent, reaching a noteworthy 80% classification
accuracy earlier. The RF algorithm is anticipated to yield better classification results with an
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augmented number of input images. Consequently, it is foreseeable that the classification
accuracy of the 18 scenes will be enhanced with a larger sample size. Hence, in situations
where the crop sample size is small, the crop growth curve matching method appears to be
more suitable for the early identification of corn and soybeans, to a certain extent.
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3.3. Separability Index

This study employed six vegetation indices, categorized into three main types: those
based on the visible light spectrum, including NDVI and EVI; those utilizing the short-
wave infrared spectrum, such as LSWI and NDPI; and those derived from the red-edge
spectrum, encompassing REVI1 and REVI2. With the exception of EVI and NDPI, which
are combinations of three bands, the remaining four vegetation indices are common dual-
band combinations. These six vegetation indices exhibit varying capacities for discerning
between corn and soybean crops. While Section 3.1 provides insights into the distinctive
attributes of different vegetation indices, comprehending these differences requires further
elucidation. To quantify the variation in classification efficacy, the present study employs
the separability index (SI) to further analyze the distinguishing capabilities inherent in
these six vegetation indices with regard to corn and soybean crops. The separability index
facilitates the examination of intra- and inter-class variability, offering an evaluation of how
effectively a feature set distinguishes between different land cover types. A higher value
on the separability index in a specific vegetation index corresponds to an enhanced ability
of that index to differentiate between corn and soybeans [58,59]. The calculation formula
for the separability index is presented in Formula (8).

SI(a, b) =
|uc − us|

1.96 × (σc + σs)
(8)

In Formula (8), c represents corn, and s represents soybean. uc and us are the average
spectral values of all samples of corn and soybean vegetation index a on date b, and σc and
σs denote the standard deviations of this feature in corn and soybean, respectively. |uc − us|
reflects the inter-class differentiation of two crops, while (σc + σs) represents the sum of
the intra-class variability in the two crops, and the SI value signifies the vegetation index
in the two crops on the separation.

To calculate the separability index, it is imperative to accumulate an extensive sample
dataset. Therefore, instead of opting for crop growth curves based on the CDL confidence
layer, we utilize the crop distribution information provided by the CDL map to identify
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as many center points from all cropland plots with complete single crop type as possi-
ble for both corn and soybean within the study area. This approach yielded a total of
346 original sample points for corn and soybean. To eliminate the issue of sample impurity
resulting from subjective factors during manual sample selection, this study employs the
Quantile–Quantile Plot (Q–Q plot) function in Origin 2021 to validate the samples. Thirteen
key phenological periods were chosen at 15-day intervals during the crop growing season,
and the validity of crop samples was assessed by examining the normal distribution of the
initial sample set data for each phenological period. Following the screening of the 15 key
phenological periods, the scatter plots for both crops were distributed along the reference
straight line. The Q-Q plot showed a reasonable normal distribution, indicating a linear
correlation between the sample data and the normal distribution (Figure 6). This affirms
the validity of the sample test. Currently, there are 243 adjusted sample points for corn and
232 adjusted sample points for soybeans. These sample points exhibit high quality and are
suitable for calculating the separability index of the six vegetation indices for both crops.
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Figure 6. The similarity of the Q-Q diagram in the validity test before and after adjusting the samples
for corn and soybean.

Figure 7 illustrates a heat map depicting the cumulative separability index values of
six vegetation indices. The numerical values within each rectangle in the figure correspond
to the accumulated separability index of the vegetation index represented by the column
in which the rectangle is located, ranging from DOY 94 to the DOY, corresponding to the
row position of the rectangle. Notably, it is observed that prior to DOY184, the cumulative
SI of the six vegetation indices exhibits minimal variations. Subsequently, discernible
differences emerge. Particularly noteworthy is the pronounced change in the cumulative
SI of EVI, with the most significant variation occurring after DOY184. The EVI attains
its highest cumulative SI value towards the end of the period (DOY 304), signifying its
superior capability in distinguishing between corn and soybean. The cumulative SI values
of the two red-edge indices exhibit similar changing patterns, with REVI1 demonstrating
a slightly higher SI value than REVI2. Additionally, the cumulative SI value of LSWI
surpasses that of both NDVI and NDPI. Importantly, these findings align closely with
the previously observed changes in classification accuracy during the early identification
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of crops using the six vegetation indices (Figure 3), providing further evidence of the
performance disparities among them in distinguishing between the two crops.
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4. Discussion
4.1. Performance of Crop Growth Curve Matching Method

Corn and soybean constitute crucial staple crops. The early identification of these crops
plays a pivotal role in making effective agricultural production management decisions,
ensuring food crop price stability and enabling early intervention in regional food crises,
especially in periods of political instability [53,60]. Through a comparative analysis of
the similarity between the growth curves and time-series data of corn and soybeans,
this study successfully achieved early identification with a higher accuracy, exceeding
80%, approximately two-and-a-half months prior to crop harvest. These results align
with the findings reported by Lin [22], where early identification of corn and soybeans
in the US Midwest demonstrated similar levels of outcomes. Furthermore, the EVI and
the two vegetation indices that integrated red-edge bands exhibited the most superior
performance in the early stage of crop growth in this study. Following closely, the vegetation
index incorporating the shortwave infrared band also demonstrated strong performance,
consistent with findings from existing studies [17].

4.2. Limitations and Recommendations

Previous research focused on the early identification of essential crops like corn and
soybeans, frequently employing classification method such as machine learning. Although
these methods generally yield accurate classification results, they may face limitations
arising from a scarcity of ground samples. In this study, we utilized the crop growth curve
matching method with a restricted sample size to effectively differentiate between crops,
achieving favorable identification results.

Nevertheless, this study is not without its limitations and areas that warrant improve-
ment. Firstly, the reliance on publicly known high-precision crop classification maps (like
CDL) to pinpoint the locations of crop sample points, extract crop growth curves, and
validate classification results is imperative. Unfortunately, such classification maps are not
universally available in all regions. Secondly, the selected county is situated in the main
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corn-producing region of the United States, potentially overlooking growth disparities
between the two crops arising from broader-scale climate variations and yearly fluctuations.
Additionally, the six vegetation indices employed in this study may lack comprehensive
representation, especially considering the omission of more indices based on all three
red-edge bands.

To address these limitations, potential future enhancements could involve utilizing
high-precision imagery from Google Earth to identify crop sample points. Moreover, crop
growth curves from adjacent years in regions exhibiting minimal differences in climate
conditions and cropping pattern compared to the study area can be extracted and applied
to crop classification for the current year. When utilizing crop growth curves from other
study areas, it is suggested to adjust the time-offset parameter in the matching method
used in this study. Furthermore, the feasibility of applying the crop growth curve matching
method to a larger study area or different crop types warrants evaluations. Addition-
ally, the growing availability of high spatial and temporal resolution image data offers
opportunities to augment our comprehension and utilization of various spectral bands and
vegetation indices.

5. Conclusions

This study presents a method for matching time-series vegetation index data with
crop growth curves to enhance the early identification of corn and soybeans. The approach
involves extracting growth curves for both crops by utilizing time-series HLS fitting data
and high-precision CDL crop classification diagrams. Similarity matching is then applied
to the vegetation index data for six different time-series lengths, leading to highly precise
early identification results. The results indicate that, when utilizing the complete growing
season time-series data, the overall classification accuracy of six different vegetation indices
surpasses 85%. Notably, two red-edge indices and the EVI consisting of three bands exhibit
superior classification performance, exceeding 90%. The vegetation indices with shortwave
infrared bands such as LSWI and NDPI closely follow, while the commonly used NDVI
demonstrates relatively weak performance. Upon reducing the number of input images
at approximately 10-day intervals, it was observed that around mid-July, most vegetation
indices could attain a classification accuracy exceeding 80%. For instance, REVI2 reached
this accuracy on 5 July, while the EVI achieved it on 20 July. This implies that this study
can effectively distinguish between the two crops approximately two-and-a-half months
earlier than the corn and soybeans’ harvest period (around the end of September in 2021).
Moreover, employing the same smaller sample size (20 samples in total), the method
employed in this study can also achieve an 80% early recognition accuracy earlier than
the approach based on the random forest classifier. It is essential to note that classification
methods based on random forests often exhibit robust crop identification effects, and
variations in samples and parameter settings can significantly impact the classification
outcomes of random forests. Therefore, the comparison with the random forest method in
our study is more likely to illustrate that the crop growth curve matching method utilized
here can, to a certain extent, achieve similar effects to the widely used random forest
classifier. This is particularly noteworthy since our method relies on only a few samples.
In summary, this study offers valuable insights into the selection of vegetation indices
and the design of research methods for crop early identification research, like corn and
soybean, and holds positive implications for guiding scientific management in agricultural
production activities and providing early warnings for food security.
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